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A B S T R A C T   

In this paper, we investigated elastic instabilities in soft particulate composites under finite strains. Through our numerical analysis, we find distinct instability modes 
developing in the composites upon the critical deformation level. In particular, fully predetermined by its initial geometry, the microstructures transform into (i) 
strictly doubled periodicity, (ii) seemingly non-periodic state, or (iii) longwave pattern. The latter may give rise to highly ordered domain formations. We analyze the 
various mechanisms leading to the development of the different instability modes and specifically focus on the seemingly non-periodic one. We illustrate the distinct 
features of their corresponding eigenmodes obtained from the Bloch-Floquet analysis. We further employ the quasi-convexification analysis and examine the energy 
landscapes of the soft composites developing the different instability modes. Finally, we examine the development of the predicted instability modes in the post- 
buckling regime. We find that, depending on the characteristic critical wavenumber, the post-buckling patterns can significantly diverge from those predicted by 
the Bloch-Floquet analysis. In the post-buckling regime, the instabilities may develop into various scenarios: from a combination of different repeating inclusion sets 
to disordered, seemingly chaotic patterns.   

1. Introduction 

Soft composites can experience elastic instabilities leading to their 
microstructure transformations. Recently, the phenomenon has been 
employed for designing materials with tunable and switchable proper
ties; examples include tunable bandgap materials (Li et al., 2019c; 
Rudykh and Boyce, 2014; Shan et al., 2014; Wang et al., 2014; Gao et al., 
2019), metamaterials exhibiting negative group velocity states (Slesar
enko et al., 2018; Arora et al. (2022)), and negative Poisson’s ratio or 
auxetic materials (Bertoldi et al., 2008; Mullin et al., 2007; Li et al., 
2018b; Li et al., 2019b; Li et al., 2019c; Li and Rudykh, 2019b). 

To predict the onset of instabilities, the framework of the linearized 
small motions superimposed on finitely deformed solids is frequently 
used (Ogden, 1997). The onset of macroscopic or longwave instabilities 
can be identified with the help of the loss of ellipticity analysis (see, for 
example, Merodio and Ogden, 2002, 2003, 2005; El Hamdaoui et al., 
2018; Melnikov et al., 2021). For composite materials, the analysis re
quires the determination of the effective tensor of elastic moduli, which 
can be computed via numerical (Bruno et al., 2010; Greco and Luciano, 

2011; Greco et al., 2021) or analytical homogenization schemes 
(Rudykh and Debotton, 2012). Alternatively, phenomenological models 
can be used directly to compute the tensor of elastic moduli and provide 
the deformation limits for material stability (Merodio and Ogden, 2002; 
Merodio and Pence, 2001). 

However, the so-called microscopic instabilities developing at finite 
wavelengths can occur earlier than the longwave one (Geymonat et al., 
1993). To predict the onset of microscopic instability and identify the 
critical deformation level and wavelength, the Bloch-Floquet analysis 
superimposed on the finitely deformed state is typically used (Bertoldi 
et al., 2008; Slesarenko and Rudykh, 2017). We note the equivalence of 
the longwave limit in the Bloch-Floquet analysis and the loss of ellip
ticity condition (Geymonat et al., 1993). 

Rudykh and Debotton (2012) utilized micromechanics-based ho
mogenization to predict the macroscopic instability in transversely 
isotropic (TI) fiber composites (FCs). Li et al. (2013) experimentally 
observed the microscopic and macroscopic instability phenomena of 
multi-layered composites under plane strain conditions via 3D-printed 
layered materials. Galich et al. (2018) studied the influence of the 

* Corresponding author. Department of Mechanical Engineering, University of Wisconsin–Madison, WI 53706, United States. 
E-mail address: rudykh@wisc.edu (S. Rudykh).  

Contents lists available at ScienceDirect 

Mechanics of Materials 

journal homepage: www.elsevier.com/locate/mechmat 

https://doi.org/10.1016/j.mechmat.2022.104482 
Received 14 August 2022; Accepted 24 September 2022   

mailto:rudykh@wisc.edu
www.sciencedirect.com/science/journal/01676636
https://www.elsevier.com/locate/mechmat
https://doi.org/10.1016/j.mechmat.2022.104482
https://doi.org/10.1016/j.mechmat.2022.104482
https://doi.org/10.1016/j.mechmat.2022.104482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2022.104482&domain=pdf


Mechanics of Materials 175 (2022) 104482

2

periodic fiber distribution on instabilities and shear wave propagation in 
3D fiber composites. Arora et al. (2019) examined the influence of the 
inhomogeneous interphases in 3D-printed soft laminates on their sta
bility. Li et al. (2018a) experimentally investigated the elastic in
stabilities in 3D-printed fiber composites and observed the transition 
from small wavelength wavy patterns to the long-wave mode. Li et al. 
(2019c) analyzed the elastic instability in compressible laminate, 
reporting the stabilization effect of the phase compressibility. Slesar
enko and Rudykh (2016) utilized the visco-hyperelastic behavior of the 
phase materials in soft composites (Xiang et al., 2020a, 2020b) to ach
ieve the tunability of the wavy patterns via variable strain rates. Con
straining the equivalent 3D FC into the in-plane setting, the stability of 
the 2D system of fiber cross-section has been examined (see, for 
example, the numerical study Triantafyllidis et al. (2006), and refer
ences therein) numerically predicting microscopic or macroscopic in
stabilities in the particulate composite with circular inclusions 
(distributed periodically in square and diagonal unit cells) under com
bined in-plane loadings and for various volume fractions; Michel et al. 
(2010) reexamined the problem and added a comparison of the 
macroscopic stability of the composite with a random distribution of 
particles (including circular and elliptical ones) under similar combined 
in-plane loadings. 

As we shall show, in the particulate composite systems, the impor
tant instability characteristics are significantly influenced by the peri
odicity parameters of the inclusion distributions, affecting both the 
critical strain and wavelength. Furthermore, the instability modes 
experience significant alterations in the post-buckling regime. 

Recently, Li et al. (2019a) reported the experimental observations of 
the formation of wavy chain patterns in soft particulate composites; 
moreover, the pattern formation can be controlled by a magnetic field 
(Goshkoderia et al., 2020a). Motivated by the experimental observa
tions, in this study, we numerically examined the instability-induced 
patterns in soft particulate composites via (i) Bloch-Floquet, (ii) quasi-
convexification, and (iii) direct post-buckling analyses. First, we start by 
examining the influence of the instability characteristics such as critical 
strain and wavenumber on the initial geometrical parameters of the 
periodic microstructure. We numerically realize that the influence could 
be the manifestation of two different buckling behaviors in the soft 
particulate systems. We then further focused on the phenomenon of 
microstructure transformation from its initial geometry into the corre
sponding instability modes, where we found the typical buckling pat
terns with (i) the longwave periodicity, (ii) strictly doubled periodicity, 
and (iii) seemingly non-periodic state. We also analyzed the so-called 
energy landscapes of the finitely deformed particulate composite, 
illustrating the microstructure transformation from the view of their 
energy responses. Finally, we also examined the development of the 
predicted instability modes in the post-buckling regime. In particular, we 
examine the transition instability modes predicted by the Bloch-Floquet 
analysis. We shall show that, depending on the characteristic critical 
wavenumber, the post-buckling instability pattern can significantly 
differ from those predicted by the Bloch-Floquet analysis. 

2. Theoretical background 

Consider a continuum body with each point identified with its po
sition vector X in the undeformed configuration and x in the deformed 
configuration. The corresponding mapping function is x = χ(X, t). The 
deformation gradient F is defined as F = ∂x/∂X, and its determinant is 
J = det F > 0. For a hyperelastic material, the constitutive behavior is 
defined by elastic strain energy density function, so that the first Piola- 
Kirchhoff stress tensor is 

P =
∂W(F)

∂F
. (1) 

For an incompressible material, J = 1, Eq. (1) modifies as 

P=
∂W(F)

∂F
− pF− T , (2)  

where p is an unknown Lagrange multiplier. Consider quasi-static 
deformation in the absence of body forces. The corresponding equilib
rium equation in the undeformed configuration reads 

Div P = 0. (3) 

To analyze the material stability, we consider incremental de
formations superimposed on a finitely deformed state. The corre
sponding linearized constitutive law is 

Ṗ=A∶Ḟ, (4)  

where Ḟ is an incremental change in the deformation gradient, defined 
as Ḟ = Grad u, and u is the incremental displacement. Ṗ is the corre
sponding change in the first Piola-Kirchhoff stress tensor, and A is the 
tensor of elastic moduli, defined as 

A =
∂2W

∂F∂F
. (5) 

Under the assumption that Aiαjβ is independent of X, the incremental 
equilibrium equation can be written as 

Aiαjβ
∂2uj

∂Xα∂Xβ
= 0. (6) 

For incompressible materials, Eq. (6) modifies to 

Aiαjβ
∂2uj

∂Xα∂Xβ
+

∂ṗ
∂Xi

= 0, (7)  

where ṗ is a variation in p. 
The incompressibility condition implies 

∇⋅u = 0. (8) 

By application of the chain rule, the incremental equilibrium Eq. (7) 
can be written in the current configuration as 

A0
ipjq

∂2uj

∂xp∂xq
+

∂ṗ
∂xi

= 0, (9)  

where 

A0
ipjq = J− 1FpαFqβAiαjβ. (10) 

We seek a solution for Eq. (9) in the form 

u = m̂eikx⋅̂n , ṗ = p̂eikx⋅̂n , (11)  

where k is a wavenumber, m̂ and n̂ are unit vectors. 
The incompressibility condition Eq. (8) leads to the requirement 

m̂⋅n̂ = 0. (12) 

Substitution of Eq. (11) into Eq. (9) yields 

Qm̂ + ip̂ n̂ = 0, (13)  

where Q is the acoustic tensor with the components defined as 

Qij = A0
ipjq n̂p n̂q. (14) 

The associated strong ellipticity condition implies 

Qij m̂i m̂j ≡ A0
ipjq n̂p n̂q m̂i m̂j > 0. (15) 

Thus, the loss of stability is associated with the condition Qij m̂i m̂j =

0. In the context of the heterogeneous composites, the loss of ellipticity 
analysis requires the determination of the effective tensor of elastic 
moduli, and, thus, identifies the onset of longwave or macroscopic 
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instabilities. To predict the instabilities developing at the length scales 
comparable with the composite microstructures, the Bloch-Floquet 
analysis of small amplitude deformations (superimposed on finite 
deformation) can be employed. While analytical solutions can be 
derived for some hyperelastic composites – such as periodic laminates – 
typically, the analysis is performed numerically with the help of the 
Finite Element (FE) method (Bertoldi et al., 2008). 

3. Bloch–Floquet microscopic instability analysis 

3.1. Numerical implementation of the Bloch-Floquet microscopic 
instability analysis 

Consider a composite with the 2D rectangular primitive unit cell as 
shown in Fig. 1. The rectangular unit cell is enclosed by four boundaries 
(AB, CD, AC, BD), defined by nodes A, B, C, D. The width and length of 
the primitive unit cell are denoted by a and b, respectively. The geom
etry can be parameterized through periodicity aspect ratio η = a/ b and 
inclusion spacing ratio ξ = d/b, where d is the diameter of the inclusion. 
The numerical analysis has been implemented in the finite element code 
in COMSOL 5.4a, as follows. 

First, the in-plane unidirectional compression is applied by imposing 
the periodic boundary conditions on boundary pairs AB and CD as 

uAB − uCD =(F − I)
(
X|AB − X|CD

)
=H

(
X|AB − X|CD

)
, (16)  

where uAB and uCD represents the displacement of an arbitrary pair of 
source and destination points periodically located on boundary pair AB 
and CD, respectively; F denotes the average deformation gradient, and 
H = F − I denotes the average displacement gradient. Thus, the applied 
uniaxial compression loading is defined as 

H =H11e1 ⊗ e1 +(λ − 1)e2 ⊗ e2, (17)  

where the loading level is prescribed via the average compressive strain 
ε = 1 − λ. Note that H11 is not prescribed and is determined by the 
traction-free boundary condition P11 = 0. 

Second, we employ the Bloch–Floquet analysis superimposed on the 
deformed state(Bertoldi et al., 2008). The Floquet periodic conditions 
relate the incremental displacement fields u via 

u(X + R) = u(X)eiK⋅R, (18)  

where K = K1e1 + K2e2 is the Bloch wave vector, and R = R1ae1+ R2be2 
is a vector that denotes the initial periodicity of the composite with 
arbitrary integers R1, R2. In FEA, the Bloch–Floquet analysis is per
formed by solving the eigenvalue problem with Floquet boundary con

ditions imposed on the boundary pairs of the primitive unit cell read as 
uAB = uCDe− iK⋅(RAB − RCD) and uBD = uACe− iK⋅(RBD − RAC). Here, the normalized 
components of the wavenumber are k1 = K1a/2π and k2 = K2b/2π in the 
undeformed configuration. Through the numerical analysis, we deter
mine the lowest critical loading level (critical strain εcr) for which a zero 
eigenvalue occurs at the corresponding critical wavenumber kcr (kcr

1 or 
kcr

2 ). We refer to the cases with kcr→0 as the longwave or macroscopic 
instability, and microscopic instabilities otherwise. We note that – 
throughout our calculations – the instabilities are found to develop only 
in the direction of compression (direction of e2) for all considered cases. 
Therefore, we report the corresponding critical wavenumber as kcr = kcr

2 . 
The behavior of the stiff inclusion and soft matrix materials is 

described by the nearly incompressible neo-Hookean strain energy 
density function, namely 

W(r) =
μ(r)

2
(I1 − 3) +

κ(r)

2
(J − 1)2

, (19)  

where μ(r) is the initial shear modulus, κ(r) is the bulk modulus, and I1 =

trC is the first invariant of the right Cauchy-Green tensor C = FTF. The 
superscript (r) indicates the properties of different material phases; for 
example, (r) = (m) denotes the stiff inclusion phases, and (r) = (i) de
notes the soft matrix phases. We introduce the ratio Λ = κ(r)/μ(r) repre
senting the material compressibility, and assign a high ratio, Λ = 103, to 
maintain a nearly incompressible behavior of the material. We select the 
inclusion-to-matrix ratio of shear moduli μ(i)/μ(m) = 103. Therefore, stiff 
inclusions almost do not deform, and the deformation is mostly 
accommodated by the soft matrix. 

3.2. Dependence of critical strains on geometric parameters 

We start by examining the influence of the instability characteristics 
such as critical strain and wavenumber on the initial geometrical pa
rameters of the periodic microstructure. Fig. 2 shows the dependence of 
the critical strain on the periodicity aspect ratio η for various fixed 
values of the inclusion spacing ratios ξ from 0.1 to 0.9. Note that, the 
admissible geometries are restricted by d < b and d < a, thus, limited the 
parameter space as η > ξ. Here and thereafter, the dotted and contin
uous curves correspond to longwave (or macroscopic) and microscopic 
instabilities, respectively. 

Fig. 1. Schematic composite microstructure with stiff circular inclusions peri
odically distributed in soft matrices. 

Fig. 2. The dependence of critical strain on periodicity aspect ratio with 
various spacing ratios. Dotted and continuous curves correspond to macro
scopic and microscopic instabilities, respectively. 
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We observe that the composites with higher spacing ratios experi
ence instabilities at lower compressive strains. In these composites, the 
inclusions are placed more closely in the compressive direction. Thus, 
the stiff inclusions are brought into their strong interactions at lower 
strain levels leading to earlier instability development. Interestingly, the 
dependence of the critical strain on the spacing periodicity ratio alters 
with a change in the inclusion spacing ratio. For composites with small 
spacing ratios, the critical strain εcr increases monotonically with an 
increase in η (see, for example, the black curve corresponding to ξ = 0.1 
in Fig. 2). This behavior, however, changes to a non-monotonic one in 
the composite with low-to-moderate spacing ratios. Their curves 
decrease initially; however, after reaching their local minima, the crit
ical strain increases with a further increase in the periodicity aspect ratio 
and finally converges to a plateau. For example, for the composite with 
ξ = 0.3 (the blue curve in Fig. 2), εcr decrease initially, after reaching its 
local minimum εcr = 0.426 at η = 0.45, the curve starts to increase and 
eventually converges to a plateau after η > 1.035. The asymptotic values 
of the plateaus correspond to those initial configurations with an iso
lated or single column of inclusions embedded in the soft matrix. 

This non-monotonic dependence is the manifestation of two different 
dominating buckling behaviors in the soft particulate systems. In 
particular, the composites with high periodicity aspect ratios exhibit the 
laminate-like behavior (with the stiffer layers reinforced by the stiff 
inclusions); in these composites, the critical strain decreases as the 
periodicity aspect ratio decreases (corresponding to an increase in the 
effective volume fraction of the analogous reinforced layer). However, 
as the periodicity aspect ratio is decreased further, the buckling behavior 
changes as the inclusions are introduced into additional horizontal in
teractions. The introduced horizontal frustration forces the soft partic
ulate system to seek a different buckling mechanism requiring higher 
strain levels. The transition in the buckling behavior can be illustrated 
by considering the soft composites with ξ = 0.6 (see the orange curve in 
Fig. 2). For the configurations with higher periodicity aspect ratios 
(η≿0.85), the composites exhibit the laminate-like buckling behavior, 
and the critical strain decreases with a decrease in the inclusions spacing 
ratio. The behavior starts changing in the configurations with η ≈ 0.85, 
and the critical strain increases with a decrease in η. For the composites 
with ξ = 0.6, the transition point corresponding to the local minimum of 
the curve is η ≈ 0.85. The composites with large inclusion spacing ratios 
(larger inclusions) are characterized by a more narrow range of the 
periodicity aspect ratios, where they exhibit the laminate-like buckling 
behavior (accompanied by a decrease in the critical strain with a 
decrease in the periodicity aspect ratio). This is due to the fact that the 
additional horizontal particle interactions are more likely to be intro
duced in the composites with larger stiff inclusions. Correspondingly, 
the transition point shifts towards the large periodicity aspect ratio 
values with an increase in ξ. For example, the composites with ξ = 0.3 
and 0.9 have their transition points at η ≈ 0.45 and η ≈ 1.5, respectively. 

We further illustrate the transition between these two different sys
tem behaviors in Fig. 3 for the soft composites with ξ = 0.6 and η = 0.62,

0.85,1.5, and 2. Fig. 3 shows the deformation field distribution with the 
vertical strain component ε22. When the compressive deformation is 
high enough, the inclusions are pushed close to each other in the 
compressive direction. The composite with higher periodicity aspect 
ratios (for example, the composite with η = 2 in Fig. 3) forms the col
umns of compactly lined up inclusions in the deformed configuration. 
The deformed system creates the analogous “effective stiffer layers” and 
“softer matrix layers” (see the deformed composite with η = 2 in Fig. 3). 
The particulate composite is observed to exhibit laminate-like buckling 
behavior. When the periodicity aspect ratio is decreased (compare the 
composite cells with η = 2 and 1.5 in Fig. 3), the effective stiffer layers 
are placed closer to each other, resulting in an increase in the analogous 
volume fraction of the effective stiffer phase. Similar to the laminate 
buckling behavior (Li, Slesarenko, et al., 2019c; Li et al., 2013), the 
composites are characterized by a decrease in the critical strain as the 
periodicity ratio is decreased. In particular, the critical strain decreases 
from εcr = 0.231 to εcr = 0.217 in the composites with η decreased from 
2 to 1.5.

As the periodicity aspect ratio further decreases, the composite 
configurations enter into the transition buckling behavior. Such 
configuration is illustrated in Fig. 3 for the composite with the period
icity aspect ratio η = 0.85. The columns of stiff inclusions are placed 
close to each other so that the inclusions are introduced into additional 
horizontal interactions. This is illustrated by the deformation distribu
tion field showing the strong interaction of the stiff inclusions in both 
vertical and horizontal directions. The proximity of the stiff inclusions 
columns hinders the buckling development and makes the structure 
more stable. This mechanism manifests in the increase of the critical 
strain when the periodicity aspect ratio is decreased further (beyond the 
transition minimum point). Thus, for example, the critical strain in
creases from 0.201 to 0.211 in the soft composites with η = 0.85 and η =

0.62 (shown in Fig. 2). 

3.3. Dependence of critical wavenumber on initial microstructure 
geometric parameters 

Finally, we recall the essential feature of the failure curves, namely, 
the existence of a transition from macroscopic (or longwave) to micro
scopic instability mode occurring at a critical threshold value ηth. For 
example, the composite with ξ = 0.6 transits from macroscopic to 
microscopic instability at the threshold value is ηth ≈ 1.975, and the 
threshold values gradually increase with an increase in the spacing ratio. 
This transition of instability modes is characterized by the correspond
ing change in the critical wavenumber. 

Fig. 4 shows the dependence of the critical wavenumber kcr on the 
periodicity aspect ratio η, for various fixed values of the inclusion 
spacing ratios ξ from 0.1 to 0.9. We observe in Fig. 4 that the curves are 
characterized by the existence of macroscopic or longwave instability 
(kcr→0) in the initial ranges of their periodicity aspect ratio lower than 
their threshold values ηth. The threshold value – after which a switch 

Fig. 3. Distribution of strain field, ε22, in the composite with ξ = 0.6 under the applied average compressive strain ε = 0.24 with various periodicity aspect ratios.  
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from macroscopic to microscopic buckling mode happens – is dictated 
by the initial spacing ratio value ξ. This transition from macro- to micro- 
instability modes happens rather rapidly in the composites with small 
initial spacing ratios. For example, in the composite with ξ = 0.2 (see the 
red curve in Fig. 4), the wavenumber suddenly switches from kcr = 0 to 
0.5 at the threshold value ηth ≈ 0.8. In the composites with higher 
periodicity aspect ratios, however, gradual transitions are observed; the 
corresponding critical wavenumbers continuously increase from zero 
until reaching the plateau value at the corresponding threshold value. 
For instance, in the composites with ξ = 0.45 (see the violet curve in 
Fig. 4), the wave number kcr increases after the threshold value ηth =

1.45, and it reaches the maximum bound level of 0.5 at η = 2.18. After 
reaching the threshold value, the critical wavenumber does not change 
with a further increase in the periodicity aspect ratio η. For the com
posites with even higher spacing ratios, the critical wavenumber kcr does 
not reach the upper bound value of 0.5; instead, the wavenumber ap
proaches a lower-level plateau for a high enough η. For example, in the 
composites with ξ = 0.6, the critical wavenumber increases after the 
threshold value ηth = 1.975, followed by the curve flattening and 
asymptotically reaching the plateau value with kcr→0.31. 

We schematically illustrate the corresponding instability patterns in 
Fig. 5. Prior to the onset of instabilities, the composite’s periodicity is 
defined by the initial primitive cell (shown in the left part in Fig. 5) with 
the initial periodicity l01 = a and l02 = b. Once the bifurcation occurs, the 
initial periodicity may break, and the composite attains a new period
icity with an enlarged primitive cell characterized by critical wavelength 

lcr1 and lcr2 (defined in the undeformed configuration). Recall that our 
calculations indicate that the onset of instabilities develops along the 
compressive direction, and the horizontal periodicity does not change 
upon buckling, namely, lcr1 ≡ l01; the vertical periodicity, however, does 
change with the onset of instability; therefore, here and thereafter, we 
only consider lcr2 component of the critical wavelength and report lcr2 as lcr 

and l02 as l0 for simplification. For instability patterns, the following cases 
can occur. First, the enlarged primitive cell consists of an integer number 
of initial primitive cells. In this case, the critical wavelength is lcr = pl0 

where p is an integer defining the number of initial primitive cells 
included in the enlarged primitive cell; the unit cell number can be 
obtained as p = 1/kcr. For example, for the composite with ξ = 0.45 and 
η = 1.6, kcr = 0.25, so that the enlarged primitive cell consists of p = 4 
with an expected wavy pattern, including four inclusions in the period 
(see the right part in Fig. 5). A similar case with kcr = 0.5 (for example, 
the cases with ξ = 0.45 and η > 2.18) is also illustrated in Fig. 5. In this 
case, a wavy pattern with two inclusions in the period is expected to 
develop upon the onset of instability. Similar to the above examples, the 
composites with their critical wavenumbers corresponding to p = N(

where N = 1,2, 3 ...) may develop a wavy pattern with critical wave
length lcr = pl0, including N incisions in its period. We note, however, 
that the critical wavenumbers can be continuous functions of η (see, for 
example, the curves for the composites with ξ = 0.45 in Fig. 4). There
fore, an infinite number of instability configurations with non-integer 
values of 1/kcr are admissible through tuning the initial periodicity 
parameters. Fig. 5 schematically illustrates such a case of the composite 
with ξ = 0.4, η = 1.546, the corresponding critical wavenumber is 
kcr ≈ 0.49. However, 1/kcr ≈ 2.04 is indeed not an integer number, 
which we denote as p′

= 1/kcr (to distinguish it from the cases with an 
integer number of unit cells). The corresponding enlarged primitive cell 
(consisting of an integer number of initial primitive cells) may be con
structed, if there exist a large enough integer number n such that p = np′

is an integer. We note, however, that consideration may be sensitive to 
the accuracy of the results of the Bloch-Floquet analysis, namely, the 
accuracy of the critical wavenumber kcr (and, hence, of p′ ). Thus, the 
composites (that are characterized by their critical wavenumber in the 
range 0 < kcr < 0.5) exhibit seemingly non-periodic instability patterns. 

Next, we examine the seemingly non-periodic instability patterns via 
corresponding eigenmodes of the composites at the critical strains. Fig. 6 
shows the eigenmodes of the composites at the critical strains with fixed 
spacing ratio ξ = 0.4 and various periodicity aspect ratios η = 1.546, 
1.544, 1.54, 1.5, 1.4, and 1.325 corresponding to eigenmodes (1)–(6). 
For each eigenmode, the colored map shows the relative lateral 
displacement (u1) distribution. Note that, while the numerical analysis is 
performed on the single unit cell, the eigenmodes are reconstructed via 
the corresponding Floquet conditions to include a large number of unit 
cells in each domain (in particular, 50 unit cells are used). 

For the composites characterized by smaller critical wavenumbers 
(see, for example, case (6) with kcr ≈ 0.134 corresponding to p′

≈ 7.463 
in Fig. 6), the eigenmodes exhibit wavy shapes with seemingly constant 
wavelengths. However, the wavelength of the overall wavy mode does 
not match the periodicity of the inclusion distribution. This mismatch – 

Fig. 4. The dependence of critical wavenumber on the periodicity aspect ratio 
with various spacing ratios. Dotted and continuous curves correspond to 
macroscopic and microscopic instabilities, respectively. 

Fig. 5. Schematics of instability patterns based on initial primitive cells and enlarged primitive cells.  
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stemming from the fact that the smallest repeating unit must contain an 
integer number of inclusions – is illustrated in the schematics for case (6) 
in the right part of Fig. 6. The wavelength in case (6) is 7.463l0; thus, the 
seemingly full period does not contain an integer number of inclusions; 
therefore, the actual wavelength may be significantly higher, and its 
estimate depends on the accuracy of the critical wavenumber deter
mined from the Bloch-Floquet analysis. 

Consider the composites developing instabilities with the critical 
wavenumbers kcr close to 0.5, such as, for example, cases (1)–(3) in 
Fig. 6. Their eigenmodes exhibit a beat-like phenomenon (Ferrari and 
Gatti, 1999). For example, case (1), characterized by kcr ≈ 0.491 (p ≈

2.04) in Fig. 6, shows a wave packet with variable magnitudes; the 
wavelength of the envelope is approximated as 50l0. This eigenmode 
shows the features characterized by a superposition of two wavelets 
with very close wavelengths: 2.04l0 (defined by the critical wavenumber 
kcr) and 2l0 (dictated by the closest integer number of inclusions within 
the updated primitive cells). This situation is reminiscent of the beat 
phenomenon with the superposition of two waves with slightly different 
wavenumbers, resulting in a wavy pattern with variable magnitudes 
(Ferrari and Gatti, 1999). The envelope of the maxima and minima in 
the superposed wave can be characterized by the estimated wave
number kenv ≈ 0.5 − kcr. However, we observe that the composite 
included in one period of the envelope is still not a smallest repeating 
unit (see, for example, case (2), characterized by kcr ≈ 0.479 in Fig. 6, 
the distribution of the inclusions in one period of envelope curve does 
not exactly match that in the neighboring periods), and the strict 
smallest repeating unit should be constructed in a much higher scale. 

3.4. Instability mode transitions via initial microstructure geometric 
parameters 

Next, we summarize the results of critical wavenumbers as a surface 
in the geometrical parameter space of η and ξ in Fig. 7. 

In particular, the surface is divided into three sub-domains: (i) the 
pure red surface on the bottom – labeled as the “longwave” – denotes the 
geometries for which longwave instabilities develop (with kcr→ 0); (ii) 
the pure blue surface – labeled as the “periodicity doubling” – on the top 
denotes the microscopic instabilities with constant critical wavenumber 
kcr = 0.5 corresponding to the cases with the initial periodicity being 
(exactly) doubled upon bifurcation; (iii) the gradient surface – labeled 
with “transition” – in-between denotes the microscopic instabilities with 
various kcr from 0 to 0.5, governed by the initial geometric parameters. 

Moreover, in the transition surface, we can further identify three 
different transition modes dictated by the initial spacing ratio ξ. First, for 
the composites with ξ≾0.3, only binary values of the critical wave
number are possible, namely, either kcr→0 or kcr = 0.5, without any 
intermediate wavenumber (see, for example, the blue curve corre
sponding to ξ = 0.2 in Fig. 7; the wavenumber jumps from 0 to 0.5 at 
threshold value ηth = 0.85). Thus, we refer to this transition as the jump- 
transition mode. Second, for the composites with 0.3≾ξ≾0.464, the 
transition develops gradually, with the wavenumbers changing from 0 
to 0.5. This transition case is illustrated by the yellow curve corre
sponding to ξ = 0.4 in Fig. 7; the critical wavenumber increases 
continuously after the threshold value ηth = 1.325 and reaches the 
maximum level of 0.5 at η = 1.548. We denote this transition as the full- 
transition mode. Third, in the composites with 0.464≾ξ≾1, the 

Fig. 6. Eigenmodes of the composites at the critical strains with spacing ratio ξ = 0.4 and various periodicity aspect ratios from 1.546 to 1.325.  

Fig. 7. Surface of critical wavenumber in the space of periodicity aspect and 
spacing ratio. The red, yellow, and blue curves correspond to the dependence of 
critical wavenumber on the periodicity aspect ratio with fixed spacing ratios 
ξ = 0.7, ξ = 0.4 and ξ = 0.2, respectively. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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transition is somewhat similar to the previous case. The important dif
ference, however, is that those composites are limited by their corre
sponding values of critical wavenumbers and do not attain kcr = 0.5. 
For example, see the red curve corresponding to ξ = 0.7 in Fig. 7; here, 
the curve flattens (after the gradual increase range) and eventually 
reaches the plateau with kcr→0.248. We refer to this transition as the 
limited-transition mode. As discussed above, the beat-like eigenmodes 
are observed for the composites developing instabilities with kcr close 
but not equal to 0.5. Since in jump-transition mode we can only find 
kcr = 0 or kcr = 0.5, the beat-like eigenmodes are only expected to be 
found in full-transition and limited-transmission mode, such like kcr ≈

0.491 corresponding to ξ = 0.4 and η = 1.546 in the full-transition mode 
and kcr ≈ 0.454 corresponding to ξ = 0.47 and η = 3 in the limited- 
transmission mode. 

4. Instability analysis via energy landscapes 

Next, we illustrate the so-called energy landscapes of the finitely 
deformed particulate composite. In the analysis, we calculate the 
macroscopic response of a single unit cell deformed beyond the possible 
instability point (similar to the standard post-buckling regime simula
tions (Li et al., 2019b; Bertoldi et al., 2008)). Then, the 
quasi-convexification of the calculated elastic strain energy function 
W(F) in the applied deformation gradient F is examined. 

A strain energy function W(F) is said to be quasi-convex (Morrey, 
1952) if 

W(F) ≤
1
|D|

∫

D

W(F+Grad u (X))dX (20)  

for every bounded region D and for every smooth function with compact 
support u (X). Note that the quasi-convexification of the energy with the 
volumetric constraints (such as incompressibility constraint) is rank-one 
convexification (Conti, 2008). In the following study, we identify the 
critical conditions for the loss of quasi-convexity or ‘relaxation’ in the 
strain energy function. 

We consider the composites subjected to simultaneously applied 
compressive strain and pure shear deformations, the corresponding 
macroscopic deformation gradient F is 

F=H11e1 ⊗ e1 + εe2 ⊗ e2 ± γe1 ⊗ e2 + I, (21)  

where ε and γ are the compressive strain measure and amount of shear, 
respectively. Note that H11 is determined by the corresponding traction- 

free boundary condition. The effective (or homogenized) strain energy 
W stored in the unit cell under prescribed deformations is computed and 
normalized via 

W̃(F)=
1

μ(m)

1
Ω0

∫

Ω0

W(X,F)dVX (22) 

Next, we compute the energy landscape of the composite cell based 
on W̃(ε, γ) as a function of the compressive strain ε and amount of shear 
γ. According to the condition of quasi-convexity in Eq. (22), the ‘relax
ation’ or loss of quasi-convexity of the effective energy function is 
associated with the condition 

W̃(ε, γ)= W̃(ε, γ = 0) (23)  

for any non-zero amount of shear γ. Finally, the lowest compressive 
strain ε, corresponding to the ‘relaxation’ of the effective energy func
tion W̃, is identified as the critical strain level. 

Fig. 8 shows an example of the energy landscape in the soft com
posite with geometrical parameters ξ = 0.7 and η = 1. The effective 
energy W̃ is plotted as a surface function of γ and ε in Fig. 8a. Fig. 8b 
shows the corresponding functions of W̃(γ) at fixed vales ε (see, for 
example, the curve corresponding to ε = 0.18 in Fig. 8b and 
W̃(ε= 0.18, γ) in Fig. 8a). We observe that, for curves corresponding to a 
relatively small strain levels (see, for example, the curve corresponding 
to ε = 0.05 in Fig. 8b), the effective energy increases with an increase in 
γ. This indicates that the development of the shearing mode will require 
additional energy under this level of compression. For curves corre
sponding to a large enough level of compression (for example, the curve 
corresponding to ε = 0.19 in Fig. 8b), the energy function decreases with 
an increase in γ. This indicates that the system can develop the shearing 
mode without requiring additional energy so that the composite be
comes unstable. The onset of instability is identified at the critical strain 
level εcr, at which the composite transits from a stable state to an un
stable state (see, for example, in Fig. 8b, the critical strain is identified as 
εcr = 0.141). 

Fig. 9a shows a comparison of the critical strains identified from the 
energy landscapes (black curves) and that from the Bloch-Floquet 
analysis (colored curves), where the dependence of the critical strain 
on the periodicity aspect ratio η is plotted for composites with various 
fixed values of the spacing ratios ξ = 0.3, ξ = 0.5 and ξ = 0.7. We 
observe that, the onset of the longwave instability identified by the 
energy landscape analysis coincides with the one predicted by the Bloch- 
Floquet analysis (see, for example, the overlapped continuous and 

Fig. 8. (a) Landscape of the normalized stored-energy W̃ as a function of the compressive strain ε and amount of shear γ (corresponding to ξ = 0.7 and η = 1). (b) 
The curves of normalized stored energy with various γ and fixed ε. 
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dotted curves in Fig. 9a corresponding to ξ = 0.5 within 0.5 < η < 1.65). 
The predictions, however, diverge from each other at the region where 
microscopic instability occurs first. The threshold values ηth corresponds 
to the transition from longwave to microscopic instability. 

Fig. 9b illustrates the transition of the energy landscapes corre
sponding to the composite configurations (1)–(6) in Fig. 9a. The illus
trated energy landscapes (1), (4), and (7) correspond to the lowest 
values of η, in particular, η = 0.32, η = 0.55 and η = 0.75, respectively; 
the energy landscapes (2), (5) and (8) correspond to η = 0.4, η = 0.65 
and η = 1.0, respectively, at which the curves have their local minima. 
The energy landscapes (3), (6), and (9) illustrate the composite behavior 
in the region of increasing εcr; in particular, η = 1, η = 1.5 and η = 1.5, 
respectively. In the unstable region, the energy function becomes non
convex, exhibiting a negative energy change rate (with a change in γ), ∂ 
W̃/∂γ < 0. We note that the composites with a higher rate of energy 
decrease (at the same level of deformation) are characterized by lower 
critical strains. This is illustrated in Fig. 9b by the comparison of the 

composite configurations (4), (5), and (6) having the same spacing ratio 
ξ = 0.5 with all configurations subjected to the same compressive strain 
level, ε = 0.4. We note that the magnitude of the global energy decrease 
may also serve as an indicator of the composite stability similar to the 
local rate of energy change. For example, let us define the global 
decrease in energy as [W̃(γ = 0) − W̃(γ = 0.3)]/W̃(γ= 0) at the 
compressive strain level ε = 0.4. For all considered cases, a higher rate 
of energy decrease corresponds to a higher ratio of global decrease of 
energy under a small enough increase in γ. In composite configuration 
(5), we find a 0.135 decrease of energy with γ increased from 0 to 0.3, 
while those identified from configurations (4) and (6) are 0.108 and 
0.0915, respectively. Composite configuration (5) exhibits the highest 
rate of energy decrease in the non-convex part of the energy landscape. 
At the same time, composite configuration (5) has the critical strain εcr =

0.265, which is in the vicinity of the local minimum of the curve cor
responding to ξ = 0.5 in Fig. 9a. The critical strains of the composite 
configuration (4) and (6) are εcr = 0.272 and εcr = 0.296, respectively. 

Fig. 9. (a) Comparison of critical strains derived from quasi-convexification and Bloch-Floquet analyses for the composites with ξ = 0.3, ξ = 0.5, ξ = 0.7 and ξ < η ≤

5; (b) The energy landscapes of the composites with different geometric parameters (ξ = 0.3 with ξ = 0.32, ξ = 0.4, ξ = 1; ξ = 0.5 with ξ = 0.55, ξ = 0.65, ξ = 1.5; 
ξ = 0.7 with ξ = 0.75, ξ = 1, ξ = 1.5). 
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Similarly, we also compare other composite configurations with the 
same spacing ratio in Fig. 9b. For example, for the considered configu
rations (1), (2), (3) (having the same spacing ratio ξ = 0.3) the highest 
global decrease of energy is found for configuration (2), which is char
acterized by η = 0.4. The corresponding periodicity ratio of configura
tion (2) is found to be in the vicinity of the local minimum (at η ≈ 0.4) of 
the critical strain curve (see the curve for ξ = 0.3 in Fig. 9a). Moreover, if 
we recall the two particulate system behaviors discussed in Sec. 3.2, 
configurations (3), (6), (9) also correspond to the soft particulate sys
tems with laminate-like behaviors, configurations (1), (4), (7) corre
spond to the soft particulate system with additional horizontal 
interactions, and configurations (2), (5), (7) correspond to the vicinity of 
the transition point between these two particulate system behaviors. 

5. Post buckling analysis 

In this part, we perform the numerical post-buckling analysis to 
examine the pattern transformation in soft particulate composites after 
the instability occurs. In the simulations, we consider a representative 
volume element (RVE) (Bertoldi et al., 2008) with a large number (N ≥

80) of unit cells. The RVE is enclosed by four boundaries (AB, CD, AC,
and BD), defined by nodes A, B, C, and D. We apply the in-plane uni
directional compression to the RVE by imposing the periodic boundary 
conditions on the two boundary pairs AB − CD and AC− BD via the same 
definitions in the first step of our Bloch-Floquet analysis (see Eq. (16) 
Sec. 3.1). As a perturbation to trigger instabilities, a geometrical 
imperfection is introduced in terms of the slight alternation of the stiff 
inclusion shape. Specifically, the inclusions are modeled as nearly cir
cular ellipses, where geometrical differences are introduced indepen
dently on the major and minor diameter and the position of the center of 
each inclusion. The geometric deviation is set within 10− 5b. 

In Fig. 10a, we show a typical post-buckling configuration of the 
composite. The example is given for the composite with spacing ratio 
ξ = 0.45 and periodicity aspect ratio η = 1.5. The composite maintains a 
straight column of inclusions up to ε = 0.338, after which the inclusion 
column collapses suddenly; the strain level agrees with the Bloch- 
Floquet analysis prediction of εcr = 0.338. Fig. 10a shows the RVE at 
a higher compressive strain ε = 0.348. We observe that, after the 
buckling occurs, the initial column of inclusions transforms into a wavy 
chain of inclusions. This observation agrees with the experiments (Li 
et al., 2019a) and with the predictions of the Bloch-Floquet analysis. 
Fig. 10b shows the position of the centers of inclusions in the deformed 
RVE to illustrate the post-buckling pattern. We observe that the center of 
inclusions seems to evenly distribute on a harmonic wave with a 
wavelength equal to the critical wavelength lcr ≈ 6.88 (see, for example, 
in Fig. 10b, the inclusions distributed on one period of the wave are 
marked in a block, where block (1)–(3) correspond to three different 
periods). However, the number of inclusions in one block is not an 
integer (see, for example, block (1) in Fig. 10b, there are 6 integral in
clusions and a seemingly “0.8 inclusion”). Moreover, the distribution of 
the inclusions in each block is slightly shifted in comparison to other 
blocks (see, for example, in Fig. 10b, the first inclusion (from the top) in 
block (1) seems in tangency with the top boundary; however, the first 
inclusion in block (2) shifts slightly downward and has a certain distance 
to the top boundary; moreover, the first inclusion in the block (3) shifts 
further downward). For comparison, we also plot the eigenmode from 
the Bloch-Floquet analysis in Fig. 10c. We observe that the actual 
post-buckling pattern (Fig. 10b) and Bloch-Floquet modes (Fig. 10c) 
share some similarities in the inclusion distribution, and we both 
observe a “seemingly non-periodic” post-buckling pattern. This obser
vation is in line with the previous discussion (see Sec. 3.3), relating the 
mismatch to the critical wavelength corresponding to a non-integer 
number of inclusions. 

Next, we examine the post-buckling development of the transition 
instability modes predicted by the Bloch-Floquet analysis. In Fig. 11, the 

upper part shows the dependence of the critical wavenumber on the 
periodicity aspect ratio with a fixed spacing ratio, ξ = 0.45, while the 
lower part shows the corresponding post-buckling patterns at higher 
strain levels (after the onset of instability). 

We observe an overall transition of the post-buckling patterns from a 
“zigzag chain” (Fig. 11a) to a “periodicity-doubling pattern” (Fig. 11i); 
this corresponds to the evolution of the critical wavenumber from the 
longwave (kcr →0) to the periodicity-doubling mode (kcr = 0.5). First, 
for the longwave instability mode (see, for example, the pattern in 
Fig. 11a corresponding to η = 1.4), we observe a single period of the 
“zigzag chain” in the deformed RVE. This stems from the fact that the 
buckling wavelength is much larger than the characteristic size of the 
microstructure. Therefore, in a finite-sized RVE, we will only observe a 
single period with a critical wavelength identical to the height of the 
RVE. Second, when the critical wavenumber starts increasing, the 

Fig. 10. (a) The deformed RVE under compressive strain ε = 0.348 with initial 
geometric parameter ξ = 0.45 and η = 1.5; (b) The inclusion center position in 
the deformed RVE; (c) The corresponding eigenmode (from Bloch-Floquet 
analysis) of the composite at the critical strain εcr = 0.338. 

D. Chen et al.                                                                                                                                                                                                                                    



Mechanics of Materials 175 (2022) 104482

10

corresponding critical wavelength becomes lower than the height of 
RVE, and the “wavy chain” emerges in the post-buckling regime (see, for 
example, the patterns corresponding to η = 1.5 (b), and η = 1.6 (c) in 
Fig. 11). While seemingly agreeing with eigenmode predictions from 
Bloch-Floquet analysis, these patterns, however, have a slight mismatch 
of inclusions between wave periods (so that their strict periodicity is 
pushed towards much large wavelength; this is in line with the discus
sion in Sec. 3.3). As the critical wavenumber increases beyond kcr ≈

0.25, we observe a significant change in the post-buckling shapes (see 
the shapes corresponding to η = 1.7 (d) and η = 1.8 (e) in Fig. 11). These 
patterns exhibit a superposition of two modes in different wavelengths. 

Recall that, in the Bloch-Floquet analysis, for certain wavenumbers 
larger than 0.25 (see Fig. 6 (1)–(3)), we observed the so-called “beat- 
like” patterns, reminiscent of a superposition of two modes. However, 
the difference is that the post-buckling “superposed pattern” has an 
overall symmetric distribution of inclusions, while the “beat-like” 
pattern from the Bloch-Floquet analysis has an overall antisymmetric 
distribution. The reason is that Bloch-Floquet analysis only considers 
small incremental deformations. Therefore, the large and nonlinear 
deformations in post-buckling analysis finally lead to a different devel
opment of pattern that diverges from the Bloch-Floquet prediction. A 
further increase in the critical wavenumber (see the pattern corre
sponding to η = 1.9 (f) in Fig. 11) leads to the formation of “seemingly 
chaotic” (much less ordered and lacking periodicity) microstructures in 
the post-buckling regime. This is due to the fact that the critical wave
length (lcr ≈ 2.91) corresponds to a very limited number of inclusions 
(between 2 and 3) that can be accommodated in an enlarged primitive 
cell. The frustrated composite cannot transform into a periodic structure 
within the instability-dictated length scale, and hence, it is forced to 
conform with a combination of inclusion sets in different length scales. 
The behavior becomes more regulated as the critical wavenumber 

approach 0.5 (see the pattern corresponding to η = 2.0 (g) and η = 2.1 
(h) in Fig. 11). These composites take the “periodicity-doubling” post- 
buckling structure even though their critical wavenumber is not 
exactly 0.5. Interestingly, as the composite develops the “periodicity- 
doubling,” a localized defect appears (see Fig. 11 corresponding η = 2.0 
(g)). The defects, however, disappear as the critical wavenumber is 
further increased, and the composite with η = 2.1 (corresponding to 
kcr = 0.455 in the Bloch-Floquet analysis) exhibits a perfect periodicity 
doubling without developing the defects in the post-buckling regime 
(see Fig. 11h). The transition of post-buckling patterns from η = 1.9 to 
η = 2.1 indicates that the composite seeks to develop a periodic struc
ture at a lower length scale, and the periodicity-doubling mode gradu
ally dominates this region. Finally, after the critical wavenumber 
reaches 0.5, the post-buckling pattern does not change with a further 
increase in the periodicity aspect ratio η, and the composite develops the 
periodicity-doubling in the post-buckling regime. 

In summary, the post-buckling patterns demonstrate a good agree
ment with the Bloch-Floquet predictions with a small critical wave
number (typically, kcr ≤ 0.25), but the difference appears when critical 
wavenumber increases beyond kcr = 0.25 but not yet reached 0.5. We 
found, however, at those large wavenumbers, when the composite 
cannot transform into a periodic structure dedicated by the critical 
instability wavelength, the pattern is forced to adapt to (i) an inclusion 
set in the nearby length scale, (ii) a combination of inclusion sets in 
different length scales, or exhibit (iii) a seemingly chaotic pattern if 
failing to find an adapt periodic structure. Those adapted patterns, 
however, were not predicted in Bloch-Floquet analysis since they are 
completed in a finite deformation after buckling occurs, which is beyond 
Bloch-Floquet analysis that only predicts small incremental de
formations. 

6. Conclusion 

We have studied the elastic instabilities in soft particulate compos
ites under finite strains. First, we have examined the dependence of the 
critical strain on geometrical parameters via both the Bloch-Floquet 
analysis and the quasi-convexification analysis. We find that the com
posites with higher spacing ratios experience instabilities at lower 
compressive strains. However, the dependence of the critical strain on 
the periodicity aspect ratio alters with a change in the spacing ratio. For 
composites with small spacing ratios, the critical strain εcr increases 
monotonically with an increase in η. This behavior, however, changes to 
a non-monotonic one in the composite with low-to-moderate spacing 
ratios. The critical strain decreases initially; however, after reaching 
their local minima, the critical strain increases with a further increase in 
the periodicity aspect ratio. This non-monotonic dependence indicates 
two different buckling behaviors in the soft particulate systems. In 
particular, the composites with large periodicity aspect ratios exhibit the 
laminate-like buckling behavior; the composites with small enough 
periodicity aspect ratios experience strong horizontal interactions of 
neighboring inclusions resulting in the stabilized effect. The transition 
between these two different soft particulate systems is also illustrated 
via the corresponding transition of energy landscapes. The predicted 
critical strain values are in agreement with the Bloch-Floquet analysis in 
the regime of macroscopic instabilities. 

Second, we analyzed the buckling-induced microstructure trans
formation characterized by the corresponding critical wavenumbers. In 
particular, the microstructures transform into (i) strictly doubled peri
odicity, (ii) seemingly non-periodic state, or (iii) longwave pattern. The 
seemingly non-periodic state occurs with a finite critical wavenumber 
lower than 0.5 indicating a non-integer number of periods. We note that 
when the critical wavenumber corresponds to an integer number of 
periods, the transformed structure achieves a strict periodicity with an 
integer number of initial primitive unit cells within the updated or 
enlarged unit cell. However, in the composites with a critical wave
number corresponding to a non-integer number of periods, the 

Fig. 11. The transition of post-buckling patterns corresponding to the transi
tion of critical wavenumbers from Bloch-Floquet analysis in the composite with 
ξ = 0.45. 
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transformation does not attain a strict periodicity. Instead, it develops in 
an instability mode at a larger length scale. We illustrated these larger 
length-scale patterns via the corresponding buckling eigenmodes. 
Remarkably, some composite morphologies exhibit a beat-like phe
nomenon – a manifestation of the superposition of the long length-scale 
instability mode and short wavelets. 

Third, we examined the transition of instability modes with geo
metric parameters. With an increase in the periodicity aspect ratio, the 
instability mode is found to transit from the longwave mode to the 
periodicity doubling mode. In particular, (i) for small enough spacing 
ratios, we found a jump-transition from longwave to periodicity 
doubling mode with no intermediate instability mode; thus, with no 
larger scale non-periodic patterns (ii) for moderate spacing ratios, we 
found a full-transition from longwave to periodicity doubling mode 
passing through all intermediate instability modes (iii) for large enough 
spacing ratios, we found a limited-transition from longwave to an in
termediate instability mode, but it never reaches the periodicity 
doubling mode. The reported results may help further develop recon
figurable soft microstructured materials leveraging instability-induced 
pattern transformations. These material functions include controlling 
the effective dielectric (Goshkoderia et al., 2020b; O’Neill et al., 2022) 
or magnetic properties (Pathak et al., 2022) and elastic wave propaga
tion (Arora et al., 2021, 2022) by deformation. 

Fourth, we examined the actual post-buckling patterns in soft par
ticulate composites after the instability occurs. The post-buckling pat
terns seemingly agree with eigenmode predictions from Bloch-Floquet 
analysis with a critical wavenumber smaller than 0.25, where we 
observe wavy chain patterns of inclusions. However, for the composites 
with a critical wavenumber large than 0.25 (but lower than 0.5), the 
situation changes. At this range of wavenumbers, the composite cannot 
transform into a periodic structure dictated by the critical wavelength, 
and the pattern is then forced to adapt to (i) a set with an integer number 
of inclusions in the nearby length scale, (ii) a combination of inclusion 
sets of different wavelengths, or exhibit (iii) a seemingly unregulated 
(chaotic) pattern. 

We note that the results are calculated for an idealized composite 
system and may not account for imperfections stemming from material 
(Hauseux et al., 2017, 2018; Rappel et al., 2019; Zeraatpisheh et al., 
2021) or geometrical (Chen et al., 2019; Ding et al., 2019; Yu et al., 
2022) uncertainties. These uncertainties may affect the prediction of the 
composite buckling behavior. Moreover, interphase between the com
posite constituents (introduced, for example, in the material 
manufacturing processes) may influence the instability characteristics 
(Arora et al., 2019). The influence of such uncertainties can be quanti
fied through multi-field coupled stochastic analyses (Elouneg et al., 
2021; Mazier et al., 2022). 
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