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A B S T R A C T   

We propose a design of a metamaterial for magnetically tunable propagation of nonlinear vector solitary waves. 
The metamaterial consists of a periodic array of units of hard-magnetic inclusion embedded in a soft matrix. The 
units are connected via thin and highly deformable ligaments. Our theoretical and numerical modeling results 
show that the configuration of the metamaterial undergoes drastic transformations when activated by a magnetic 
field. These controllable microstructural transformations significantly influence the propagation of vector soli-
tary waves in the proposed metamaterial system. We report the magnetic field-enabled propagation of solitary 
waves. We show that the proposed soft magnetoactive metamaterial allows us to tune the key characteristics of 
the enabled nonlinear solitary waves, including their pulse width and amplitude. Our findings also highlight the 
potential of magneto-mechanical coupling in the development of untethered mechanical metamaterial systems 
for applications in nondestructive testing, energy harvesting, and smart soft wave devices.   

1. Introduction 

Originated in their highly ordered microstructures, mechanical 
metamaterials enable the control and manipulation of elastic waves in 
unprecedented ways: They facilitate applications ranging from vibration 
isolation (Bilal et al., 2017a; Hussein et al., 2014; Krushynska et al., 
2023; Wang et al., 2014; Zhang et al., 2021), waveguiding (Bilal et al., 
2017b; Chen et al., 2020; Liu et al., 2019; Wang et al., 2016), negative 
refraction (Liu et al., 2011; Mokhtari et al., 2019; Srivastava, 2016; Zhu 
et al., 2014), focusing (Memoli et al., 2017), and invisible cloaking 
(Nassar et al., 2019, 2020; Zhang et al., 2020a) to manipulations of the 
topological state of matter (Chen et al., 2018; Chen et al., 2019; Chen 
et al., 2021b; Foehr et al., 2018; Wang et al., 2015; Zhang et al., 2019a, 
2020b) that enables elastic wave flows immune to backscattering- 
induced losses. While small-amplitude motion phenomena have been 
explored, only limited knowledge exists in the important area of 
nonlinear wave behavior, even though they offer great promise for 
controlling mechanical signals (Chen et al., 2014; Coulais et al., 2017; 
Raney et al., 2016) and revealing such unique effects as one-way 
propagation (Nadkarni et al., 2016). 

Here, we focus on an important class of nonlinear phenomena – 
solitary waves, which have been observed in various physical systems. 

They were first reported by John Scott Russell (Russell, 1844) in 
nonlinear wave packets of water propagating with a stable shape and 
constant velocity in the Scottish Union Canal. The unique properties of 
solitary waves have been studied and exploited in many fields of science 
and engineering, including photonics (Christodoulides et al., 2003), 
optical communication (Marin-Palomo et al., 2017), frequency conver-
sion (Hwang and Arrieta, 2021), structural morphing (Zareei et al., 
2020; Zhang et al., 2019b), and nondestructive testing (Singhal et al., 
2017). For mechanical systems, granular crystals have been found to 
provide a material platform supporting propagation of nonlinear soli-
tary waves (Chong et al., 2017; Porter et al., 2015; Sen et al., 2008). 
However, the granular media only support scalar solitons that lack the 
typical multi-polarization of elastic waves propagating in classical 
solids. Moreover, nonlinear responses in these granular systems are 
determined by the contacts between particles – they are difficult to 
control even in relatively simple 2D settings (Deng et al., 2017), and 
pose significant challenges in fully 3D settings. 

Soft materials provide attractive media for realizing nonlinear elastic 
wave phenomena. Thus, various types of solitons have been demon-
strated in microstructured soft metamaterial designs (Deng et al., 2021). 
Above all, since soft metamaterials can usually support tensile defor-
mation, the propagation of rarefaction solitons has been reported (Deng 
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et al., 2020; Yasuda et al., 2019). Note that the granular systems may not 
support rarefaction solitons due to their lack of tensile cohesion. 
Moreover, soft mechanical metamaterials, with pre-designed bistable or 
multi-stable system behavior, can support the propagation of topological 
solitons or transition waves. In such systems, the nonlinear pulse prop-
agates as the structural union phase transformation front (Jin et al., 
2020; Nadkarni et al., 2016; Raney et al., 2016; Yasuda et al., 2020). 
Furthermore, it has been shown that soft mechanical metamaterials 
comprising arrays of rigid units that are connected by thin and highly 
deformable ligaments support the propagation of elastic vector solitons. 
Such vector solitary pulse consists of both translational and rotational 
components – they are coupled together and propagate together without 
distortion due to the perfect balance between system dispersion and 
nonlinearity (Deng et al., 2019a; Deng et al., 2017; Deng et al., 2018b). 
However, the characteristics of the solitary waves in these soft meta-
material systems can be tuned only through direct mechanical loading 
(Deng et al., 2018a; Deng et al., 2019b) owing to the passive nature of 
their constitutive materials. 

Soft active materials can undergo reversible changes in their prop-
erties and transformations in shape induced by external stimuli, such as 
light (Palagi et al., 2016), heat (Zhang et al., 2015; Zhang et al., 2016), 
electric (Galich and Rudykh, 2017; Wu et al., 2017) or magnetic fields 
(da Costa et al., 2022; Erb et al., 2012; Goshkoderia et al., 2020; Pathak 
et al., 2022; Rudykh and Bertoldi, 2013). Magnetoactive elastomers 
(MAEs) – a class of soft active materials that respond to magnetic field 
excitation – are a promising material platform for untethered devices 
thanks to their simple, remote, and reversible principle of actuation. 
Typically, MAEs consist of magnetizable particles embedded into a soft 
matrix. The application of an external magnetic field produces complex 
interactions between the magnetized particles, resulting in the overall 
deformation of the material and the modification of its effective prop-
erties (Chen et al., 2023; Ciambella et al., 2018; Goshkoderia and 
Rudykh, 2017; Itskov and Khiêm, 2016; Keip and Rambausek, 2016; 
Ortigosa and Gil, 2016). Potential applications include variable-stiffness 
devices (Erb et al., 2012), actuators (Moreno-Mateos et al., 2022; Tang 
et al., 2018) and sensors (Tian et al., 2011), soft robotics (Cui et al., 
2019; Hu et al., 2018), metamaterials (Chen et al., 2021a; Yu et al., 
2018), and biomedical devices (Wang et al., 2021). 

The tunability of materials by a remote magnetic field – either 
through property modification or induced deformation – holds 
intriguing potential for designing metamaterials for manipulating elastic 
waves. The “small-on-large” framework has been employed to examine 
the propagation of small-amplitude elastic waves in finitely deformed 
magneto-elastic materials. The theoretical analysis of elastic waves in 
MAEs builds on the fundamental work (Destrade and Ogden, 2011; 
Maugin, 1981) establishing the governing equations for small-amplitude 
motions superimposed on the finitely deformed state. The framework 
has been employed for the analysis of small-amplitude elastic waves in 
periodic laminates (Karami Mohammadi et al., 2019). These studies 
have considered soft-magnetic active elastomers (typically consisting of 
iron, soft ferrite, iron–silicon alloys, or iron–nickel alloy particles 
embedded in a soft matrix) that are not activated without an externally 
applied magnetic field. In contrast, hard-magnetic active elastomers 
(hMAEs) retain their magnetization even after the external field has 
been removed. Their high coercivity allows the hard-magnetic materials 
to sustain their remanent magnetization over a wide range of applied 
magnetic fields (that are below the coercive field strength) (Garcia- 
Gonzalez et al., 2023; Kim et al., 2018; Lucarini et al., 2022; Yan et al., 
2021; Zhao et al., 2019). Recently, Zhang and Rudykh (2022) examined 
the propagation of small-amplitude shear waves in hMAE periodic 
laminates. Zhang et al. (2023) proposed an hMAE-based asymmetric 
mechanical metamaterial design that allows remote and reversible 
control of the metamaterial performance. These results predict the ex-
istence of band gaps (a typical phenomenon for small-amplitude linear 
elastic waves) that can be tuned by an external magnetic field. 

In this work, we investigate the conditions for the existence of 

solitary waves enabled by a magnetic field in hard-magnetic soft me-
chanical metamaterial (hSMM) systems. We propose to exploit the 
unique magneto-mechanical coupling of hMAEs to remotely tune the 
width, amplitude, and velocity of the nonlinear solitary waves propa-
gating within. The developed novel hSMM can be used as a solitary wave 
switch to provide on or off capabilities. The remainder of this paper is 
organized as follows: Section 2 presents the governing equations of the 
proposed hSMM system, by approximating it as an array of rigid bodies 
connected at the vertices via a combination of longitudinal, shearing, 
and rotational springs. Section 3 focuses on the magnetic field-induced 
deformation in the quasi-static regime. We theoretically and numeri-
cally investigate the deformation induced in the proposed hSMMs as a 
function of the externally applied magnetic field. In Section 4, we 
identify the planar nonlinear solitary waves supported by the magne-
toactive system and investigate their dependence on externally applied 
magnetic stimuli. Section 5 provides a summary and concluding 
remarks. 

2. Hard-magnetic soft mechanical metamaterials 

2.1. Geometry and constitutive components 

Fig. 1 illustrates the design of the proposed hSMM. The system 
consists of an array of identical squares connected at their vertices via 
thin and highly deformable ligaments (Fig. 1a). All squares have a 
center-to-center distance of a, and neighboring squares are alternately 
rotated by an offset angle of θ0 (between the diagonal of the square and 
the vertical direction) in the clockwise and counterclockwise directions; 
the width of the thin ligaments is denoted by t (Fig. 1b). Each square unit 
is embedded with an hMAE core (with radius r) that can be fabricated by 
casting and curing the mixture of hard-magnetic particles and the 
elastomer resin in molds (Fig. 1a). Throughout this study, we consider 
the hSMM composites with r = a/

(
3
̅̅̅
2

√
cosθ0

)
. The hMAE core is 

characterized by the remanent magnetization M0 in the reference 
configuration. The application of an external magnetic field B induces 
the magnetic body torque, τmagnetic = M× B, where M = RM0 is the 
magnetization in the current configuration and R denotes the rotation 
tensor. The magnetically induced torque acts to align the direction of 
magnetization of the core with the applied magnetic field (Fig. 1b). As a 
result, the hMAE core rotates, leading to the overall shrinkage or 
expansion of the lattice system. 

The initial shear modulus and density of the soft matrix are G0 = 200 
kPa and ρ0 = 1160 kg/m3 (corresponding to the commercial poly-
dimethylsiloxane (PDMS) used in Wang et al. (2021)), respectively. The 
hMAE core is modeled as a PDMS doped by neodymium–iron–boron 
(NdFeB, with remanent magnetization magnitude MN = 640 kA/m and 
density ρN = 7610 kg/m3, see Wang et al. (2021)) particles. The volume 
fraction of the NdFeB particles in the hMAE core is denoted by ϕ. The 
remanent magnetization of the core is estimated as M = MNϕ. Based on 
the Mooney model (Mooney, 1951), the shear modulus of the hMAE core 
is estimated as G(ϕ) = G0exp[2.5ϕ/(1 − 1.35ϕ)]. Here, the volume 
fraction of NdFeB particles in the hMAE core is taken to be ϕ = 0.1; thus, 
the core is modeled with a shear modulus G = 267 kPa, density ρ = 1805 
kg/m3, and remanent magnetization M = 64 kA/m. 

2.2. Discrete model 

The above auxetic system made of rotating squares can be approxi-
mated as an array of rigid bodies connected at the vertices via a com-
bination of longitudinal, shearing, and rotational springs. This approach 
has been shown to be accurate in a similar purely mechanical meta-
material system (Deng et al., 2019a; Deng et al., 2017). Note that we 
introduce magneto-mechanical coupling, and derive the corresponding 
analytical solutions for the magnetic field-induced deformation and 
superimposed nonlinear motion. 
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We assume that the square units are rigid and have three degrees of 
freedom: displacement in the x-direction, ux, displacement in the y-di-
rection, uy, and rotation around the z-direction, θ. The positive direction 
of rotation is defined alternately for neighboring squares; the positive 
direction of rotation for each unit is assumed to be the energetically 
favorable direction of rotation under compression. Specifically, for the 
[i, j]-th unit (which has an offset angle of θ0 in the clockwise direction; 
see Fig. 2a), a clockwise rotation is positive (denoted by the orange 
arrow in Fig. 2a), while for the [i-1, j]-th, [i + 1, j]-th, [i, j-1]-th, and [i, j 
+ 1]-th units (which have an offset angle of θ0 in the counterclockwise 
direction; see Fig. 2a), a counterclockwise rotation is positive (denoted 
by the green arrow in Fig. 2a). 

The ligaments connecting neighboring units are modeled as a com-
bination of three linear springs: i) a spring with stiffness kl that captures 
the longitudinal response, ii) a spring with stiffness ks that captures the 
shear response, and iii) a spring with stiffness kθ that captures the 
rotational response. The values of kl, ks, and kθ are determined via finite 

element simulations of the responses of two squares connected by a 
single ligament (see Appendix A for details). 

2.3. Governing equations 

We first express the deformation of the springs by using the degrees 
of freedom of the square units. Consider the [i, j]-th unit as shown in 
Fig. 2b; let Δθ[i,j]h and Δθ[i,j]v denote the changes in angle experienced by 
the rotational spring connecting the [i, j]-th and [i, j + 1]-th units and 
the rotational spring connecting the [i, j]-th and [i + 1, j]-th units, 
respectively. We then have, 

Δθ[i,j]
h = θ[i,j] + θ[i,j+1],Δθ[i,j]

v = θ[i,j] + θ[i+1,j]. (1) 

Moreover, the vector r[i,j]p that connects the center of the [i, j]-th unit 
to its p-th (p = 1, 2, 3, 4) vertex can be written as, 

Fig. 1. Schematics of the hSMM. (a) The reference configuration comprises an array of square units connected by thin and highly deformable ligaments; there is an 
hMAE core inside each square unit. (b) The definitions of the geometric parameters (including the initial offset angle θ0 of the squares, the center-to-center distance a, 
the radius r of the hMAE cores, and the thickness t of the ligaments). The configuration of the proposed metamaterial system can be tuned by external magnetic fields. 

Fig. 2. (a) The discrete model comprising rigid square units connected at their vertices by springs. (b) The [i, j]-th square unit before and after deformation.  
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r[i,j]1
(
θ[i,j]) =

a
2cos(θ0)

[
cos
(
θ0 + θ[i,j]), − ( − 1)i+jsin

(
θ0 + θ[i,j]) ],

r[i,j]2
(
θ[i,j]) =

a
2cos(θ0)

[
( − 1)i+jsin

(
θ0 + θ[i,j]), cos

(
θ0 + θ[i,j]) ],

r[i,j]3
(
θ[i,j]) =

a
2cos(θ0)

[
− cos

(
θ0 + θ[i,j]), ( − 1)i+jsin

(
θ0 + θ[i,j]) ],

r[i,j]4
(
θ[i,j]) = −

a
2cos(θ0)

[
( − 1)i+jsin

(
θ0 + θ[i,j]), cos

(
θ0 + θ[i,j]) ].

(2) 

Let us define vector Δl[i,j]h with entries corresponding to the changes in 
length along the x- and y-directions of the linear spring connecting the [i, 
j]-th and [i, j + 1]-th units; and vector Δl[i,j]v contains entries corre-
sponding to the changes in length along the x- and y- directions of the 
linear spring connecting the [i, j]-th and [i + 1, j]-th units. Thus, we 
obtain 

Δl[i,j]h =
(
u[i,j+1]

x − u[i,j]
x

)
ex +

(
u[i,j+1]

y − u[i,j]
y

)
ey + Δr[i,j+1]

3 − Δr[i,j]1 ,

Δl[i,j]v =
(
u[i+1,j]

x − u[i,j]
x

)
ex +

(
u[i+1,j]

y − u[i,j]
y

)
ey + Δr[i+1,j]

4 − Δr[i,j]2 ,
(3)  

where 

Δr[i,j]p = r[i,j]p

(
θ[i,j]) − r[i,j]p (0). (4) 

Therefore, the elastic potential energy in the [i, j]-th horizontal lig-
ament that connects the [i, j]-th and [i, j + 1]-th units can be written as 

U[i,j]
e h =

1
2

[

kl

(
Δl[i,j]h ⋅ex

)2
+ ks

(
Δl[i,j]h ⋅ey

)2
+ kθ

(
Δθ[i,j]

h

)2
]

, (5)  

and the elastic potential energy in the [i, j]-th vertical ligament that 
connects the [i, j]-th and [i + 1, j]-th units can be written as 

U[i,j]
e v =

1
2

[
kl
(
Δl[i,j]v ⋅ey

)2
+ ks

(
Δl[i,j]v ⋅ex

)2
+ kθ

(
Δθ[i,j]

v

)2 ]
. (6) 

Next, we introduce the estimates for the magnetic interaction be-
tween neighboring hMAE cores (Liang et al., 2022; Slesarenko, 2020). 
The magnetic potential energy between the [i, j]-th and [i, j + 1]-th 
units, denoted by U[i,j]

m h, and the magnetic potential energy between the 
[i, j]-th and [i + 1, j]-th units, denoted by U[i,j]

m v, are 

U[i,j]
m h = −

μ0

4π
⃒
⃒
⃒a[i,j]

h

⃒
⃒
⃒

3

[
3
(

VmM[i,j]⋅â[i,j]
h

)(
VmM[i,j+1]⋅â[i,j]

h

)
− VmM[i,j]⋅VmM[i,j+1]

]
,

U[i,j]
m v = −

μ0

4π
⃒
⃒a[i,j]

v

⃒
⃒3

[
3
(
VmM[i,j]⋅â[i,j]

v

)(
VmM[i+1,j]⋅â[i,j]

v

)
− VmM[i,j]⋅VmM[i+1,j] ],

(7)  

where μ0 is the magnetic permeability of the vacuum, Vm is volume of 
the hMAE core, and M[i, j] is the remanent magnetization of the [i, j]-th 
hMAE core in the deformed configuration, 

M[i,j] = Mcos
(
θ[i,j]

m

)
ex +Msin

(
θ[i,j]

m

)
ey, (8)  

where M is the value of the remanent magnetization of the hMAE core as 
given in Sec. 2.1, and 

θ[i,j]
m = − ( − 1)i+j

(
3
4

π + θ0 + θ[i,j]
)

. (9) 

In addition, a[i,j]
h is the separation vector between the centers of the [i, 

j]-th and the [i, j + 1]-th hMAE cores, and a[i,j]
v is the separation vector 

between the centers of the [i, j]-th and the [i + 1, j]-th hMAE cores, 

a[i,j]
h =

(
a + u[i,j+1]

x − u[i,j]
x

)
ex +

(
u[i,j+1]

y − u[i,j]
y

)
ey,

a[i,j]
v =

(
u[i+1,j]

x − u[i,j]
x

)
ex +

(
a + u[i+1,j]

y − u[i,j]
y

)
ey,

(10)  

and their unit vectors are â[i,j]
h = a[i,j]h /

⃒
⃒
⃒a[i,j]h

⃒
⃒
⃒ and â[i,j]

v = a[i,j]
v /

⃒
⃒
⃒a[i,j]v

⃒
⃒
⃒, 

respectively. 
Lastly, the magnetic potential energy that accounts for the interac-

tion between the [i, j]-th hMAE core and the externally applied magnetic 
field B is 

U[i,j]
m d = − VmM[i,j]⋅B. (11) 

In this study, the magnetic field is considered to be in the horizontal 
direction (see Fig. 2), namely, B = Bex. 

The kinematic energy of the [i, j]-th unit is, 

V [i,j] =
1
2

[

Mg

(

u̇[i,j]
x

)2

+ Mg

(

u̇[i,j]
y

)2

+ J
(

θ̇
[i,j]
)2
]

, (12)  

where Mg and J are the mass and moment of inertia of these identical 
square units, respectively. Consider a lattice system comprising Nx 
square units along the x-direction and Ny square units along the y-di-
rection. The Lagrangian is, 

L=
∑Ny

i=1

∑Nx

j=1
V [i,j] −

∑Ny

i=1

∑Nx − 1

j=1
U[i,j]

e h −
∑Nx

j=1

∑Ny − 1

i=1
U[i,j]

e v −
∑Ny

i=1

∑Nx − 1

j=1
U[i,j]

m h −
∑Nx

j=1

∑Ny − 1

i=1
U[i,j]

m v

−
∑Ny

i=1

∑Nx

j=1
U[i,j]

m d.

(13)  

By using Lagrange’s principle, the equations of motion of the [i, j]-th 
unit can be obtained as, 

d
dt

⎛

⎝ ∂L
∂u̇[i,j]

x

⎞

⎠ −
∂L

∂u[i,j]
x

= 0,
d
dt

⎛

⎝ ∂L
∂u̇[i,j]

y

⎞

⎠ −
∂L

∂u[i,j]
y

= 0,
d
dt

(
∂L

∂θ̇[i,j]

)

−
∂L

∂θ[i,j] = 0.

(14) 

The specific formulae of the equations of motion are presented in 
Appendix B (Eqs. (42)–(44)) and are not repeated here. 

3. Magneto-mechanical behavior in the quasi-static regime 

3.1. Magnetically-induced global deformation 

Here, we use the proposed model to estimate the magnetically- 
induced deformation of the hSMM in the quasi-static regime. We 
consider the hSMM system subjected to an external magnetic field in the 
horizontal direction (coinciding with one of the principal directions of 
the material). For such an actuating condition,  

(i) the inertial terms vanish, 

∂2u[i,j]
x

∂t2 =
∂2u[i,j]

y

∂t2 =
∂2θ[i,j]

∂t2 = 0, ∀i, j; (15)    

(ii) consider hSMM lattice systems with even rows and even columns 
of unit cells, the total magnetic torque experienced by the hSMM 
system is zero, and the deformation is homogeneous, 

u[i+1,j]
x = u[i,j]

x , u[i,j+1]
y = u[i,j]

y ,

u[i,j+1]
x − u[i,j]

x = aεx
st, u[i+1,j]

y − u[i,j]
y = aεy

st,

θ[i,j] = θst,∀i, j,

(16)  

where εx
st and εy

st are the macroscopic strains in the x- and y-directions, 
respectively, and θst is the absolute value of rotation angle of the square 
units (recall that the neighboring units rotate in opposite directions) due 
to the activation by the external magnetic field; and 
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(iii) the mechanical and magnetic forces in the x-direction (between 
the [i, j]-th and [i, j + 1]-th units), and in the y-direction (between 
the [i, j]-th and [i + 1, j]-th units) are balanced due to the me-
chanical traction-free boundary conditions, namely, 

∂U[i,j]
e h

∂u[i,j]
x

+
∂U[i,j]

m h

∂u[i,j]
x

= 0,
∂U[i,j]

e v

∂u[i,j]
y

+
∂U[i,j]

m v

∂u[i,j]
y

= 0. (17) 

By substituting Eqs. (15) and (16) into Eq. (14), and Eq. (16) into Eq. 
(17), we obtain 

− 8kθθst −
kla2

cosθ0
sin(θst + θ0)

(
2 + εx

st + εy
st

)
+

2kla2

cos2θ0
sin(θst + θ0)cos(θst + θ0)

+
μ0M2V2

m

4πa3( 1 + εx
st

)3 cos(2θst + 2θ0) +
μ0M2V2

m

4πa3( 1 + εy
st

)3 cos(2θst + 2θ0)

− MBVmcos
(π

4
+ θst + θ0

)
= 0,

kla
[

1 + εx
st −

cos(θst + θ0)

cos(θ0)

]

+
3μ0M2V2

m

8πa4( 1 + εx
st

)4 [3 + sin(2θst + 2θ0) ] = 0,

kla
[

1 + εy
st −

cos(θst + θ0)

cos(θ0)

]

+
3μ0M2V2

m

8πa4( 1 + εy
st

)4 [ − 3 + sin(2θst + 2θ0) ] = 0.

(18) 

By solving Eq. (18) we can determine the strains εx
st and εy

st (along the 
two principal directions) as well as the rotation of the square units θst for 
a given magnetic field B. 

3.2. Finite element simulation results and comparison with the analytical 
estimates 

We construct a finite-sized numerical model (e.g., consisting of 10 ×
10 square units) in 2D under the plane-strain conditions. The equations 
of equilibrium and the magneto-static equations are solved in COMSOL 
Multiphysics 6.0. Magneto-mechanical coupling is established by 
introducing the total stress depending on the magnetic field (Zhang and 
Rudykh, 2022), namely, 

σtotal = σel +
1
μ B ⊗ B −

1
μr

M ⊗ B, (19)  

where σel denotes the purely elastic component of stress, μ is the 
permeability of the material, and μr = μ/μ0 is its relative magnetic 
permeability. The external magnetic field is applied in the horizontal 
direction, and the distribution of remanent magnetizations is illustrated 
in Fig. 1. The mechanical response of the constitutive materials is 
described by the neo-Hookean model. 

Fig. 3 displays the magnetic field-induced deformation in the hSMMs 
with a center-to-center distance a = 10 mm, initial offset angle θ0 = 50, 
and ligament thickness t = 0.04a. Fig. 3a shows the dependence of the 
macroscopic strains εx

st and εy
st on the magnetic field intensity B. The 

curves correspond to the analytical estimates through Eq. (18), with kl =

559.2 N/m, ks = 144.0 N/m, and kθ = 36.1 × 10-6 N⋅m (the values are 
determined numerically – see the details in Appendix A – for the lattice 
with the out-of-plane thickness h = 0.3a). The discrete points are the 
results of the finite element simulations. We note that the analytical 
estimates agree with the finite element simulation results. In the finite 
element simulations, the macroscopic strains are obtained by measuring 
the difference in displacement between target points, as marked in 
Fig. 3c(ii); these two points are antisymmetric about the center (0, 0) of 
the finite-sized lattice, and the strains are measured as, 

εx
st =

upoint 1 − upoint 2

3a
, εy

st =
vpoint 1 − vpoint 2

3a
, (20)  

where upoint 1 and upoint 2 (vpoint 1 and vpoint 2) are displacements of points 
1 and 2 along the x-direction (y-direction), respectively. Fig. 3b illus-
trates the rotation of the square units θst as a function of the magnetic 
field B. Good agreement is observed between the theoretical and finite 
element simulation results. The rotation direction of the square units is 
reversed as the direction of the applied magnetic field changes, as shown 
by the deformed configurations for B = -30 mT (Fig. 3c(i)) and B = 30 
mT (Fig. 3c(iii)). Moreover, the stress is mainly localized at the thin 
ligaments of the deformed lattice activated by the external magnetic 
field (Fig. 3c). This observation is in line with the assumption introduced 
for deriving the discrete mass-spring model-based estimates. 

Fig. 3. Magnetic field-induced deformation in the hSMM system with geometric parameters a = 10 mm, θ0 = 50, and t = 0.04a. (a) The macroscopic strains εx
st and εy

st 
as a function of the magnetic field B. (b) The rotation of the square units θst as a function of the magnetic field B. (c) The deformed configurations corresponding to 
positions P, O, and Q (as marked in a and b). 
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Fig. 4 shows variations in the magneto-mechanical deformation 
versus the applied magnetic field for the hSMMs with various geometric 
parameters. The results are shown for the hSMMs with a fixed center-to- 
center distance of a = 10 mm. For all the considered cases, the analyt-
ically estimated deformations agree well with the finite element simu-
lation results. An increment in the ligament thickness t increases its 
stiffness, thus, significantly changing the magnetic field level required to 
actuate the hSMM. For instance, the magnetic field level required to 
rotate the square units by -120 for a hSMM with θ0 = 100 and t = 0.04a is 
B = 24.8 mT (see Fig. 4a); in contrast, that for a hSMM with θ0 = 100 and 
t = 0.06a is increased to B = 53.6 mT (see Fig. 4b). In addition, as the 
initial offset angle θ0 increases, a larger magnetic field-induced expan-
sion (with positive macro strains) is observed under the actuating field 
applied in the + x direction. For example, the maximum positive strain 
value in the hSMM with θ0 = 50 and t = 0.06a is + 0.0038 (see Fig. 4c), 
while that in the hSMM with θ0 = 100 and t = 0.06a is + 0.0154 (see 
Fig. 4b). 

4. Propagation of planar nonlinear solitary waves 

4.1. Equations of motion for the superimposed nonlinear waves 

In this section, we consider the planar nonlinear motion super-
imposed on the hSMM deformed by external magnetic fields. The total 
displacements and rotation of the [i, j]-th square unit can be written as, 

u[i,j]
x = u[i,j]

x st + u[i,j]
x w, u[i,j]

y = u[i,j]
y st + u[i,j]

y w, θ[i,j] = θ[i,j]
st + θ[i,j]

w , (21)  

where u[i,j]
x st , u

[i,j]
y st , and θ[i,j]st are the displacements and rotation induced by 

the magneto-mechanical pre-deformation, and satisfy Eqs. (15) and 
(16), and u[i,j]

x w, u[i,j]
y w, and θ[i,j]w are the displacements and rotation 

generated by the propagating nonlinear wave. Upon substitution of Eq. 
(21) into Eq. (13), the equations of motion for the superimposed wave 
can be obtained as, 

d
dt

⎛

⎝ ∂L
∂u̇[i,j]

x w

⎞

⎠ −
∂L

∂u[i,j]
x w

= 0,
d
dt

⎛

⎝ ∂L
∂u̇[i,j]

y w

⎞

⎠ −
∂L

∂u[i,j]
y w

= 0,
d
dt

⎛

⎝ ∂L

∂θ̇[i,j]
w

⎞

⎠ −
∂L

∂θ[i,j]
w

= 0.

(22) 

The specific formulae of Eq. (22) are given in Appendix C (Eqs. (45)– 
(47)), which can be solved only numerically. 

4.2. Continuum model 

Next, we derive analytical estimates for the nonlinear motion 
superimposed on the finitely deformed hSMM system. To this end, we 
assume that the width of the superimposed motion is much larger than 
the length scale of the unit cell (i.e., the long-wavelength assumption), 
and that the superimposed rotation θ[i,j]w ≪ 1. By taking the continuum 
limit of the equations of motion Eq. (22) and retaining the nonlinear 
terms up to the third order, the continuum governing equations for the 
superimposed motion can be obtained as, 

Mgü̈x = a2
st

(
kl∂xxux + ks∂yyux

)
+

klaast

cosθ0

(

sinΘ0 + θcosΘ0 − θ2sinΘ0

2

)

∂xθ,

Mgü̈y = a2
st

(
kl∂yyuy + ks∂xxuy

)
+

klaast

cosθ0

(

sinΘ0 + θcosΘ0 − θ2sinΘ0

2

)

∂yθ,

Jθ̈¨=
a2

st

4

(

ksa2cos2Θ0

cos2θ0
− kla2sin2Θ0

cos2θ0
− 4kθ

)
(
∂xxθ + ∂yyθ

)

−
1
2

klaast

(

2θ
cosΘ0

cosθ0
+
(
2 − θ2) sinΘ0

cosθ0

)
(
∂xux + ∂yuy

)

+

(

− 2klaast
cosΘ0

cosθ0
+ 2kla2cos(2Θ0)

cos2θ0
− 8kθ +

MBVm
̅̅̅
2

√ (sinΘ0 + cosΘ0)

)

θ

+

(

klaast
sinΘ0

cosθ0
− 2kla2sin(2Θ0)

cos2θ0
+

MBVm

2
̅̅̅
2

√ (cosΘ0 − sinΘ0)

)

θ2

+

(

klaast
cosΘ0

3cosθ0
− 4kla2cos(2Θ0)

3cos2θ0
−

MBVm

6
̅̅̅
2

√ (cosΘ0 + sinΘ0)

)

θ3,

(23)  

where Θ0 = θ0 + θst , and ast = a
(
1 + εx

st
)
= a
(
1 + εy

st
)

is the center-to- 
center distance of the deformed hSMM. Note that, here, we assume εx

st =

εy
st (this is in line with the results illustrated in Figs. 3 and 4). For a given 

magnetic field level B, εx
st , ε

y
st , and θst are determined according to Eq. 

(18). In addition, ux (x, y, t), uy (x, y, t), and θ (x, y, t) are three 
continuous functions that interpolate the discrete variables u[i,j]

x w, u[i,j]
y w, 

and θ[i,j]w , respectively. Details of the continuum model are given in 

Fig. 4. Magnetic field-induced deformation in hSMM systems with the geometric parameters (a) θ0 = 100, and t = 0.04a; (b) θ0 = 100, and t = 0.06a; and (c) θ0 = 50, 
and t = 0.06a, with the center-to-center distance fixed at a = 10 mm. 
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Appendix D. 
To solve Eq. (23), we consider planar waves propagating in the 

system and introduce the traveling coordinate ζ = xcosφ + ysinφ − ct, 
with φ being the angle between the direction of propagation and the x- 
axis (see Fig. S2 in Appendix D), and c being the pulse velocity. By 
rewriting Eq. (23) as an expression for ζ, and, then integrating Eq. (23)1 
and Eq. (23)2 with respect to ζ, and substituting them into Eq. (23)3, we 
obtain, 

∂ζζθ = C1θ+C2θ2 +C3θ3, (24)  

where 

C1 =

(

− a2sin2Θ0

cos2θ0

(
Ex + Ey

)
− 2a2cos(2Θ0)

cos2θ0
+ 2aast

cosΘ0

cosθ0
+

8kθ

kl

−

̅̅̅
2

√
MBVm

2kl
(cosΘ0 + sinΘ0)

)/

F,

C2 =

(

− 3a2sin(2Θ0)

4cos2θ0

(
Ex + Ey

)
+ 2a2sin(2Θ0)

cos2θ0
− aast

sinΘ0

cosθ0

−

̅̅̅
2

√
MBVm

4kl
(cosΘ0 − sinΘ0)

)/

F,

C3 =

(

a21 − 7cos(2Θ0)

12cos2θ0

(
Ex + Ey

)
+ 4a2cos(2Θ0)

3cos2θ0
− aast

cosΘ0

3cosθ0

+

̅̅̅
2

√
MBVm

12kl
(cosΘ0 + sinΘ0)

)/

F,

(25)  

with 

Ex =
cos2φ

cos2φ +
ks

kl
sin2φ −

Mgc2

kla2
st

,

Ey =
sin2φ

sin2φ +
ks

kl
cos2φ −

Mgc2

kla2
st

,

F = −
Jc2

kl
− a2a2

st
sin2Θ0

4cos2θ0
+ a2a2

st
ks

kl

cos2Θ0

4cos2θ0
− a2

st
kθ

kl
.

(26)  

4.3. Solitary wave solutions 

Eq. (24) is the Klein–Gordon equation with quadratic and cubic 
nonlinearities (Polyanin and Zaitsev, 2011), admitting well-known sol-
itary wave solutions of the form 

θ =
1

D1 ± D2cosh(ζ/W)
. (27) 

Eq. (27) defines a solitary wave with characteristic width W and 
amplitude Aθ, 

Aθ= θ(ζ = 0) =
1

D1 ± D2
. (28) 

Substituting Eq. (27) into Eq. (24) yields, 

D1 = −
C2

3C1
,D2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2

2

9C2
1
−

C3

2C1

√

,W =
1̅̅
̅̅̅̅

C1
√ . (29) 

The existence of the solutions for the solitary waves given by Eq. (27) 
requires the following: 

(i) W is real, namely, 

C1 > 0; (30) 

(ii) D2 is real, namely, 

C2
2

9C2
1
−

C3

2C1
> 0; and (31) 

(iii) the denominator in Eq. (27) is non-zero, namely, 

D1 ± D2cosh(ζ/W) ∕= 0. (32) 

Deng et al. (2018b) have shown that the violation of Eqs. (30)–(32) 
may result in the formation of amplitude gaps for the solitary waves. 
Since D2 > 0 and cosh(ζ/W) ∈ [1,+∞), Eq. (32) is satisfied only if 
|D1|<D2; otherwise, only one of the two solitary solutions defined by Eq. 
(27) exists. Therefore, there are the following three cases.  

• Case 1: − D2 < D1 < D2. 

Two solitary solutions exist, 

θ+ =
1

D1 + D2cosh(ζ/W)
, θ− =

1
D1 − D2cosh(ζ/W)

. (33)    

• Case 2: D1 < − D2. 

Only one solitary solution exists, 

θ− =
1

D1 − D2cosh(ζ/W)
. (34)    

• Case 3: D1 > D2. 

Only one solitary solution exists, 

θ+ =
1

D1 + D2cosh(ζ/W)
. (35)  

4.4. Magnetic field-based tunability of solitary waves 

For given geometric parameters, the governing coefficients D1, D2, 
and W are functions of the pulse velocity c and the externally applied 
magnetic field level B. Therefore, the characteristic width and type of 
solitary waves can be controlled by a magnetic field. Fig. 5a shows the 
solitary solutions as a function of the applied magnetic field level B. The 
results are given for hSMM with a center-to-center distance a = 10 mm, 
initial offset angle θ0 = 50, and ligament thickness t = 0.04a. There are 
four possible scenarios. i) − D2 < D1 < D2 (blue region in Fig. 5a). In this 
case, there are two solitary solutions defined by θ+ and θ- (Eq. (33)), 
respectively. ii) D1 < − D2 (the orange domains in Fig. 5a). In this case, 
there is a single solitary solution defined by θ- (Eq. (34)). iii) D1 > D2 
(the green regions in Fig. 5a). In this case, there is a single solitary so-
lution defined by θ+ (Eq. (35)). iv) Any condition from Eqs. (30)–(32) is 
violated; thus, no solitary solution exists (the gray area in Fig. 5a). 

Fig. 5b displays the dependence of the normalized characteristic 
width W/a of the solitary pulse on the velocity c and the magnetic field 
level B. Note that the accuracy of the continuum approximation (Eqs. 
(49) and (50) in Appendix D) reduces significantly as the pulse width 
becomes comparable to the length scale of the unit cell. Thus, analyti-
cally predicted solitons with a relatively small width may not be sup-
ported by the discrete system (Deng et al., 2018a). A comparison of 
Fig. 5a and 5b shows that the solitary pulse width in almost the entire 
variable domains corresponding to D1 < − D2 (the orange area in Fig. 5a) 
and D1 > D2 (the green area in Fig. 5a) is relatively very small, as 
indicated by the contour line (the pink curves; here W/a = 2 as an 
example). Therefore, we focus on solitary solutions in the case of 
− D2 < D1 < D2; the system supports two solitary solutions defined by 
θ+ and θ- (Eq. (33)). The amplitudes of rotation corresponding to these 
two solutions are, 

Aθ+ =
1

D1 + D2
,Aθ− =

1
D1 − D2

. (36) 

Fig. 6 shows the evolution of the rotational amplitudes of the solitary 
solutions (for the case − D2 < D1 < D2) as a function of the pulse 
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velocity c and the magnetic field level B. The results are given for hSMMs 
with a center-to-center distance a = 10 mm, initial offset angle θ0 = 50, 
and ligament thickness t = 0.04a (these parameters are the same as those 
in Fig. 5). One can see that one solitary solution is characterized by a 
positive rotational component (Aθ+ > 0; see Fig. 6a) and the other by a 
negative rotational component (Aθ− < 0; see Fig. 6b). This means that in 
one case, the [i, j]-th square unit rotates clockwise while in the other, it 
rotates counterclockwise (in both cases, neighboring units rotate in 
opposite directions). Moreover, the pulse amplitudes of the solitons 
propagating in our hSMM system can be tuned by the external magnetic 
field. Specifically, as the magnetic field level B (considering its sign) is 
increased, the absolute value of Aθ+ increases (see Fig. 6a) while the 
absolute value of Aθ− decreases (see Fig. 6b). Note that the rotational 
amplitude of the solitons is limited due to two factors. First, contacts 
between neighboring squares may occur as the rotational angle of the 
propagating soliton increases. Second, the continuum approximation 
(Eq. (52)) used to derive our analytical solution requires |θ|≪1. There-
fore, we consider 0 < Aθ+ <+0.3 and − 0.3 < Aθ− < 0; the contours for 
Aθ+ =+0.3 and Aθ− = − 0.3 are shown by the pink curves in Fig. 6a and 
6b, respectively. 

Finally, we provide the results of the numerical solutions of the or-
dinary differential equations (OEDs) given by Eqs. (45)-(47), and 
compare the results with predictions by the continuum approximation. 
To determine the boundary conditions for the OEDs, the solutions for 
displacements ux and uy are obtained by integrating Eq. (54) in 
Appendix D, 

u±
x =

aWEx

12astcosφcosθ0
(
− D2

1 + D2
2

)5/2

[
± θ2

±sinΘ0sinh
( ζ

W

)
D2
(
− D2

1 + D2
2

)3/2

+2H

⎛

⎜
⎝arctan

⎛

⎜
⎝

D1 ∓ D2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√

⎞

⎟
⎠ − arctan

⎛

⎜
⎝

D1 ∓ D2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√ tanh
( ζ

2W

)

⎞

⎟
⎠

⎞

⎟
⎠

− 3
(

1 ∓ θ±D2sinh
( ζ

W

))(
− sinΘ0D1 + 2cosΘ0

(
D2

1 − D2
2

) ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√ ]

,

u±
y =

aWEy

12astsinφcosθ0
(
− D2

1 + D2
2

)5/2

[
± θ2

±sinΘ0sinh
( ζ

W

)
D2
(
− D2

1 + D2
2

)3/2

+2H

⎛

⎜
⎝arctan

⎛

⎜
⎝

D1 ∓ D2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√

⎞

⎟
⎠ − arctan

⎛

⎜
⎝

D1 ∓ D2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√ tanh
( ζ

2W

)

⎞

⎟
⎠

⎞

⎟
⎠

− 3
(

1 ∓ θ±D2sinh
( ζ

W

))(
− sinΘ0D1 + 2cosΘ0

(
D2

1 − D2
2

) ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− D2
1 + D2

2

√ ]

,

(37)  

where θ+ and θ- are given in Eq. (33), and, 

H = 6cosΘ0D1
(
− D2

1 + D2
2

)
+ sinΘ0

[
2D2

1

(
1 + 12D2

2

)
+ D2

2

(
1 − 12D2

2

)

− 12D4
1

]
.

(38) 

In the numerical analysis, we consider a model comprising 60 × 120 
square units, as illustrated in Fig. 7b. The theoretical solution predicted 
by Eqs. (33) and (37) is applied as excitation to the units on the left 
boundary (see Fig. 7a), while the other boundaries are free. We focus on 
planar solitary waves propagating in the x-direction (i.e., φ = 0). As 
such, the component of displacement uy given in Eq. (37)2 is zero. Note 
that the system supports two solitary solutions; thus, the excitation is a 
combination of θ+, u+

x , and u+
y , or θ− , u−

x , and u−
y . Moreover, to eliminate 

the effect of boundary mismatch, the 15 layers of units closest to the 
upper and lower boundaries serve as a perfect matching layer (PML). 
Damping is added to the equations of motion (the ODEs given by Eqs. 
(45)–(47) in Appendix C) of units located in the PML, with the distri-
bution of the damping factor given in Fig. 7c. 

Fig. 8 shows the numerical results for magnetic field level B = 0 mT 
and pulse velocity c = 11.8 m/s (corresponding to point b1 highlighted 
in Fig. 5b and 6a). The rotational profiles at T = 15, 30, and 45 are 
shown in Fig. 8a (the upper panel), and the displacement profiles in the 
x- and y-directions at these times are shown in Fig. 8b and c, respec-
tively. The normalized time is defined as T = ct/a − 30, with the con-
stant shift representing the position of the solitary pulse on the 
excitation profile (see Fig. 7a). The evolutions of the rotational 
component (θ[i,j]w in Fig. 8a) and the component of displacement in the x- 
direction (u[i,j]

x w/a in Fig. 8b) indicate the propagation of an elastic vector 
soliton – the rotational and translational components of motion are 
coupled and propagate together without dispersion. Meanwhile, the 
component of displacement in the y-direction (u[i,j]

y w/a in Fig. 8c) is 
almost zero in the entire discrete model except at units near the upper 
and lower boundaries. This is because the soliton is excited to propagate 
along the x-direction (see Fig. 7a). Moreover, we show the spa-
tial–temporal evolution of each component of motion by focusing on the 
center line (the white line in Fig. 7b) of the considered model, see the 
lower panel of each subplot. The pulse velocity extracted from the 
spatial–temporal evolution is 11.6 m/s, very close to the theoretically 
expected value of 11.8 m/s. 

In Fig. 9, we compare the analytical (curves, given by Eqs. (33) and 
(37)) and the numerical (markers) results. In the numerical simulations, 
a combination of θ+, u+

x , and u+
y (corresponding to the solitary wave 

solution characterized by the positive rotational component) is applied 

Fig. 5. (a) Effect of the externally applied magnetic field level B on the pulse velocity c and the types of solitary waves supported by a hSMM with geometric 
parameters a = 10 mm, θ0 = 50, and t = 0.04a. (b) Evolution of the characteristic width W as a function of c and B. The circular markers in (b) indicate the points 
considered in our numerical analysis, with the results presented in Fig. 9 (points a1–d1) and Fig. 10 (points a2–d2). 
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Fig. 7. Numerical analysis of solitary waves propagating in the proposed hSMM system. (a) The theoretical solution given by Eqs. (33) and (37) is applied to the 
square units on the left boundary of the numerical model. (b) The considered numerical model consists of 60 × 120 square units. The 15 layers of units closest to the 
upper and lower boundaries serve as a perfect matching layer (PML) to eliminate the effect of boundary mismatch. The damping factor illustrated in (c) is added to 
the equations of motion of units in the PML. 

Fig. 8. Numerical solutions for solitary waves propagating in the hSMM system comprising 60 × 120 square units. The results are given for magnetic field level B =
0 mT and pulse velocity c = 11.8 m/s (as marked by point b1 in Fig. 5b and 6a). (a) The rotational component. (b) The component of normalized displacement in the 
x-direction. (c) The component of normalized displacement in the y-direction. In each sub-plot, the upper panel shows the contour plots at T = 15, 30, and 45, while 
the lower panel presents the spatial–temporal evolution on the center line (the white line in Fig. 7b) of the model. 

Fig. 6. Evolution of the rotational amplitudes (a) Aθ+ and (b) Aθ− as a function of the pulse velocity c and the magnetic field level B. The results are given for a hSMM 
with the geometric parameters a = 10 mm, θ0 = 50, and t = 0.04a. The circular markers in (a) and (b) denote the points considered in our numerical analysis, with the 
results presented in Fig. 9 (points a1–d1) and Fig. 10 (points a2–d2), respectively. 
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to the left boundary of the considered mode. The numerical results are 
obtained by extracting the rotation (θ[i,j]w ) and displacement (u[i,j]

x w) along 
the center line (see the white line in Fig. 7b) of the model. Fig. 9a-d show 
the rotation (up) and normalized displacement (bottom) profiles for B =
-5 mT and c = 11.8 m/s, B = 0 mT and c = 11.8 m/s, B = 5 mT and c =
11.8 m/s, and B = 10 mT and c = 13.8 m/s, respectively. The charac-
teristic pulse width W and rotational amplitude Aθ+ predicted by the 
continuum model for these cases are highlighted by points a1–d1 in 
Fig. 5b and 6a, respectively. An excellent agreement is observed be-
tween the numerical results and the predictions of our continuum model 
(see Fig. 9a-c). Both the amplitudes of the rotational and translational 
components of motion become larger as the externally applied magnetic 
field level increases from B = -5 mT to B = 5 mT. However, the system 
does not support solitons with a sufficiently small width W because the 
continuum approximation (Eqs. (49) and (50) in Appendix D) used to 
derive the analytical solution is no longer valid. For example, the excited 
wave is dispersed during propagation for B = 10 mT and c = 13.8 m/s 
(see Fig. 9d; the normalized pulse width, in this case, is W/a = 0.856). 

For the solitary wave solution characterized by a negative rotational 
component, a comparison between the analytically and numerically 
predicted solitary motion profiles is shown in Fig. 10. The excitation in 
the numerical simulation is a combination of θ− , u−

x , and u−
y . Fig. 10a- 

d show the rotation (up) and normalized displacement (bottom) profiles 
for B = 10 mT and c = 11.8 m/s, B = 15 mT and c = 11.8 m/s, B = 20 mT 
and c = 11.8 m/s, and B = 10 mT and c = 13.8 m/s, respectively. The 
characteristic pulse width W and rotational amplitude Aθ− predicted by 
the continuum model for these cases are highlighted by points a2-d2 in 
Fig. 5b and 6b. Once again, the numerical results are consistent with the 
continuum analysis for the solutions to solitary waves with a relatively 
large pulse width (see, for example, Fig. 10a-c). The amplitudes (both 
the rotational and translational components) of the solitary pulse 
decrease as the magnetic field level is increased from B = 10 mT to B =
20 mT. By contrast, solitary waves are not supported by the system if the 
pulse width W is small enough (see Fig. 10d, with W/a = 0.856). 

Our theoretical analysis and computational framework are beneficial 
for further experiment verification of solitary waves in the proposed 
hSMM system. In experiments, impact stimulation can be applied to 
initiate simultaneous rotation and displacement of the units positioned 
at the excitation boundary of a finite hSMM lattice. The applied impact 
signal is characterized by the impulse displacement and impulse veloc-
ity, which can be determined by the unit’s maximum displacement and 
maximum velocity, respectively. Taking the hSMM system in Fig. 7 as an 

example, the impulse displacement of the impact signal will be umax =

max(ux), where ux is given in Eq. (37). Meanwhile, the impulse velocity 
of the impact signal will be vmax = max( − c⋅∂ζux), with c being the pulse 
velocity of the predicted solitary solution. In addition, we note that in 
this study, we did not consider material damping effects that may 
originate from the soft PDMS matrix due to its viscoelasticity. In ex-
periments, it is plausible that the displacement amplitude of soliton will 
decrease along propagation due to the material damping. To realize 
solitary wave propagation in experiments, the following approaches 
may be utilized. i) One can focus on waves propagating for a finite 
(relatively short) distance, such as before reflection at the boundary of 
the tested sample. ii) One may consider solitary solutions with relatively 
large pulse amplitude Aθ and small pulse width W. In this case, the 
nonlinear response of the system is strongly activated, and solitary 
waves are expected to form within a relatively short propagation dis-
tance (Deng et al., 2017). Experimentally, the solitary pulse will be 
subjected to a weak decrease in displacement amplitude due to the short 
propagation distance. 

5. Conclusions 

In this study, we have investigated the behavior of hSMMs consisting 
of an array of square units (with magnetic inclusion) connected at their 
vertices via thin and deformable ligaments. We analyzed the hSMM 
subjected to a magnetic field along one of the principal material di-
rections. First, we derived the macroscopic strains (along the two prin-
cipal directions) and rotation of the hSMMs with remanent 
magnetizations under activation by external magnetic fields. The deri-
vation is built on an equivalent discrete model comprising rigid square 
units connected at their vertices by springs. The analytical estimates 
agree well with the finite element simulations. The analytical and nu-
merical results indicate that the deformation mode (shrinking or 
expansion) and the rotating direction of units of the proposed hSMM 
system can be controlled by changing the level and direction of the 
applied magnetic field. 

Second, we examined the propagation of vector solitary waves in the 
hSMMs undergoing finite strains in the presence of an external magnetic 
field. We derived the governing equations for the superimposed 
nonlinear motion by building on the discrete mass-spring model. We 
obtained the continuum governing equations for the superimposed 
motion in the continuum limit. The continuum model predicted the 
characteristic pulse width and amplitude of solitary waves supported by 

Fig. 9. Numerical (markers) and analytical (curves) results of solitary waves in a hSMM with geometric parameters a = 10 mm, θ0 = 50, and t = 0.04a. Profiles of 
rotation (up) and normalized displacement in the x-direction (bottom) for: (a) B = -5 mT and c = 11.8 m/s, (b) B = 0 mT and c = 11.8 m/s, (c) B = 5 mT and c = 11.8 
m/s, and (d) B = 10 mT and c = 13.8 m/s (as marked by points a1–d1 in Fig. 5b and 6a). The profiles at T = 15, 30, and 45 are presented in each subplot. 
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the proposed hSMM system. The continuum model was further validated 
by the numerical solution of the corresponding ODEs for the discrete 
mass-spring model. Thanks to the magneto-mechanical coupling, the 
pulse width and amplitude of solitons propagating in the proposed 
hSMM, and even their on or off states, could be tuned by a remotely 
applied magnetic field. These findings suggest that the proposed mag-
netoactive metamaterial can be applied as an untethered solitary wave 
switch. Moreover, the results provided in this paper can guide the design 
of novel materials and structures with unusual and enhanced wave 
tunability and nonlinear elastic properties. 
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