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A B S T R A C T

This work investigates the interplay between viscoelasticity and instabilities in soft particulate composites
undergoing finite deformation. The composite is subjected to in-plane deformation at various constant strain
rates, and experiences microstructural buckling upon exceeding the critical strain level. We characterize the
dependence of the critical strain and wavelength on the applied strain rate through our numerical analysis.

In the simulations, we employ the single and multiple-branch visco-hyperelastic models. We find that the
critical strain and wavelength – characterized by the single-branch model – show a non-monotonic dependence
on the strain rate, reaching a maximum at a specific strain rate. Remarkably, different buckling patterns (with
different critical wavelengths) can be activated by changing strain rates. The space of admissible buckling
modes widens in composites with higher instantaneous shear modulus. In the composites characterized by the
multiple-branch model, the critical strain function exhibit multiple local maxima following a superposition of
the single-branch responses. Typically, the branch with a larger relaxation time has a more significant effect
on the critical strain. Moreover, the local maximum (of the critical strain function) is amplified by increasing
the strain–energy factor of the corresponding branch term.

Finally, we perform the experiments on the 3D-printed particulate soft composite characterized by a broad
spectrum of relaxation times. The comparison of the experimental and simulation results demonstrates the
ability of the numerical model to predict the critical buckling characteristics.
1. Introduction

Soft microstructured materials are prone to developing elastic insta-
bilities frequently leading to microstructure transformations [1]. In the
post-buckling regime, the material can exhibit auxetic behavior [2–4],
shape transformations [5], tunable color [6], and tunable bandgaps [7–
9]. Moreover, buckling-induced microstructure transformations can be
employed to design soft robots [10].

The ‘‘small-on-large’’ framework [11] is frequently used to detect
the onset of instabilities. In soft composites, the instabilities can de-
velop at microscopic and macroscopic length scales [12]. The onset
of the macroscopic or longwave instability can be detected through
the loss of ellipticity analysis requiring the evaluations of the ten-
sor of elastic moduli. The tensor of elastic moduli can be calculated
through analytical or numerical micromechanics-based homogeniza-
tion approaches [13–17] or, alternatively, can be derived from phe-
nomenological models [18–26]. The analysis of microscopic instability
requires a more demanding approach and usually employs the Bloch-
Floquet method [12]. Triantafyllidis et al. [27] applied the technique
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to study the instability of the two-phase composite with circular inclu-
sions arranged in a square and a diagonal 2D periodic unit cell with
various volume fractions. Lopez-Pamies and Castañeda [28] conducted
a study on instabilities in particulate composites with elliptical inclu-
sions undergoing finite deformation. In particular, they examined the
impact of varying volume fractions and the initial aspect ratios of the
elliptical cross-section of the inclusions on the composite’s buckling
behavior. Li et al. [29] reported the experimental observations of the
numerically predicted instability-induced microstructure transforma-
tions in the soft particulate composites. Chen et al. [30] examined
the instability in the soft particulate composites with varying con-
figurations of periodically distributed inclusions and reported distinct
instability patterns, including strictly doubled periodicity, seemingly
nonperiodic states, and longwave patterns, and their development in
the postbuckling regime [31]. Arora et al. [32] studied the influence
of inhomogeneous interphases on instabilities in laminates. The effect
of phase compressibility of the layered materials has been analyzed
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by Li et al. [7]. More recently, Li et al. [33] reported the experimental
observations of instability-driven domain formations in soft laminates.
They investigated the buckling behavior of particulate composites with
varying geometrical configurations. Rudykh and Debotton [15] ana-
lyzed the macroscopic instabilities in 3D fiber composites. The series of
works [34–38] investigated the microscopic instability and associated
buckling modes in deformable 3D fiber composites.

Most theoretical and numerical studies examined the instability
phenomenon in purely elastic or hyperelastic materials. However, soft
materials exhibit inelastic behavior, including the intrinsic viscoelas-
ticity phenomenon [39–44]. To address the complexity of the inelastic
phenomenon, various linear and nonlinear models have been proposed
— reviewed by Wineman [45], and more recently by Xiang et al. [46],
focusing on physically-based models. In the context of microstructural
bucking in soft composites, as we shall show, the viscoelasticity plays
an important role, especially in the loading regimes activating the time-
dependent mechanisms. Previously, Alur and Meaud [47] performed
a numerical study of the rate-dependent behavior of the viscoelastic
laminates with a stiff elastic layer and soft viscoelastic matrix. Sle-
sarenko and Rudykh [48] reported the experimental observation of
the tunability of wavy patterns in soft viscoelastic laminates. However,
little is known about the interplay between viscoelasticity and the
instability phenomenon in soft composites.

In this study, we examine the role of viscoelasticity in the insta-
bilities in the soft particulate composite. Section 4 summarizes the
numerical results, illustrating the dependence of the buckling charac-
teristics on loading rates for the soft composite described by (i) a single-
branch and (ii) multiple-branch visco-hyperelastic models. Finally, in
Section 5, the applicability of the multiple-branch visco-hyperelastic
model is illustrated in comparison with the experimental results for the
3D-printed soft particulate composites.

2. Theoretical background

A material point of a continuum solid in the undeformed configura-
tion 𝑂0 can be identified with its position vector 𝑿. After deformation,
𝑿 will be mapped into the deformed configuration 𝑂 at the current time
𝑡 with the corresponding position vector 𝒙 = 𝜒 (𝑿, 𝑡). The deformation
gradient 𝐅 is defined as 𝐅 = 𝜕𝒙∕𝜕𝑿, and its determinant is 𝐽 = det𝐅 > 0.

For hyperelastic material, the behavior can be described by a strain
energy density function 𝑊𝐻 , and the second Piola-Kirchhoff stress 𝐒𝐻
can be obtained by

𝐒𝐻 = 2
𝜕𝑊𝐻
𝜕𝐂

, (1)

here 𝐂 = 𝐅𝑇𝐅 is the right Cauchy-Green deformation tensor. For
ncompressible hyperelastic material (𝐽 = 1), Eq. (1) is rewritten as

𝐻 = 2
𝜕𝑊𝐻
𝜕𝐂

− 𝑝𝐂−1, (2)

where 𝑝 is an unknown Lagrange multiplier.
For visco-hyperelastic material, we consider a model (Holzapfel

[49]) based on the rheological representation of the generalized
Maxwell model (schematically illustrated in Fig. 1). The corresponding
strain energy density function 𝑊𝑉 is

𝑉 = 𝑊∞ +
𝑀
∑

𝛼=1
𝑊𝛼 , (3)

here 𝑊∞ characterize the equilibrium state as 𝑡 → ∞, 𝑊𝛼 = 𝛽𝛼𝑊∞
epresents the strain energy density function characterizing the non-
quilibrium response; this corresponds to the non-linear spring in 𝛼th
ranch; here, 𝛽𝛼 is the strain-energy factor that can be used to charac-
erize the value of the instantaneous shear modulus of the 𝛼th branch
Holzapfel [49]). The second Piola-Kirchhoff stress 𝐒V is

𝑉 = 2
𝜕𝑊𝑉 = 𝐒∞ +

𝑀
∑

𝐐𝛼 , (4)
2

𝜕𝐂 𝛼=1
here 𝐒∞ is the equilibrium stress and 𝐐𝛼 is the non-equilibrium stress
f the 𝛼th branch. The equilibrium stress 𝐒∞ is

∞ = 2
𝜕𝑊∞
𝜕𝐂

− 𝑝∞𝐂−1, (5)

here 𝑝∞ is an unknown Lagrange multiplier. The non-equilibrium
tress 𝐐𝛼 is calculated through the evolution equation as

̇
𝛼 +

𝐐𝛼
𝜏𝛼

= 𝛽𝛼
∙

Dev(𝐒∞), (6)

where 𝜏𝛼 is the relaxation time of the 𝛼th branch, ̇(■) is the time
derivative and Dev (■) = (■) − 1∕3 [(■) ∶ 𝐂]𝐂−1 is the deviatoric
operator.

The strain energy density function 𝑊𝑟 (𝑟 = 𝐻,∞, 𝛼) of isotropic
material can be expressed in terms of the invariants of the right
Cauchy-Green tensor as

𝑊𝑟 = 𝑊𝑟
(

𝐼1, 𝐼2, 𝐼3
)

(7)

where

𝐼1 = tr𝐂, 𝐼2 =
1
2
[

(tr𝐂)2 − tr𝐂2] , 𝐼3 = det 𝐂 = 𝐽 2 (8)

For incompressible materials, 𝐼3 = 1. The strain energy density
function of isotropic incompressible materials described by the neo-
Hookean model is

𝑊𝑟 =
𝜇𝑟
2

(

𝐼1 − 3
)

, (9)

where 𝜇𝑟 is the initial shear modulus. According to Eqs. (2) and (4),
the corresponding second Piola-Kirchhoff stress for the hyperelastic and
visco-hyperelastic model are

𝐒𝐻 = 𝜇𝐻 𝐈 − 𝑝𝐂−1 (10)

and

𝐒𝑉 (𝑡) = 𝜇∞𝐈 − 𝑝∞𝐂−1 +
𝑀
∑

𝛼=1
∫

𝑡

0
𝜇∞𝛽𝛼 exp

(

−(𝑡 − 𝜏)
𝜏𝛼

)

×

∙
[

𝐈 − 𝐈 ∶ 𝐂 (𝜏)
3

𝐂(𝜏)−1
]

𝑑𝜏, (11)

espectively. Here, 𝐈 is the identity tensor; the corresponding Cauchy
𝝈) and first Piola-Kirchhoff (𝐏) stress tensors are related to the second
iola-Kirchhoff stress tensor through 𝝈 = 𝐽−1𝐅𝐒𝐅T and 𝐏 = 𝐅𝐒,

respectively.

3. Finite element simulations

Consider the soft particulate composite consisting of stiff circular
inclusions embedded in the soft matrix, as illustrated in Fig. 2. The
geometry of the structure is defined through the inclusion spacing ratio
𝜉 = 𝑑0∕ℎ0; where ℎ0 is the height of the primitive unit cell, and 𝑑0 is
he diameter of the inclusions.

To analyze the instabilities in the soft composite, we carry out the
umerical analysis through finite element simulations in COMSOL 5.6.
e use a single-column inclusion system with a large enough number

f inclusions (𝑁 = 40, if not specified otherwise) along 𝐞𝟏-direction
n the representative cell (see Fig. 2). We apply the in-plane unidirec-
ional compression by imposing the periodic displacement boundary
onditions on the representative cell as

𝐴𝐵 − 𝑼𝐶𝐷 =
(

𝐅 − 𝐈
)

(

𝑿|𝐴𝐵 −𝑿|𝐶𝐷
)

, (12)

𝑼𝐵𝐷 − 𝑼𝐴𝐶 =
(

𝐅 − 𝐈
)

(

𝑿|𝐵𝐷 −𝑿|𝐴𝐶
)

, (13)

where 𝑼 is the displacement vector. The subscript AB, CD, AC, and BD
denote the interior node on the top, bottom, left, and right edges of
the representative cell, respectively, and the ‘‘A’’, ‘‘B’’, ‘‘C’’, and ‘‘D’’
are illustrated in Fig. 2. To prevent rigid body motion, we impose a
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Fig. 1. The rheological representation of the generalized Maxwell model.
Fig. 2. Schematic illustration of the primitive unit and representative cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
constraint as 𝑼 |TC+𝑼 |BC= 0. Here the subscript ‘‘TC’’ and ‘‘BC’’ are the
center points of inclusions on the top and bottom of the representative
cell, respectively (see the red points in Fig. 2). 𝐅 is the average applied
deformation gradient tensor and is expressed as

𝐅 = 𝜆𝐞1 ⊗ 𝐞1 + 𝜆
−1
𝐞2 ⊗ 𝐞2 + 𝐞3 ⊗ 𝐞3, (14)

where 𝜆 (𝑡) = 1 − 𝜀 is the applied macroscopic stretch ratio in the
compression direction; since the deformation is applied at the constant
rate, 𝜀 = �̇�𝑡, with �̇� being the strain rate.

Here and thereafter, we use superscripts (𝑖) and (𝑚) to represent the
stiff inclusions and soft matrix, respectively. The stiff inclusions are
modeled by the hyperelastic model and the soft matrix is character-
ized by the visco-hyperelastic model (as introduced in Section 2). In
particular, the neo-Hookean strain energy density function is adopted,
namely,

𝑊 (𝑞) =
𝜇(𝑞)
𝑟 (

𝐼 − 3
)

, (15)
3

𝑟 2 1
where 𝑞 = 𝑖 and 𝑚, 𝜇(𝑖)
𝐻 denotes the initial shear modulus of the inclu-

sion; 𝜇(𝑚)
∞ is the initial shear modulus of the equilibrium response of the

soft matrix, and 𝜇(𝑚)
𝛼 = 𝛽𝛼𝜇

(𝑚)
∞ is the initial shear modulus of the tempo-

rary non-equilibrium response of 𝛼th branch of the visco-hyperelastic
model (see Eq. (11)).

In our numerical simulation, we focus on composite configuration
with weak interactions between columns of inclusions; accordingly,
we assign a high unit cell aspect ratio, 𝑤0∕ℎ0 = 32. Note that, for
purely elastic composites (without the consideration of viscoelasticity),
for 𝑤0∕ℎ0 approximately exceeding 6, the influence of the aspect ratio
on the critical strain and wavenumber becomes negligible [29]. The
inclusion spacing ratio is set as 𝜉 = 0.8. The initial equilibrium shear
modulus of the matrix 𝜇(𝑚)

∞ = 0.1614 MPa. The contrast between the
initial shear modulus of stiff inclusions and the initial equilibrium shear
modulus of the matrix is set as 𝜇(𝑖)

𝐻 ∕𝜇(𝑚)
∞ = 105. Thus, the deformation

of stiff inclusions is negligible compared to the soft matrix. Recall that,
for the purely elastic composites, the critical strain and wavenumber,
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Fig. 3. The dependence of the normalized stress–strain curves on 𝑊 𝑖. The solid curve,
square and star marks represent the results for 𝜏1 = 0.1 s, 1 s and 10 s, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

maintain a constant trend when the shear modulus contrast is increased
beyond 1000 [29].

4. Results

4.1. Single-branch visco-hyperelastic model

We start by discussing the rate-dependent buckling behavior with
the single-branch visco-hyperelastic model. For the single-branch
model, there are only two independent parameters: relaxation time 𝜏1
and strain-energy factor 𝛽1. We study the effect of 𝜏1 and 𝛽1 on the
critical strain and wavelength.

4.1.1. The effect of relaxation time 𝜏1
Fig. 3 shows the dependence of the normalized stress component

𝑃11∕𝜇
(𝑚)
∞ on the applied strain for the composite with 𝛽1 = 1. The results

are shown for different loading regimes characterized by values of the
Weissenberg number, 𝑊 𝑖 = �̇�𝜏1. In particular, the black, red, green,
and blue curves and markers represent the mechanical response for
composite with the applied loading rates corresponding to 𝑊 𝑖 = 10−4,
10−3, 10−2, and 10−1, respectively. The solid curves, square, and star
markers correspond to the results for the composites with 𝜏1 = 0.1 s,
1 s, and 10 s, respectively. We note that the mechanical response is
independent of the relaxation time 𝜏1 for a given 𝑊 𝑖. The same values
of 𝑊 𝑖 indicate that composites experience equivalent loading rates
despite being characterized by different relaxation times 𝜏1. While this
behavior can be expected for homogeneous material, in the particulate
composite, however, is not apparent since the deformation and the
deformation rate vary spatially.

Fig. 4 shows the dependence of the critical strain 𝜀𝑐𝑟 (a) and
normalized critical wavelength 𝑙𝑐𝑟 (b) on Weissenberg number 𝑊 𝑖, and
the buckling pattern (c) corresponding to 𝑊 𝑖 = 10−2. We highlighted
the critical wavelength for the composite loading with the strain rate
corresponding to 𝑊 𝑖 = 10−2 by the red star in Fig. 4(b). The nor-
malized critical wavelength represents the number of inclusions in the
repeating set of the buckled shape. The critical strain and wavelength
are identified from the stress–strain curve and the buckling pattern,
respectively. Specifically, we monitor the macroscopic stress of the
4

composites during the compression, and we identify the strain at which
the dependence of stress on strain changes sharply as the critical strain.
The discrete Fourier transform (DFT) method is employed to identify
the critical wavelength of the buckled composites. Here, the circle,
square, and star markers represent the results for the composites with
𝜏1= 0.1 s, 1 s and 10 s, respectively. The critical strain is a smooth
function of the Weissenberg number. We connect the markers with
a dotted curve to indicate the rate dependence trend. However, the
critical wavelength is not a smooth function of the Weissenberg num-
ber, so the connecting curves between the markers show the variation
tendency only, not the actual value. High (such as 𝑊 𝑖 = 10) and low
loading rates (such as 𝑊 𝑖 = 10−7) can suppress the viscoelasticity. So
that we can estimate the critical strain and wavelength for the two
extreme cases through the Bloch-Floquet analysis for purely elastic
composites [29,37]. The results for the purely elastic composites are
denoted by the gray dashed curve in Fig. 4(a) and (b). Note that, due
to the high contrast in 𝜇(𝑖)

𝐻 ∕𝜇(𝑚)
∞ , the critical strain and wavelength in

the two limits (high and low loading rates) are almost identical.
We note that the critical strain and wavelength are identical for

the same 𝑊 𝑖 regardless of 𝜏1 (compare the different types of markers).
Besides, the critical strain approaches the value corresponding to the
limits for sufficiently fast (or slow) loading rates. Specifically, 𝜀𝑐𝑟 =
0.1123 (for 𝑊 𝑖 = 10) and 𝜀𝑐𝑟 = 0.11198 (for 𝑊 𝑖 = 10−7), approaching
the critical value for the elastic composites, 𝜀𝑐𝑟 = 0.11078, as calcu-
lated through the Bloch-Floquet analysis. Interestingly, for 𝑊 𝑖 ranging
from 10−7 to 10, the dependence of the critical strain on 𝑊 𝑖 is non-
monotonic, with the maximum of the critical strain being significantly
larger than the values in the two extreme cases. In particular, the peak
value of the critical strain is 0.1466, being larger than the critical strain
(0.11078) from the Bloch-Floquet analysis (compare the peak value
of the black dotted curve and the value of the gray dashed curve in
Fig. 4(a)). This composite behavior is different from that observed in
the laminated composite, for which the critical buckling strain is a
monotonic function of the strain rate bounded by the two limits for
sufficiently fast and slow loading rates. For example, in the laminates
with viscoelastic matrix (and elastic layers), the critical strain increases
with an increase in the applied strain rate [47], and the opposite rate
dependence will be observed if the fiber is viscoelastic [48].

We observe that the rate dependence of the critical wavelength
is non-monotonic (see Fig. 4(b)), reaching the maximum plateau at
a range of intermediate values of 𝑊 𝑖. In particular, 𝑙𝑐𝑟 reaches the
highest plateau value when 𝑊 𝑖 is within the range of 10−3 to 10−2.
For low loading rates, such as 𝑊 𝑖 = 10−7, and high loading rates
such as 𝑊 𝑖 = 10, the critical wavelength reaches the plateau value
𝑙𝑐𝑟 = 4.44 being close to the value from the Bloch-Floquet analysis (𝑙𝑐𝑟 =
4.56). Recall that the normalized critical wavelength 𝑙𝑐𝑟 represents the
number of inclusions in the repeating sets of the instability-induced
wavy pattern; therefore, 𝑙𝑐𝑟 might be expected to be an integer. How-
ever, a buckling pattern may not attain a perfect periodicity (with
an integer number of repeating inclusions), as illustrated in Fig. 4(c),
where two alternating sets of six and seven inclusions can be observed.
To identify the wavelength of the instability-induced irregular quasi-
periodic pattern, we use the discrete Fourier transform (DFT) method.
Through the analysis, we determine the dominant wavelength in the
instability-induced wavy pattern. Note that the obtained normalized
critical wavelength is not always an integer. For example, the DFT
dominant wavelength of the composite undergoing deformation at the
rate corresponding to 𝑊 𝑖 = 10−2 (shown in Fig. 4(c)) is 6.67; the value
is between the two wavelengths with an integer number of inclusions
(6 and 7) of the corresponding repeating blocks. We also note that
the critical wavelength function is not smooth; with the Weissenberg
number increasing from 10−7 to 10, the critical wavelength takes the
discrete values of 4.44, 5.0, and 6.67, respectively. This observation
indicates that different loading rates may activate buckling modes with
different wavelengths and the wavelength of the activated modes does
not continuously change with an increase in the loading rate.
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Fig. 4. The dependence of (a) critical strain 𝜀𝑐𝑟 and (b) normalized critical wavelength 𝑙𝑐𝑟 on 𝑊 𝑖. (c) The buckling pattern corresponds to the red marker in (b). The circle,
square, and star marks represent the results for 𝜏1 = 0.1 s, 1 s and 10 s, respectively.
Fig. 5. The dependence of (a) rate-dependent critical strain 𝜀𝑐𝑟, (b) peak point-related critical strain 𝜀𝑝𝑐𝑟 and Weissenberg number 𝑊 𝑖𝑝 on 𝛽1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
4.1.2. The effect of the strain-energy factor 𝛽1
To illustrate the influence of the strain-energy factor on the buckling

characteristics, we first show the dependence of the critical strain 𝜀𝑐𝑟
on the strain-energy factor 𝛽1 in Fig. 5(a). Specifically, we show the
rate-dependent critical strain for 𝛽1 changing from 0.1 to 500. For
later discussions, let us consider the dependence of the peak point-
related critical strain 𝜀𝑝𝑐𝑟 (red curve) and Weissenberg number 𝑊 𝑖𝑝

(black curve) on the strain-energy factor (see Fig. 5(b)). Here, 𝜀𝑝𝑐𝑟 is
the maximum critical strain and 𝑊 𝑖𝑝 is the corresponding Weissenberg
number for a given 𝛽1 (𝜀𝑝𝑐𝑟 and 𝑊 𝑖𝑝 for 𝛽1 = 1 are illustrated by the
violet dashed lines in (a)).

We observe that the critical strain shows a similar rate dependence
for different 𝛽1, namely, the critical strain increases first, then, after
reaching the maximum, it starts decreasing with an increase in 𝑊 𝑖.
For example, for 𝛽1 = 1, the critical strain increases until its maximum
value reaching 𝜀𝑝𝑐𝑟 = 0.1466 at 𝑊 𝑖𝑝 = 5 × 10−3, and then decreases with
a further increase in 𝑊 𝑖 (see the violet curve in (a)). In addition, the
critical strain increases with an increase in 𝛽1 (compare the different
colored curves in Fig. 5(a)). Fig. 5(b) shows that the peak point of
critical strain 𝜀𝑝𝑐𝑟 increases with an increase in 𝛽1. However, 𝑊 𝑖𝑝 shows
the opposite trend, namely, it decreases with an increase in the strain-
energy factor approaching around 5 × 10−3 and 10−3 when 𝛽1 ≤ 1 and
𝛽1 ≥ 100. The dependence of the critical strain on the strain-energy
factor can be related to the effective modulus contrast of inclusions
5

and matrix. For the hyperelastic particulate composites (in the absence
of viscoelasticity), it has been reported that the critical strain mono-
tonically increases with a decrease in the inclusions-to-matrix shear
modulus contrast [29]. In visco-hyperelastic materials, the effective
modulus of the matrix increases with an increase in 𝛽1. Therefore, the
modulus contrast between inclusions and matrix is lower for composites
with a larger strain-energy factor for a given loading rate. As a result,
the corresponding critical strain increases with an increase of 𝛽1. The
rate and the strain-energy factor dependence of critical strain can guide
us to design the particulate composite. For instance, to make a more
stable particulate composite, we could make the matrix material with
a larger strain-energy factor. In addition, for composite undergoing the
specified strain rate, we could adjust the relaxation time of the matrix
material to restrict the Weissenberg number to the intermediate range
where the composite is more stable.

Fig. 6 shows the dependence of the normalized critical wavelength
𝑙𝑐𝑟 on Weissenberg number 𝑊 𝑖. The results are shown for the com-
posites with various strain-energy factor values 𝛽1 (from 0.1 to 500).
Similar to the previous observations, here, we also find that 𝑙𝑐𝑟 is not
a smooth function of the Weissenberg number, and it only switches
between values 4.44, 5.0, 5.71, 6.67, and 10 with a change in 𝑊 𝑖.
We observe that slow (such as 𝑊 𝑖 = 10−7) and fast (such as 𝑊 𝑖 =
10) loading rates limit the appearance of possible buckling modes. In
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𝜀

𝜀

Fig. 6. The dependence of normalized critical wavelength 𝑙𝑐𝑟 on Weissenberg number
𝑊 𝑖 for composites with various strain-energy factor 𝛽1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

particular, 𝑙𝑐𝑟 shifts between 4.44 and 5.0 only for 𝑊 𝑖 = 10−7, and takes
a single value of 4.44 for 𝑊 𝑖 = 10 over a range of 𝛽1 (from 0.1 to 500).

In addition, we note that 𝑙𝑐𝑟 shows an increasing trend with an
increase in 𝛽1 for composites with strain-energy factors smaller than
100. The normalized critical wavelength can span a broader range of
values with the change of 𝑊 𝑖 for higher 𝛽1. For example, 𝑙𝑐𝑟 has two
possible values for 𝛽1 = 0.1 (see the light blue curve), three possible
values for 𝛽1 = 0.5 and 1 (see the brown and violet curves), four possible
values for 𝛽1 = 5 and 10 (see the green and dark blue curves), and five
possible values for 𝛽1 = 100 and 500 (see the red and black curves).
We can conclude that overall a broader set of possible buckling modes
can be activated in composites characterized by higher strain-energy
factors. Therefore, to obtain a particulate composite with wider space
admission of the buckling pattern activated by different strain rates, we
could select matrix material with a larger strain-energy factor.

4.2. Multiple-branch visco-hyperelastic model

In this section, we examine the rate sensitivity of the critical strain
in the composite with the matrix characterized by the multiple-branch
visco-hyperelastic model. Fig. 7 shows the dependence of critical strain
on strain rate for the composites with matrix described by the double-
branch model (corresponding to 𝑀 = 2 in Eq. (11)). The results are
shown for the composites with 𝛽1 = 𝛽2 = 0.5, and 𝜏1 = 1 s and 𝜏2 = 100 s
in Fig. 7(a); and for the case of 𝛽1 = 𝛽2 = 0.5, and 𝜏1 = 0.01 s and 𝜏2 =
10 s in Fig. 7(b). The continuous and dashed curves represent the
results for the double-branch and single-branch models, respectively.
The single branch models are characterized by their corresponding
strain-energy factor and relaxation times: 𝛽1 = 0.5, 𝜏1 = 1 s (the black
dashed curve) and 𝛽2 = 0.5, 𝜏2 = 100 s (the red dashed curve) in
Fig. 7(a); and 𝛽1 = 0.5, 𝜏1 = 0.01 s (the black dashed curve) and 𝛽2 = 0.5,
𝜏2 = 10 s (the red dashed curve) in Fig. 7(b).

We observe that the critical strain function is characterized by two
local maxima (or two peaks) for both cases. Interestingly, the strain rate
values (corresponding to the maxima) coincide with those of the single-
branch models with corresponding relaxation times. For example, �̇�𝑝(1)
and �̇�𝑝(2) in Fig. 7(a) is the strain rate corresponding to peaks for the
composite with the single-branch model with 𝛽 = 0.5, 𝜏 = 1 s and
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𝛽2 = 0.5, 𝜏2 = 100 s, respectively (see the vertical dashed gray lines). We
also observe that the peak corresponding to the larger relaxation time
is higher than the peak corresponding to the shorter relaxation time.
In particular, the critical strain is higher for the value corresponding
to �̇�𝑝(2) than the value corresponding to �̇�𝑝(1) (see the blue curves). This
observation indicates that for the double-branch model having identical
strain-energy factors (𝛽1 = 𝛽2), the branch with a larger relaxation
time plays a dominant role in the determination of the critical buckling
strain.

Fig. 8 displays the dependence of the critical strain on strain rate
for the composites with the matrix characterized by the three-branch
model (𝑀 = 3 in Eq. (11)) in Fig. 8(a), and the five-branch model
(𝑀 = 5 in Eq. (11)) in Fig. 8(b). In Fig. 8(a), we show the results
for the three-branch model with two cases: 𝛽1 = 𝛽2 = 𝛽3 = 1 as well
as 𝜏1 = 0.01 s, 𝜏2 = 1 s and 𝜏3 = 100 s (see the blue curve);
𝛽1 = 10 and 𝛽2 = 𝛽3 = 1 as well as 𝜏1 = 0.01 s, 𝜏2 = 1 s and 𝜏3 = 100 s
(see the violet curve). In Fig. 8(b), we study the five-branch model with
𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 1 as well as 𝜏1 = 0.01 s, 𝜏2 = 0.1 s, 𝜏3 =
1 s, 𝜏4 = 10 s and 𝜏5 = 100 s (see the pink curve). All the dashed curves
denote the results of the single-branch model with the corresponding
strain-energy factor and relaxation time. For instance, the red, gray, and
green dashed curves in Fig. 8(a) denote the results for the composites
with 𝛽1 = 1 and 𝜏1 = 0.01 s, 𝛽2 = 1 and 𝜏2 = 1 s, and 𝛽3 = 1 and
𝜏3 = 100 s, respectively.

Note that the values of the strain rate �̇�𝑝(𝛼) (𝛼 = 1, 2, and 3)
corresponding to the maxima coincide with those of the single-branch
models with corresponding relaxation times. In particular, �̇�𝑝(𝛼) is the
strain rate corresponding to peaks for the composite described by the
single-branch model with 𝛽𝛼 and 𝜏𝛼 (see the vertical green, gray, and
red dashed lines in Fig. 8(a)). Similar to the double-branch model, the
magnitude of the peak corresponding to the shorter relaxation time
is also lower for the three-branch model. In particular, the critical
strain corresponding to �̇�𝑝(1) is lower than the value corresponding to
̇ 𝑝(2) (compare the corresponding vertical red and gray dashed lines)
and the critical strain corresponding to �̇�𝑝(2) is lower than the value
corresponding to �̇�𝑝(3) (compare the vertical gray and green dashed
lines).

In addition, we note that the peak of critical strain increases as
the corresponding strain-energy factor increases. For example, the peak
corresponding to �̇�𝑝(1) increases from 0.11 to 0.16 when we increase
𝛽1 from one to ten (compare the violet and blue curves in Fig. 8(a)).
On the contrary, the corresponding strain rate (�̇�𝑝(1)) slightly decreases
with an increase in 𝛽1 (compare the vertical violet and red dashed
lines). The results indicate that for a given branch, a higher strain-
energy factor 𝛽𝛼 can increase the local peak (determined by this branch)
and decrease the strain rate (corresponding to the local peak). These
observations are consistent with the numerical results of the single-
branch model. For the single-branch model, the maximum critical
strain and the corresponding strain rate increase and decrease with
an increase in the strain-energy factor, respectively (see the discussion
of Fig. 5(b)). Moreover, we find that the increase in the strain-energy
factor 𝛽𝛼 eliminates its adjacent local peak. In particular, the local peak
corresponding to �̇�𝑝(2) disappears when 𝛽1 increases from one to ten (see
the violet curve in Fig. 8(a)).

For the five-branch model, we observe that there is a single peak
only (see the pink curve in Fig. 8(b)), and the values of the strain rate
̇ 𝑝 corresponding to the maximum almost coincides with that of the
single-branch model with the largest relaxation time (𝜏 = 100 s). These
observations indicate that, in the multiple-branch model with identical
strain-energy factors, the peaks of critical strain corresponding to larger
relaxation time is higher. As a result, the peak (corresponding to the
largest relaxation time) is the sharpest and even makes other peaks
indiscernible. Therefore, only one peak appears and the corresponding

𝑝
strain rate �̇� is dictated by the largest relaxation time.
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Fig. 7. The dependence of critical strain on strain rate for the composites with matrix characterized by double-branch model with (a) 𝜏1 = 1 s and 𝜏2 = 100 s, (b) 𝜏1 = 0.01 s and
𝜏2 = 10 s. The strain-energy factors are 𝛽1 = 𝛽2 = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. The dependence of the critical strain on strain rate for the composites with matrix characterized by (a) the three-branch model and (b) the five-branch model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Application of multiple-branch model for 3D-printed soft par-
ticulate composite

In this section, we apply the multiple-branch model to capture
the instability behavior of the 3D-printed soft particulate compos-
ite. To model the 3D-printed soft particulate composite characterized
by a broad spectrum of relaxation times [48,50–53], we adopt the
multiple-branch visco-hyperelastic model.

The composite samples are fabricated with the help of the Objet
Connex 260 3D printer. The dimensions of the specimens are 80 mm ×
60 mm (width × height) with 6 mm thickness in the out-plane direction.
We examine the composites with a single column of inclusions with
the spacing ratio 𝜉 = 0.8. The height of the primitive unit cell and
the diameter of the inclusions are 2.5 mm and 2 mm, respectively. The
7

soft matrix and stiff inclusions are printed with TangoPlus and VeroB-
lack, respectively. The stiff inclusions are modeled by incompressible
neo-Hookean materials with 𝜇(𝑖)

𝐻 ∕𝜇(𝑚)
∞ = 103. Based on the dynamic

mechanical analysis (DMA) characterization data [54], the TangoPlus
material is modeled by the multiple-branch visco-hyperelastic model
with 𝑀 = 10 in Eq. (11). The identified material parameters for the
matrix (3D printed in TangoPlus) are provided in Appendix.

The in-plane compression tests are carried out by the MTS com-
pression machine at room temperature around 21 ◦C. The deformation
in the thickness direction is restricted by a transparent fixture. The
compression is applied at different strain rates: �̇� = 10−3 s−1, 5 ×
10−3 s−1, 10−2 s−1, 5 × 10−2 s−1, and 10−1 s−1. At least four samples
are tested for each strain rate.
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Fig. 9. The dependence of critical strain on applied strain rate for the single column
composite system.

Fig. 9 shows the dependence of the critical strain on the applied
strain rate. In particular, the experimental (the black makers) and
numerical (the red curve) critical strain is presented. The critical strain
increases with an increase in the strain rate (within the considered
loading range). Our simulations also show a similar trend capturing the
rate-dependent behavior qualitatively. We note that, here, the critical
strain monotonically increases with an increase in the applied strain
rate.

Fig. 10 illustrates the post-buckling patterns observed in experi-
ments (a) and (b), and in simulations (c) and (d). The composite is
subject to a compressive strain of 20% with strain rates �̇� = 10−3 s−1

(see (a) and (c)) and �̇� = 10−1 s−1 (see (b) and (d)). In experiments, we
observe that the critical wavelength increases with an increase in the
applied strain rate; for example, the normalized critical wavelengths
increases from 𝑙𝑐𝑟 = 6 to 8 when the strain-rate is increased from
�̇� = 10−3 s−1 to 10−1 s−1 (see Fig. 10(a) and (b), respectively). Our
simulations also predict a similar increase in the critical wavelength, as
illustrated in (c) and (d). The numerical prediction of the normalized
critical wavelengths for �̇� = 10−3 s−1 and 10−1 s−1 are 𝑙𝑐𝑟 = 5 and 8,
respectively.

We note that the modeling overestimates the critical strain (see
Fig. 9), and the predicted post-buckling patterns do not perfectly match
the experimental observations. The numerical wavelength is shorter
than the observed in the experiment in the composites subjected to
�̇� = 10−3 s−1; also, the predicted buckling amplitude is visibly lower
than that of the experimental pattern, compare, for example, the nu-
merical (b) and experimental (d) results for the case �̇� = 10−1 s−1 for
the same compressive strain level, 20% (see Fig. 10). The difference
between the numerical and experimental results may be attributed to
a number of factors, including, possible damage occurring in materials
during deformation [46,55,56], friction in the experiment setup, and
material properties uncertainties, for example, the material parameters
are extracted from the DMA that characterize the material properties
in the small deformation range. In the experiments, however, the
composite experience high-level deformations (especially the matrix
material in the area between the inclusions). A potential way to im-
prove the accuracy of the modeling is the usage of richer constitutive
models [46] for the equilibrium and instantaneous responses of the
matrix material. Additionally, it is important to note that even under
constant environmental temperature, local temperature within the com-
posites might increase due to the viscoelastic behavior of the materials.
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Therefore, thermo-viscoelastic models could be required to improve the
simulation’s accuracy [53,57]. We shall mention the existence of the
interphases potentially influencing the instability phenomenon in soft
composites [32]. Furthermore, the composite buckling behavior may be
affected by the imperfections or uncertainties in materials [58–60] or
geometry [61–63] of the composites. The influence of uncertainties can
be quantified and implemented into the numerical framework through
stochastic analysis [64,65].

6. Concluding remarks

We examined the buckling phenomenon in soft particulate com-
posite with the matrix exhibiting by visco-hyperelastic behavior. We
started by considering the dependence of the critical strain and wave-
length on the applied strain rate in the composite with the matrix
characterized by the single-branch visco-hyperelastic model. The stress–
strain response of the composites (subjected to compression with a
constant strain rate) is identical for a given Weissenberg number (re-
gardless of the relaxation time), remarkably, in both stable and post-
buckling regimes. While this behavior is expected for homogeneous
materials, its appearance in the heterogeneous composites character-
ized by non-homogeneous local deformation history is noteworthy.
The single-branch model predicts the dependence of critical strain
on strain rate to have a single prominent maximum. In particular,
the composite is more stable at a specific intermediate Weissenberg
number and becomes less stable when loaded at smaller and higher
strain rates. Based on this, we could make the composites under the
given scope of loading rates more stable by restricting the applied
Weissenberg number to the intermediate magnitude through adjusting
the relaxation time. The Weissenberg number (corresponding to the
peak of critical strain) sightly decreases with an increase in the strain-
energy factor (or instantaneous shear modulus). The dependence of
the critical strain on the strain-energy factor can be interpreted in
terms of inclusion-to-matrix shear modulus contrast as follows. The
instantaneous shear modulus of the matrix increases with an increase
in the strain-energy factor. As a result, the instantaneous inclusion-
to-matrix shear modulus contrast decreases with an increase in the
strain-energy factor. Li et al. [29] reported that the critical strains
in the corresponding hyperelastic particulate system increase with a
decrease in the inclusion-to-matrix shear modulus contrast. Therefore,
the critical strain shows an increasing trend with an increase in the
strain-energy factor. However, the simplified instantaneous-modulus-
contrast-based analysis has a limited applicability, and cannot predict
the decrease of the critical strain rate in the range of higher strain
rates. This regime activates the strong viscoelastic effects amplified by
the complexity of spatial inhomogeneity of deformation (and rate of
deformation, and its history).

Next, we further examined the buckling phenomenon in the com-
posites with the matrix characterized by a multiple-branch visco-
hyperelastic model. The critical strain function of the 𝑀-branch model
tends to posses an 𝑀 number of local maxima (peaks). The strain
rates corresponding to the local maxima are dictated by the single-
branch models with the corresponding relaxation times. The branch
with the larger relaxation time have a more significant influence on
the curve shape, and can eliminate the other peaks (corresponding to
the shorter relaxation times). The local maximum can be significantly
amplified by increasing the corresponding strain-energy factor. Thus,
the branches with larger strain-energy factors have stronger influence
on the dependence of the critical strain on strain-rate.

Finally, we experimentally studied the microstructural buckling
of the 3D-printed soft particulate composite. The 3D printed matrix
material (TangoPlus) used in experiments is characterized by a broad
spectrum of relaxation times. Therefore, the multiple-branch visco-
hyperelastic model is adopted in numerical simulations for the cor-
responding matrix. The experimentally observed critical strain and
wavelength were found to increase with an increase in the applied
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Fig. 10. (a) Experimental bucking pattern with (a) �̇� = 10−3 s−1 and (b) �̇� = 10−1 s−1. The simulated bucking pattern with (c) �̇� = 10−3 s−1 and (d) �̇� = 10−1 s−1 for compressive
strain 20%.
strain rate; the simulations with the multiple-branch visco-hyperelastic
material model can qualitatively capture the dependence of critical
strain and wavelength in the complex material system.

Our results provide insights into the complex role of viscoelasticity
in the buckling behavior of soft composites. The information can be
helpful for the design of soft metamaterials with tunable functions.
In particular, the instabilities combined with viscoelasticity can be
used to design metamaterials with novel properties that pure elastic
metamaterials cannot achieve. For example, viscoelastic metamaterials
can show seemingly contradictory behavior — positive and negative
Poisson’s ratio, by applying different strain rates [66,67]. Moreover, the
rate-dependent buckling behavior facilitates controlling the buckling
pattern via different loading velocities. For instance, a study by Sle-
sarenko and Rudykh [48] demonstrated that the buckling pattern of
viscoelastic laminates could be modified by altering the compression
velocities. Additionally, the properties of the soft metamaterials can
be regulated by their viscoelasticity, which in turn, can be tuned,
for example, by adjusting light intensity and other parameters during
the photo-polymerization [51,68]. These effects can be combined with
other external stimuli, such as electric [69,70], magnetic [71–78], and
thermal loading [79,80] to control material dynamic behavior.

In this study, the simulations are performed in the 2D setting,
therefore the conclusions may not be directly projected to composites
with more diverse microstructures, and inclusion shapes and sizes.
As the computational analysis is expanded to more realistic 3D set-
tings, the utilization of computationally effective methods should be
employed. For example, the application of the Local Background Grid
method [81,82] has the potential to accommodate a broader range of
inclusion types and provide a more accurate representation of their
influence on the mechanical behavior of the composite. In this context,
the exploration of deep learning methods presents a promising avenue
for the efficient prediction of the mechanical response of viscoelastic
composites [83,84]. Moreover, as the focus narrows to the microscale,
the role of weak interparticle interactions, such as, van der Waals
forces, hydrogen bonding, and electrostatic interactions increases [85,
86]. In addition, we note that, while we study the most relevant mode
(for buckling consideration) of global deformation – the compressive
strain aligned with the inclusion column direction – composites may
experience other, more complex deformation modes.
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Table A.1
The material parameters for TangoPlus.

Branch (m) 𝛽𝑚 𝜏𝑚 (Unit: s) Branch (m) 𝛽𝑚 𝜏𝑚 (Unit: s)

1 733.73 9.35E−11 6 210.28 3.60E−05
2 779.24 4.38E−09 7 40.60 2.37E−04
3 771.50 8.26E−08 8 7.05 0.0017
4 626.76 9.10E−07 9 1.96 0.016
5 426.89 6.50E−06 10 0.65 0.25

𝜇∞ (MPa) 0.1633
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Appendix. The parameters extraction for TangoPlus

We extract the 3D printed matrix material (Tangoplus) parameters
by fitting the DMA data from Yuan et al. [54]. The fitting results
are shown in Fig. A.1. The markers and dashed curves represent the
experimental data and fitting results, respectively. The extracted strain-
energy factors and relaxation times under room temperature (21 ◦C) are
listed in Table A.1.
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Fig. A.1. Fitting curves of the DMA results for TangoPlus.
Source: The data are extracted from Yuan et al. [54].
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