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A B S T R A C T   

We study the magneto-mechanical behavior of periodic laminates made of hard-magnetic active elastomers 
(HMAEs). We formulate the amended free-energy function for HMAEs, and derive an explicit expression for the 
induced deformation of the HMAE laminate as a function of the applied magnetic field. Next, we employ the 
“small-on-large” framework and examine the small-amplitude shear waves propagating in the finitely deformed 
HMAE laminate in a magnetic field. 

We find that the remanent magnetization of HMAE phases can result in compressive deformations (in the 
direction of the applied magnetic field), as opposed to the induced tensile deformation in previously considered 
soft-magnetic active laminates. Further, we derive the dispersion relations for the transverse elastic waves 
propagating in the direction perpendicular to the layers. We use the analytical results to illustrate the tunability 
of the shear wave band gaps with varying remanent magnetizations of the phases; moreover, the shear wave 
band gaps can be actively controlled by a remotely applied magnetic field.   

1. Introduction 

Magnetoactive elastomers (MAEs) are composite materials consist
ing of magnetizable particles embedded in a soft matrix. Under an 
externally applied magnetic field, the magnetized particles interact, 
resulting in modification of the mechanical properties and leading to 
deformation occurring mostly in the matrix. The remote and reversible 
principle of actuation and property tunability makes the materials 
attractive for the development of variable-stiffness devices (Erb et al., 
2012; Ginder et al., 2002), vibration absorbers (Ginder et al., 2001; Li 
et al., 2014) and isolators (Opie and Yim, 2011), actuators (Kashima 
et al., 2012; Tang et al., 2018), and sensors (Tian et al., 2011), and 
biomedical devices (Makarova et al., 2016) among others. Typically, a 
polymeric matrix material (e.g., silicone rubber) in its liquid state before 
polymerization, is mixed with magnetizable particles of micro or even 
nano size. Curing in the presence of magnetic field results in the for
mation of chainlike structures aligned along the direction of the mag
netic field. Through this microstructure modification, different 
interactions between magnetizable particles are induced, thus, enabling 
tunability of the overall magneto-mechanical behavior of MAEs. 

The foundation of magneto-elasticity (and mathematically 

analogous electro-elasticity) was developed by Truesdell and Toupin 
(1960). Since then, the magneto-elastic theory has been further devel
oped by Dorfmann and Ogden (2003, 2004), Bustamante et al. (2006), 
Vu and Steinmann (2007), and Destrade and Ogden (2011). In parallel, 
significant efforts have been made towards the development and 
implementation of nonlinear magneto-elasticity into numerical schemes 
(Haldar et al., 2016; Labusch et al., 2014; Metsch et al., 2016). An 
analytical approach for estimating the response and effective properties 
of MAEs with the random distribution of magnetoactive particles has 
been developed by Ponte Castañeda and Galipeau (2011). Galipeau et al. 
(2014) showed that MAEs with seemingly similar microstructures might 
exhibit significantly different magneto-mechanical properties. Rudykh 
and Bertoldi (2013) employed a micromechanics approach to analyze 
the macroscopic stability in anisotropic MAEs. Goshkoderia and Rudykh 
(2017) have investigated the long-wave instability in particulate MAE 
composites via a numerical homogenization. Goshkoderia et al. (2020) 
have reported the experimental observations of the instability-induced 
patterns in soft magneto-sensitive periodic systems. More recently, 
Pathak et al. (2022) studied the onset of microscopic instabilities in 
MAEs with bi-phasic layered microstructure exhibiting ferromagnetic 
behavior. 

* Corresponding author. School of Mathematical and Statistical Sciences, National University of Ireland Galway, University Road, Galway, Ireland. 
E-mail address: rudykh@wisc.edu (S. Rudykh).  

Contents lists available at ScienceDirect 

Mechanics of Materials 

journal homepage: www.elsevier.com/locate/mechmat 

https://doi.org/10.1016/j.mechmat.2022.104325 
Received 16 March 2022; Accepted 11 April 2022   

mailto:rudykh@wisc.edu
www.sciencedirect.com/science/journal/01676636
https://www.elsevier.com/locate/mechmat
https://doi.org/10.1016/j.mechmat.2022.104325
https://doi.org/10.1016/j.mechmat.2022.104325
https://doi.org/10.1016/j.mechmat.2022.104325
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2022.104325&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Mechanics of Materials 169 (2022) 104325

2

The aforementioned MAEs belong to so-called soft-magnetic active 
elastomers, typically based on embedding particles such as iron, soft 
ferrite, iron-silicon alloys, iron-nickel alloys (Jolly et al., 1996). These 
soft-magnetic materials have low coercivity and do not retain remanent 
magnetization once the external magnetic field has been removed 
(Bertotti, 1998). Recently, particles of high-coercivity ferromagnetic 
materials or hard-magnetic materials (such as NdFeB, hard ferrite, 
alnico alloys, samarium-cobalt) have been used to fabricate hard-mag
netic active elastomers (HMAEs). These new magnetoactive composites 
showed programmable and complex shape transformations at low 
magnetic fields (Kim et al., 2018; Lum et al., 2016; Montgomery et al., 
2020; Yan et al., 2021b). Once exposed to a large magnetic field, 
hard-magnetic materials retain their magnetization even after removing 
the external field. The high coercivity allows the hard-magnetic mate
rials to sustain their remanent magnetization over a wide range of 
applied magnetic fields (that are below the coercive field strength). 
When the applied magnetic field is not aligned with the magnetization 
direction of the hard-magnetic particles, the induced magnetic torque 
acts to align the particle’s magnetization direction with the applied 
field, leading to deformation of the HMAE composite. The remote and 
reversible shape-transformative behavior of HMAEs has enabled func
tionalities in areas such as soft robotics (Cui et al., 2019; Hu et al., 2018), 
biomedicine (Wang et al., 2021), mechanical metamaterials (Chen et al., 
2021), self-assembly and self-organization (Piranda et al., 2021), and 
actuation (Bowen et al., 2015; Crivaro et al., 2016). To describe the 
behavior of the materials, Zhao et al. (2019) proposed a phenomeno
logical model for ideal HMAEs. In the model, the magnetic flux density 
in the material is assumed to be linear with the external field strength, 
with the permeability constant equal to that of the vacuum. Yan et al. 
(2021a) have extended the model to both uniform and non-uniform 
magnetic fields. Garcia-Gonzalez and Hossain (2021) have proposed a 
lattice-based model that incorporates information of the particles’ dis
tribution into the constitutive formulations. A recent review by Lucarini 
et al. (2022) summarizes the development in the field of HMAEs. 

The material tunability by a remotely magnetic field – either through 
property modification or induced deformation – holds the intriguing 
potential for designing metamaterials for elastic wave manipulation. 
The foundation of the analysis of infinitesimal motion superimposed on 
finite deformations can be found in the work of Green et al. (1952), 
further developed by Ogden (2007), and is widely adopted as “small-
on-large” theory (Bertoldi and Boyce, 2008; Guo et al., 2017, 2022; 
Norris and Parnell, 2012; Rudykh and Boyce, 2014). Here, we employ 
the small-on-large framework to examine the propagation of 
small-amplitude elastic waves in finitely deformed magnetoelastic ma
terials. Following the work by Maugin (1981), providing the governing 
equations for magnetoelastic waves in magnetizable deformable mate
rials, the nonlinear surface waves (Abd-Alla and Maugin, 1987; Hefni 
et al., 1995) and inhomogeneous plane waves (Boulanger, 1989) have 
been studied. Based on the formulation of Dorfmann and Ogden (2004), 
Destrade and Ogden (2011) examined the small-amplitude plane har
monic waves in the finitely strained magnetoelastic material. Saxena 
and Ogden (2011, 2012) studied the Rayleigh surface and Love waves 
propagating in a finitely strained isotropic and layered half-space 
magnetoelastic solid immersed in a magnetic field. Recently, Karami 
Mohammadi et al. (2019) have investigated transverse elastic wave 
propagation in finitely deformed bi-phase periodic magnetoelastic 
layered composites, and illustrated the shear wave bandgap tunability 
by magnetically induced deformation. However, these aforementioned 
works considered soft-magnetic active elastomers, while little is known 
about the wave propagation in HMAE medium. 

In this work, we investigate the finite deformation and superimposed 
small-amplitude transverse elastic waves in bi-phasic layered HMAEs 
with remanent magnetization. We study the magnetostriction of the 
periodic layered HMAEs and derive the expression for the induced 
deformation as a function of the applied magnetic field, mechanical and 
magnetic properties of the phases, and their volume fractions. Moreover, 

we analyze the influences of the applied magnetic field and material 
parameters – especially the remanent magnetization – on the shear wave 
band gaps in the HMAE laminates. 

2. Theoretical background 

2.1. Nonlinear magneto-elasticity 

Consider a magnetoelastic deformable solid occupying domain Ω0 in 
the reference configuration where no magnetic and mechanical fields 
are applied. Under the action of combined magnetic and mechanical 
loadings, the magnetoelastic solid occupies a deformed configuration 
denoted as Ω. The deformation is described by a function x = x(X) that 
maps the material point X from the reference state to the new position x 
in the deformed state. The deformation gradient is thus defined as F =

∂x/∂X. For incompressible solids, J ≡ detF = 1. 
Here, we follow the work by Dorfmann and Ogden (2004) and 

denote by B, H, and M, respectively, the magnetic induction, the mag
netic field, and the magnetization in the deformed configuration. They 
are related as 

B= μ0(H+M), (1)  

where the constant μ0 is the magnetic permeability in a vacuum. 
Neglecting electrical, thermal, and relativistic effects, the quasi-static 
Maxwell equations in terms of the magnetic induction B and the mag
netic field H in the deformed state, can be written as 

divB= 0 and curlH = 0. (2)  

Here and thereafter, the upper case first letter denotes the differential 
operator in the reference configuration, whereas the lower case denotes 
the ones in the deformed configuration. The magnetostatic equations in 
the reference configuration are 

DivBL = 0 and CurlHL = 0, (3)  

where BL = F− 1⋅B and HL = FT⋅H are the Lagrangian counterparts of the 
magnetic induction and the magnetic field, respectively. 

Following the work of Kovetz (2000), the magnetization is defined in 
terms of the specific free-energy density φ (F, B) as 

M= − ρ ∂φ(F,B)
∂B

, (4)  

where ρ is the density in the deformed configuration. The total Cauchy 
stress σ can then be written in the form 

σ= ρ ∂φ(F,B)
∂F

FT +(M ⋅ B)I − M⊗B + TM , (5)  

where 

TM =
1
μ0

B⊗B −
1

2μ0
(B ⋅ B)I (6)  

is the so-called Maxwell stress. The specific free-energy density in the 
Lagrangian form is defined as Φ(F,BL) = φ(F,FBL). In terms of Φ, an 
“amended” free-energy function has been proposed by Dorfmann and 
Ogden (2004) 

W(F,BL)= ρ0Φ(F,BL) +
FBL⋅FBL

2μ0
, (7)  

where ρ0 = ρ (J = 1) is the density in the reference configuration. Thus, 
the total first Piola-Kirchhoff stress tensor P, and Lagrangian magnetic 
field HL are 

P=
∂W(F,BL)

∂F
− pF− T and HL =

∂W(F,BL)

∂BL
. (8) 
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Here, p is the Lagrange multiplier introduced due to the incompressi
bility constraint. Correspondingly, the total Cauchy stress tensor is 

σ=
∂W(F,BL)

∂F
FT − pI. (9)  

Under the quasi-static condition and in the absence of body forces, the 
total Cauchy and first Piola-Kirchhoff stresses satisfy the following 
equilibrium equations 

divσ= 0 and DivP = 0. (10)  

2.2. Incremental motions 

Next, we consider an infinitesimal incremental motion superimposed 
on the deformed state. We denote the incremental changes in F, p, P, BL, 
and HL as Ḟ, ṗ, Ṗ, ḂL, and ḢL, respectively. According to Eq. (8), the 
linearized constitutive relations can be written as 

Ṗ = ℂ0 : Ḟ + B 0⋅ḂL − ṗF− T + pF− T ⋅ḞT ⋅F− T

ḢL = Ḟ : B 0 + K0⋅ḂL
(11)  

where 

ℂ0 =
∂2W
∂F∂F

, B 0 =
∂2W

∂F∂BL
, K0 =

∂2W
∂BL∂BL

. (12)  

The “push-forward” counterparts (in the deformed configuration) of the 
incremental changes Ṗ, ḂL, and ḢL are 

σ̇= Ṗ⋅FT , Ḃ = F⋅ḂL, and Ḣ = F− T ⋅ḢL. (13)  

Denoting u = ẋ as the infinitesimal incremental displacement super
imposed on the deformed state, the incremental constitutive laws in Eq. 
(11) becomes 

σ̇ = ℂ : U + B ⋅Ḃ − ṗI + pUT

Ḣ = U : B + K⋅Ḃ
(14)  

where U = gradu = Ḟ⋅F− 1. The incompressibility constraint yields 

trU= divu = 0. (15)  

The updated tensors of the magnetoelastic moduli in Eq. (14) are 

ℂijkl = ℂ0irksFjrFls

B ijk = B 0irmFjrF− 1
mk

K = F− T ⋅K0⋅F− 1
(16)  

The corresponding incremental equations of motion are 

divσ̇= ρu,tt, divḂ = 0, and curlḢ = 0. (17) 

We consider steady-state small amplitude waves propagating in the 
deformed magnetoelastic medium. Following Destrade and Ogden 
(2011), the solution for Eq. (17) can be written in the form of plane 
waves with constant polarization 

u = g f (n⋅x − ct)
Ḃ = d q(n⋅x − ct)
ṗ = Π(n⋅x − ct)

(18)  

where g and d are constant unit vectors denoting polarizations, f, q, and 
Π are single-variable functions with respect to the argument n⋅ x − ct, 
and n is the constant unit vector denoting the direction of propagation. 
The use of the incompressibility constraint in Eq. (15) and the incre
mental motion of Eq. (17)2 yields 

g ⋅ n = 0 and d⋅n = 0. (19)  

3. Results and examples 

3.1. Energy density function for HMAEs 

Due to the relatively large coercivity, hard-magnetic materials can 
retain high remanent magnetization even in the absence of an externally 
applied magnetic field once they are saturated. The high coercivity 
further allows the magnetic materials to sustain the remanent magne
tization over a wide range of applied magnetic fields (below the coer
civity level). The magnetic behavior of the HMAEs can be approximated 
by a linear function when the applied magnetic field is below the 
coercivity level (Zhao et al., 2019). 

As illustrated in Fig. 1a, we assume that the magnetic induction B of 
the HMAEs is linearly related to the applied magnetic field H when the 
field strength is small enough relative to the coercivity level (Lovatt and 
Watterson, 1999), namely 

B=Br + μH, (20)  

where Br is the remanent induction and is related to the remanent 
magnetization Mr by Br = μ0Mr. The combination of Eqs. (1) and (20) 
yields 

M=(μr − 1)H + Mr, (21)  

where μr = μ/μ0 is the relative magnetic permeability. The idealized 
magnetization loop with the linear region represented by Eq. (21) is 
illustrated in Fig. 1b. Alternatively, the magnetization can be expressed 
with respect to the magnetic induction 

M=
B
μ0

χ +
1
μr

Mr, (22)  

where χ = (μ − μ0)/μ is the magnetic susceptibility. Based on Eq. (22), 
the specific free-energy function can be written as 

ρφ(F,B)=we −
1

2μ0
B⋅χB −

1
μr

B⋅Mr, (23)  

where we denotes the purely elastic response of the HMAEs. The con
structed specific free-energy function satisfies Eq. (4). Therefore, the 
Lagrangian form of the specific free-energy function is 

ρ0Φ(F,BL)=We(F) −
1

2μ0
FBL ⋅ χFBL −

1
μr

FBL⋅RMLr, (24)  

where We(F) can be defined by the appropriate hyperelastic energy 
potentials. In Eq. (24), MLr is the remanent magnetization in the 
Lagrangian description. It is related to the remanent magnetization in 
the deformed configuration via RMLr = Mr, where R is the rotational 
component of the deformation gradient F. Such a definition is adopted 
since the remanent magnetization Mr in the deformed configuration is 
determined by the rotations of the HMAEs, independently of stretches. 
This relation has been examined by Mukherjee et al. (2021) through 
full-field homogenization simulations, showing some similarities with 
the behavior of the isotropic soft-magnetic MAEs (Danas et al., 2012). 
Recalling Eq. (7), the Lagrangian amended energy function can be 
written as 

W(F,BL)=We(F) +
1

2μ FBL⋅FBL −
1
μr

FBL⋅RMLr. (25)  

Upon substitution of Eq. (25) into Eq. (9), the total Cauchy stress in the 
HMAEs is evaluated as 

σ=PFT =
∂We(F)

∂F
FT − pI + 1

μ B ⊗ B −
1
μr

Mr ⊗ B. (26)  
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3.2. HMAE laminates 

Consider periodic laminates consisting of two isotropic incompress
ible alternating HMAE phases with volume fractions v(1) and v(2) = 1- 
v(1). Denoting the periodic constant of the undeformed laminate as L, the 
alternating layer thicknesses will be L(1) = v(1)L and L(2) = v(2)L, 
respectively (see Fig. 2a). 

We consider the case when the remanent magnetizations in the 
laminates are in the same direction as the applied field (in the e2 di
rection; see Fig. 2b), namely 

M(1)
r =M(1)

r e2 and M(2)
r = M(2)

r e2. (27)  

Under the action of the applied field, the laminate stretches along the e2 
direction. In the deformed laminate, the layer thicknesses become 

l(1) = λ(1)2 L(1), l(2) = λ(2)2 L(2), and l = λ2L, (28)  

where λ(1)2 and λ(2)2 are the phase stretch ratios in the e2 direction and 
λ2 = v(1)λ(1)2 + v(2)λ(2)2 . Here and thereafter, the parameters of the alter
nating layers are denoted as (•) (1) and (•) (2), respectively. 

The average deformation gradient and Eulerian magnetic induction 
are defined as 

F= v(1)F(1) + v(2)F(2) = λe2 ⊗ e2 + λ− 1/2(I − e2 ⊗ e2) (29)  

and 

B= v(1)B(1) + v(2)B(2) = Be2, (30)  

respectively. The displacement continuity condition along the interface 
between the layers enforces 

Fig. 1. The illustration of typical magnetic hysteresis behavior of HAMEs in terms of (a) the B–H curve and (b) the M − H curve. Here, a linear hard-magnetic 
behavior is assumed for the applied magnetic field far below the coercivity. The slopes of the linear regions on the B–H and M− H curves are μrμ0 and μr− 1, 
respectively, where μ0 is the permeability of vacuum and μr is the relative magnetic permeability. 

Fig. 2. HMAE laminates with bi-phasic layered microstructure in (a) the reference (undeformed) state, and (b) the magnetic field induced deformed state; (c) a 
representative unit cell. 
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(
F(1) − F(2)) ⋅ s= 0, (31)  

where s is an arbitrary unit vector perpendicular to n (the unit vector 
denoting the lamination direction; see Fig. 2a). Using Eq. (31) and the 
symmetry of the deformation gradient defined in Eq. (29) with the phase 
incompressibility, we obtain λ(1)2 = λ(2)2 = λ. Therefore, the deformation 
gradients in alternating phases are 

F(1) =F(2) = λe2 ⊗ e2 + λ− 1/2(I − e2 ⊗ e2). (32)  

The traction continuity condition across the interface between the layers 
implies that 
(
σ(1) − σ(2)) ⋅ n= 0. (33)  

Moreover, in the absence of free current at the interface, the jump 
conditions for the Eulerian magnetic induction and magnetic field are 
(
B(1) − B(2)) ⋅ n= 0 and

(
H(1) − H(2))× n= 0. (34)  

Using the magnetic induction jump condition (34)1, for the macro
scopically applied magnetic load defined in Eq. (30), we obtain 

B(1) =B(2) = Be2. (35)  

3.3. Magneto-deformation 

Consider the laminates consisting of HMAE phases, whose constitu
tive behavior is governed by the energy function (25); we assume that 
their purely elastic response is expressed as a function of the first 
invariant of the right Cauchy-Green deformation tensor C(ξ) = (F(ξ))

T ⋅ 
F(ξ), namely 

W(ξ)
e

(
F(ξ))=Ψ (ξ)

e

(
I(ξ)1

)
, (36)  

where I(ξ)1 = F(ξ) : F(ξ). Thus, the stress field in the layer ξ (ξ = 1,2) is 

σ(ξ) = 2Ψ (ξ)
1 F(ξ)⋅

(
F(ξ))T

− p(ξ)I +
1

μ(ξ)B
(ξ) ⊗ B(ξ) −

1
μ(ξ)

r
M(ξ)

r ⊗ B(ξ), (37)  

where Ψ (ξ)
1 = ∂Ψ (ξ)

e /∂I(ξ)1 . The nonzero stress components are 

σ(ξ)
11 = σ(ξ)

33 = 2Ψ (ξ)
1 λ− 1 − p(ξ) and

σ(ξ)
22 = 2Ψ (ξ)

1 λ2 − p(ξ) +
B2

μ(ξ) −
1

μ(ξ)
r

M(ξ)
r B

(38)  

We assume that the HMAE laminate is surrounded by a vacuum, and no 
mechanical loadings are applied. The stress field jump condition across 
the interface between the laminate and vacuum yields 

v(1)σ(1) + v(2)σ(2) = σ*
m, (39)  

where 

σ*
m =

1
μ0

(

B* ⊗B* −
1
2
(B* ⋅ B*)I

)

(40)  

is the Maxwell stress in the vacuum. Once again, the magnetic induction 
jump condition across the interface between the laminate and vacuum 
enforces B* = B = Be2. 

For simplicity, we consider that the purely elastic response of the 
HMAE phases is dictated by the neo-Hookean model, namely 

Ψ (ξ)
e

(
I(ξ)1

)
=

G(ξ)

2

(
I(ξ)1 − 3

)
, (41)  

Where G(ξ) is the shear modulus. Using Eqs. (33) and (38)-(41), we 
obtain 

Gλ− 1 −
(
v(1)p(1) + v(2)p(2)) = −

B2

2μ0
and

G(ξ)λ2 − p(ξ) +
B2

μ(ξ) −
1

μ(ξ)
r

M(ξ)
r B =

B2

2μ0

(42)  

where G = v(1)G(1) + v(2)G(2). By eliminating the Lagrange multipliers 
from Eq. (42), we obtain the expression of the induced deformation as a 
function of the magnetic induction, mechanical and magnetic properties 
of layers, and their volume fractions, namely 

λ2 −
1
λ
=

B2

Gμ0

(
1 − μ̃− 1

r

)
+

B
G

(
v(1)M(1)

r

μ(1)
r

+
v(2)M(2)

r

μ(2)
r

)

, (43)  

where 

μ̃r =

(
v(1)

μ(1)
r

+
v(2)

μ(2)
r

)− 1

. (44)  

Defining the normalized magnetic induction as Bn = B/
̅̅̅̅̅̅̅̅̅

Gμ0

√

and 

normalized remanent magnetization as M(ξ)
n = M(ξ)

r /

̅̅̅̅̅̅̅̅̅̅̅

G/μ0

√

, Eq. (43) 
can be written as 

λ2 −
1
λ
=B2

n

(
1 − μ̃− 1

r

)
+ Bn

(
v(1)M(1)

n

μ(1)
r

+
v(2)M(2)

n

μ(2)
r

)

. (45) 

Note that for the case M(ξ)
n = 0, expression (45) reduces to the result 

corresponding to the case for the laminate with soft-magnetic active 
elastomers (Pathak et al., 2022), namely 

λ2 −
1
λ
=B2

n

(
1 − μ̃− 1

r

)
. (46)  

In this case of the soft-magnetic laminate, the application of the external 
magnetic fields leads to stretching in the e2 direction. 

Fig. 3 shows the dependence of the induced stretch λ on the magnetic 
induction for various levels of initial magnetization M(2)

n ; the normalized 
remanent magnetization of layer 1 is M(1)

n = − 1. The results are given 
for HMAE laminates with volume ratio v(1) = 0.5, and shear modulus 
contrast G(1)/G(2) = 15. First, when M(2)

n takes a relatively small positive 
value (for example, M(2)

n = +0.2 in Fig. 3a or M(2)
n = +0.6 in Fig. 3b), 

compressive deformation (i.e., λ < 1) developed under a low magnetic 
induction level (see the red and blue curves in Fig. 3a and b). From a 
physical point of view, at a low magnetic induction level, the magnetic 
stress in the HMAE phases is dominated by − M(ξ)

r ⊗ B(ξ)/μ(ξ)
r , which is 

positive in layer 1 and negative in layer 2. Since 
⃒
⃒M(1)

n
⃒
⃒ is much larger 

than 
⃒
⃒M(2)

n
⃒
⃒, the resulting magnetic stress inside the laminate is positive. 

At a small magnetic induction level, the resulting positive magnetic 
stress is larger than the Maxwell stress σ*

m outside the laminate. To 
satisfy the mechanical traction-free boundary conditions, the magnetic 
stress inside the laminate is partially compensated by a compressive 
(negative) mechanical stress, resulting in the compressive deformation. 
However, as the magnetic induction further increases, the magnetic 
stress in the HMAE phases is dominated by B(ξ) ⊗ B(ξ)/μ(ξ), which is 
smaller than the Maxwell stress σ*

m outside the laminate, thus, tensile 
(positive) mechanical stress develops inside the laminate and stretch 
deformation is observed. Note that, for the case μ(1)

r = μ(2)
r = 1.0 which 

means the permeability of the HMAE phases equals that of the vacuum 
surrounding the laminate, only compressive deformation develops (see 
the black curves in Fig. 3a and b). This is because the magnetic stress 
inside the laminate is always larger than the Maxwell stress σ*

m outside 
the laminate due to the positive magnetic stress component − M(1)

r ⊗

B(1)/μ(1)
r . Second, when the value of M(2)

n is equal to (e.g., M(2)
n = + 1.0, 
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see Fig. 3c) or greater (e.g., M(2)
n = + 1.5, see Fig. 3d) than the absolute 

value of M(1)
n , only stretch deformation occurs (see the red and blue 

curves in Fig. 3c and d) because the magnetic stress inside the laminate 

is smaller than the Maxwell stress σ*
m outside the laminate due to 

negative magnetic stress component − M(2)
r ⊗ B(2)/μ(2)

r . In particular, for 
the case M(2)

n = +1.0 and μ(1)
r = μ(2)

r = 1.0, no deformation occurs in the 

Fig. 3. Magnetic field-induced stretch λ as a function of the normalized magnetic induction Bn = B/
̅̅̅̅̅̅̅̅̅

Gμ0

√

. The normalized remanent magnetization of layer 1 is 

fixed at M(1)
n = − 1, and the normalized remanent magnetization of layer 2 takes the value of (a) M(2)

n = + 0.2, (b) M(2)
n = + 0.6, (c) M(2)

n = + 1.0, and (d) M(2)
n =

+ 1.5, correspondingly. The volume ratio and shear modulus contrast are v(1) = 0.5 and G(1)/G(2) = 15, respectively. 

Fig. 4. Magnetic field-induced stretch λ as a function of the normalized magnetic induction Bn = B/
̅̅̅̅̅̅̅̅̅

Gμ0

√

for (a) M(1)
n = M(2)

n = +2.5 and (b) M(1)
n = + 2.0, M(2)

n =

+ 4.0. The volume ratio and shear modulus contrast are v(1) = 0.5 and G(1)/G(2) = 15, respectively. 
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laminate (see the black line in Fig. 3c), since the magnetic stress com
ponents − M(1)

r ⊗ B(1)/μ(1)
r and − M(2)

r ⊗ B(2)/μ(2)
r canceled each other, 

thus, the magnetic stress inside the laminate equals the Maxwell stress 
σ*

m outside the laminate. 
Fig. 4 shows the dependence of the induced stretch λ on the magnetic 

induction for laminates in which the remanent magnetizations of both 
phases are positive (i.e., in the same direction of magnetic induction). 
The results are given for HMAE laminates with volume ratio v(1) = 0.5, 
and shear modulus contrast G(1)/G(2) = 15. One can see that when the 
remanent magnetization M(ξ)

n takes relatively large positive values, the 
stretch λ exhibits a richer evolution phenomenon with the change of 
relative permeability μ(ξ)

r . Consider the case of M(1)
n = M(2)

n = + 2.5, as 
an example: at a relatively small magnetic induction Bn, the stretch λ 
becomes smaller when the relative permeability μ(ξ)

r takes a larger value 
(see Fig. 4a). However, after reaching a transition point at Bn = 2.5, the 
stretch λ increases correspondingly as the relative permeability μ(ξ)

r takes 
larger values. Similar phenomenon is observed in the laminate with 
M(1)

n = +2.0, M(2)
n = +4.0 (see Fig. 4b, the transition point is at Bn =

3.0). The reason is as follows. When M(ξ)
n is positive, increasing μ(ξ)

r leads 
to an increase of the magnetic stress component − M(ξ)

r ⊗ B(ξ)/μ(ξ)
r and a 

decrease of the magnetic stress component B(ξ) ⊗ B(ξ)/μ(ξ). At a low 
magnetic induction level, the component − M(ξ)

r ⊗ B(ξ)/μ(ξ)
r dominates 

the magnetic stress, thus, the magnetic stress inside the laminate in
creases with an increment in relative permeability μ(ξ)

r . However, the 
Maxwell stress σ*

m does not change with HAME’s magnetic properties, 
that is, the total stress inside the laminate also remains constant. 
Therefore, an increase in magnetic stress is compensated by a decrease 
in mechanical stress. Thus, the laminate undergoes comparatively 
smaller deformation as the relative permeability μ(ξ)

r increases. By 
contrast, for Bn larger than a critical value, the magnetic stress compo
nent B(ξ) ⊗ B(ξ)/μ(ξ) dominates the magnetic stress, thus, the stretch in
creases with an increment in relative permeability μ(ξ)

r . Be noted, due to 
the presence of remanent magnetization in the HMAE laminate, Bn =

0 does not mean that the external applied magnetic field equals zero. 
The relation between the magnetic induction inside the laminate and the 
external applied magnetic field is provided in Appendix A. 

3.4. Transverse elastic wave propagation in HMAE laminates 

In this section, we consider incremental waves propagating perpen
dicularly to the layers (i.e., n = e2; see Fig. 2c) in the laminate subjected 
to macroscopically applied magneto-mechanical loads defined in Eq. 
(29) and Eq. (30). By substituting Eqs. (14), (16), (18), (19), (32) and 
(35) into (17), we have 

∂2u(ξ)
1

∂t2 =
(
c(ξ)
)2∂2u(ξ)

1

∂x2
2
,

∂ṗ(ξ)

∂x2
= 0, and

∂2u(ξ)
3

∂t2 =
(
c(ξ)
)2∂2u(ξ)

3

∂x2
2
, (47)  

where 

c(ξ) = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Ψ (ξ)
1

/
ρ(ξ)

√

. (48)  

The magnetoelastic moduli tensors for the HMAE phases are given in 
Appendix B. 

Next, substituting Eqs. (15), (16), (18), (19), (32) and (35) into (14) 
yields 

σ̇(ξ)
12 = 2λ2Ψ (ξ)

1
∂u(ξ)

1

∂x2
+

B
μ(ξ)

(

B
∂u(ξ)

1

∂x2
+ Ḃ(ξ)

1

)

σ̇(ξ)
22 = − ṗ(ξ)

σ̇(ξ)
32 = 2λ2Ψ (ξ)

1
∂u(ξ)

3

∂x2
+

B
μ(ξ)

(

B
∂u(ξ)

3

∂x2
+ Ḃ(ξ)

3

)
(49)  

and 

Ḣ(ξ)
1 =

1
μ(ξ)

(

B
∂u(ξ)

1

∂x2
+ Ḃ(ξ)

1

)

Ḣ(ξ)
3 =

1
μ(ξ)

(

B
∂u(ξ)

3

∂x2
+ Ḃ(ξ)

3

) (50)  

The incremental jump conditions across the interface between alter
nating layers (at x2 = 0) corresponding to Eqs. (33) and (34)2 are 

σ̇(1)
12 = σ̇(2)

12 , σ̇(1)
22 = σ̇(2)

22 , σ̇(1)
32 = σ̇(2)

32

Ḣ(1)
1 = Ḣ(2)

1 , Ḣ(1)
3 = Ḣ(2)

3

(51)  

Substitution of Eqs. (49) and (50) into Eq. (51) yields 

Ψ (1)
1

∂u(1)
1

∂x2

⃒
⃒
⃒
⃒
⃒

x2=0

=Ψ (2)
1

∂u(2)
1

∂x2

⃒
⃒
⃒
⃒
⃒

x2=0

, Ψ (1)
1

∂u(1)
3

∂x2

⃒
⃒
⃒
⃒
⃒

x2=0

= Ψ (2)
1

∂u(2)
3

∂x2

⃒
⃒
⃒
⃒
⃒

x2=0

. (52)  

We seek a solution for Eq. (47)1 in the form 

u(ξ)
1 =A(ξ)

+ ei(k(ξ)x2 − ωt) + A(ξ)
− ei(− k(ξ)x2 − ωt), (53)  

where ω is the angular frequency, and k(ξ) = ω/c(ξ) is the wavenumber. 
The perfect bonding condition between alternating layers enforces 

u(1)
1

⃒
⃒
⃒

x2=0
= u(2)

1

⃒
⃒
⃒

x2=0
. (54)  

Substituting Eq. (53) into Eqs. (52)1 and (54) respectively yields 

A(1)
+ +A(1)

− − A(2)
+ − A(2)

− = 0 (55)  

and 

Ψ (1)
1 A(1)

+

c(1)
−

Ψ (1)
1 A(1)

−

c(1)
−

Ψ (2)
1 A(2)

+

c(2)
+

Ψ (2)
1 A(2)

−

c(2)
= 0. (56)  

Two additional equations for A(1)
+ , A(1)

− , A(2)
+ , and A(2)

− will be obtained 
from the Bloch theorem as follows. Rewriting the plane wave solution in 
Eq. (53) as the Bloch waveform 

u(ξ)
1 =U(ξ)

1 (x2)ei(kx2 − ωt), (57)  

where 

U(ξ)
1 (x2)=A(ξ)

+ eiK(ξ)
− x2 + A(ξ)

− e− iK(ξ)
+

x2 , (58)  

and K(ξ)
± = k(ξ) ± k. According to the Bloch theorem, U(ξ)

1 (x2) must be a 
periodic function with the period equal to the lattice constant l = l(1) +
l(2). Recalling the unit cell shown in Fig. 2c, we have 

U(1)
1
(
− l(1)

)
=U(2)

1
(
l(2)
)
. (59)  

Substituting Eq. (58) into Eq. (59) yields 

e− iK(1)
− l(1) A(1)

+ + eiK(1)
+ l(1)A(1)

− − eiK(2)
− l(2) A(2)

+ − e− iK(2)
+ l(2)A(2)

− = 0. (60)  

Next, Substituting Eq. (57) and Ḃ(ξ)
1 = d(ξ)

1 (x2)ei(kx2 − ωt) into Eqs. (50)1 and 
(49)1 respectively yields 
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Ḣ(ξ)
1 = H

(ξ)
1 (x2)ei(kx2 − ωt)

H
(ξ)
1 (x2) =

1
μ(ξ)

[

B
iω
c(ξ)
(

A(ξ)
+ eiK(ξ)

− x2 − A(ξ)
− e− iK(ξ)

+
x2
)
+ d(ξ)

1 (x2)

] (61)  

and 

σ̇(ξ)
12 = P

(ξ)
1 (x2)ei(kx2 − ωt)

P
(ξ)
1 (x2) = 2λ2Ψ (ξ)

1
iω
c(ξ)
(

A(ξ)
+ eiK(ξ)

− x2 − A(ξ)
− e− iK(ξ)

+
x2
)
+ BH

(ξ)
1 (x2)

(62)  

The Bloch theorem implies 

P
(1)
1
(
− l(1)

)
= P

(2)
1
(
l(2)
)

H
(1)
1
(
− l(1)

)
= H

(2)
1
(
l(2)
)

d(1)
1
(
− l(1)

)
= d(2)

1
(
l(2)
)

(63)  

Finally, substituting Eq. (62) into Eq. (63) yields 

Ψ (1)
1

c(1)
e− iK(1)

− l(1) A(1)
+ −

Ψ (1)
1

c(1)
eiK(1)

+
l(1) A(1)

− −
Ψ (2)

1

c(2)
eiK(2)

− l(2) A(2)
+ +

Ψ (2)
1

c(2)
e− iK(2)

+
l(2) A(2)

− = 0.

(64)  

Combination of Eqs. (55), (56), (60) and (64) yields 

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 − 1 − 1

Ψ (1)
1

c(1)
−

Ψ (1)
1

c(1)
−

Ψ (2)
1

c(2)
Ψ (2)

1

c(2)

e− iK(1)
− l(1) eiK(1)

+
l(1) − eiK(2)

− l(2) − e− iK(2)
+

l(2)

Ψ (1)
1

c(1)
e− iK(1)

− l(1) −
Ψ (1)

1

c(1)
eiK(1)

+
l(1) −

Ψ (2)
1

c(2)
eiK(2)

− l(2) Ψ (2)
1

c(2)
e− iK(2)

+
l(2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (65)  

Recalling Eq. (48), Eq. (65) can be reduced to the following dispersion 
relation ω = ω(k), 

cos(kl)= cos
(

l(1)ω
c(1)

)

cos
(

l(2)ω
c(2)

)

−
1
2

(
ρ(1)c(1)

ρ(2)c(2)
+

ρ(2)c(2)

ρ(1)c(1)

)

sin
(

l(1)ω
c(1)

)

sin
(

l(2)ω
c(2)

)

. (66)  

The layer thicknesses l(ξ) and phase velocity c(ξ) are functions of the 
stretch ratio as determined by Eq. (28) and Eq. (48), respectively. Note 
that the obtained dispersion relation for HMAE laminates (66) is iden
tical to that for the purely elastic problem (Galich et al., 2017), and 
soft-magnetic laminates (Karami Mohammadi et al., 2019). However, 
the dependence of the stretch on the applied magnetic field differs, 
resulting in different tunability of the dispersion curves for the different 
material systems. To illustrate the dependence, one should consider a 

material model with a stiffening effect (see the discussion of the results 
for neo-Hookean HMAE laminates in Appendix C). To this end, we 
consider the HMAE laminate with the phases whose elastic response is 
dictated by the Gent model, namely 

Ψ (ξ)
e

(
I(ξ)1

)
= −

G(ξ)J(ξ)
m

2
ln

(

1 −
I(ξ)1 − 3

J(ξ)
m

)

, (67)  

where J(ξ)m is the locking parameter; here, we assume that both phases are 
characterized by identical locking parameters J(1)m = J(2)m = Jm. Refer
ring to the steps of Eqs. (37)–(45), the expression for the induced 
deformation corresponding to the Gent model is 
(
λ2 − λ− 1)Jm

Jm + 3 − λ2 − 2λ− 1 =B2
n

(
1 − μ̃− 1

r

)
+ Bn

(
v(1)M(1)

n

μ(1)
r

+
v(2)M(2)

n

μ(2)
r

)

. (68)  

Submitting Eq. (67) into Eq. (48) yields the corresponding phase 
velocity 

c(ξ)G = λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G(ξ)

ρ(ξ)

Jm

Jm + 3 − λ2 − 2λ− 1

√

. (69) 

By making use of Eqs. (28), (66), (68) and (69), band structure dia
grams for transverse waves in the HMAE laminate with alternating Gent 
phases subjected to the magnetic field perpendicular to the layers are 
constructed. Fig. 5 illustrates the results for the laminates with v(1) = 0.5, 
ρ(1)/ρ(2) = 1.0, G(1)/G(2) = 15, and μ(1)

r = μ(2)
r = 1.0; the reported fre

quency is normalized as fn = (ωL /2π)
̅̅̅̅̅̅̅̅̅

ρ/G̃
√

, where ρ = v(1)ρ(1) + v(2)ρ(2)

and G̃ = (v(1)/G(1) + v(2)/G(2))
− 1. Fig. 5a displays the dispersion curves at 

Bn = 0. In the reported frequency range, four transverse wave band gaps 
are observed, as highlighted by the shaded areas. The dependence of the 
transverse wave band gaps on the magnetic induction Bn is shown in 
Fig. 5b for laminate with phase magnetizations M(1)

n = − 1.0 and M(2)
n =

− 0.5, and in Fig. 5c for laminate with phase magnetizations M(1)
n = +

1.0 and M(2)
n = + 0.5. The magnetic excitation widens and shifts 

transverse wave band gaps toward higher frequencies. The external 
magnetic excitation leads to a compression in the laminate with phase 
magnetizations M(1)

n = − 1.0 and M(2)
n = − 0.5, and stretching in the 

laminate with phase magnetizations M(1)
n = +1.0 and M(2)

n = + 0.5. For 
instance, at Bn = 2.5, the induced deformation corresponding to the 
phase magnetizations M(1)

n = − 1.0 and M(2)
n = − 0.5 is λ = 0.729, shifting 

the lower boundary of the first bandgap from fn = 0.397 to 0.593 and 
widening it from △fn = 0.285 to 0.426. By contrast, the induced 
deformation in the laminate with the phase magnetizations M(1)

n = +1.0 
and M(2)

n = +0.5 is λ = 1.311 (at Bn = 2.5); the induced deformation 

Fig. 5. Tunability of band gap for transverse waves in HMAE laminates with Gent phases; the geometric and material parameters are v(1) = 0.5, ρ(1)/ρ(2) = 1.0, G(1)/ 
G(2) = 15, and μ(1)

r = μ(2)
r = 1.0. (a) The dispersion curves at Bn = 0, with the transverse wave band gaps highlighted by the shaded areas. The evolution of the 

transverse wave band gaps versus Bn for (b) M(1)
n = − 1.0, M(2)

n = − 0.5, and (c) M(1)
n = + 1.0, M(2)

n = + 0.5. The frequency is normalized as fn = (ωL /2π)
̅̅̅̅̅̅̅̅̅

ρ/G̃
√

. 
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shifts the lower boundary of the first bandgap from fn = 0.397 to 0.557 
and widens it from △fn = 0.285 to 0.399. 

4. Conclusion 

In this paper, we investigated the behavior of hard-magnetic soft 
laminates with bi-phasic layered microstructure. We considered the 
HMAE laminates subjected to a magnetic field perpendicular to the di
rection of the layers. First, we derived the expression for the magnetic 
field-induced stretch of the HMAE laminates with remanent magneti
zations. The induced stretch is expressed as a function of the volume 
ratio and the magnetoelastic constants (including the remanent mag
netizations) of the HMAE phases. Remarkably, the results indicate that 
the HMAE laminate undergoes compressive deformation along the di
rection of the magnetic field when the direction of the remanent mag
netizations in the phases is opposite to that of the applied magnetic field. 
This is in contrast to the previously considered laminates made out of 
soft-magnetic active elastomers, which can only develop tensile strains 
in the magnetic field direction. 

Second, we examined the propagation of shear waves in the HMAE 
laminates undergoing finite strains in the presence of an external mag
netic field. Interestingly, the derived dispersion relation for HMAE 
laminates is identical to the one for the purely elastic setting and the one 
for laminates made of soft-magnetic active elastomers. We note that the 
bandgap of the shear waves propagating in the direction perpendicular 
to the layers in the HMAE laminate with neo-Hookean phases is inde
pendent of magnetic excitations. However, the dependence of the 
stretch on the applied magnetic field differs, resulting in different 
tunability of the dispersion curves for the different material systems. We 
illustrate this dependence by considering a material model with a stiff
ening effect; namely, we consider laminates with HMAE Gent phases. 
We show that the width and position of the shear wave band gaps in the 
HMAE laminates with remanent magnetizations can be tuned by a 
remotely applied magnetic field. 

The results can guide the design of novel materials with potential 
applications in remotely controlled wave manipulating devices. We note 
that the derived exact solutions are based on the material and geometry 
idealization and may not account for material (Hauseux et al., 2017, 
2018; Rappel et al., 2019) or geometrical (Chen et al., 2019; Ding et al., 
2021; Yu et al., 2022) uncertainties (or imperfections). These un
certainties in material properties and geometrical (the layer thickness 
and shape) parameters can affect the wave propagation characteristics 
in the HMAE laminates. Moreover, the imperfections of the interface or 
interphase between layers may be introduced in the material 
manufacturing processes (Arora et al., 2019). The influence of such 
uncertainties can be quantified through multi-field coupled stochastic 
analyses (Elouneg et al., 2021; Mazier et al., 2022). 
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Appendix A. The relation between the magnetic induction inside the HMAE laminate and external applied magnetic field 

Note that we consider an idealization of the periodic microstructure unit cells (shown in Fig. 2) situated far from the specimen boundaries. Under 
this assumption, the magnetic fields can be considered to be homogeneous in each layer of the laminate and are determined by the jump conditions. 
According to Eqs. (20) and (30), the magnetic induction B inside the HMAE laminate can be expressed as the applied magnetic field H as follows, 

B=
(
v(1)μ(1) + v(2)μ(2))H + μ0

(
v(1)M(1)

r + v(2)M(2)
r

)
. (70)  

Appendix B. The magnetoelastic moduli tensors for the HMAE Phases 

We consider HMAE laminates with phases defined by the amended energy function in Eq. (25). By recalling Eq. (36), the tensors of magnetoelastic 
moduli defined in Eq. (16) are 

ℂ(ξ)
ijkl = 2

(
δikb(ξ)

lj Ψ (ξ)
1 + 2b(ξ)

ij b(ξ)
kl Ψ (ξ)

11

)
+

1
μ(ξ)δikB(ξ)

l B(ξ)
j

B
(ξ)
ijk = − δjk

1
μ(ξ)

r

M(ξ)
r|i +

1
μ(ξ)

(
δikB(ξ)

j + δjkB(ξ)
i

)

K(ξ)
ij =

1
μ(ξ)F

(ξ)
ki

− 1
F(ξ)

kj

(71)  

where Ψ (ξ)
1 = ∂Ψ (ξ)

e /∂I(ξ)1 and Ψ (ξ)
11 = ∂Ψ (ξ)

1 /∂I(ξ)1 ; b(ξ)lj is the component of the left Cauchy-Green tensor b(ξ) = F(ξ)⋅(F(ξ))
T, and M(ξ)

r|i is the component of the 
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remanent magnetization M(ξ)
r . According to Eq. (27), we have M(ξ)

r|1 = M(ξ)
r|3 = 0 and M(ξ)

r|2 = M(ξ)
r . 

Appendix C. Band structure for neo-Hookean HMAE laminates 

Consider that the purely elastic response of the HMAE phases is described by the neo-Hookean model, submitting Eq. (41) into Eq. (48) yields 

c(ξ)H = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G(ξ)
/

ρ(ξ)
√

. (72)  

By making use of Eqs. (28), (45), (66) and (72), the dispersion diagrams for the neo-Hookean HMAE laminate can be constructed. Fig. 6 shows the 
results for laminates with v(1) = 0.5, ρ(1)/ρ(2) = 1.0, and G(1)/G(2) = 15. The dispersion structure is presented in Fig. 6a, with the band gaps highlighted 
by the shaded areas. The evolution of the first four band gaps with respect to magnetic induction Bn is plotted in Fig. 6b. It can be found that the band 
gaps are indifferent to the applied magnetic field and induced deformation. The reason can be found by comparing Eq. (28) and Eq. (72), which 
indicates that the change in the geometry induced by deformation is identical to the change in phase velocity; this implies that the term l(ξ)/ c(ξ) in Eq. 
(66) keeps constant regardless of the value of the magnetic field and the magnetic parameters (including the relative permeabilities and the remanent 
magnetizations). Therefore, the band gap structures in Fig. 6 are true for any values in relative permeabilities and remanent magnetizations. To 
achieve magnetic field-induced tunability of the transverse wave band gaps, one should consider laminates with phases exhibiting stronger stiffening 
(Galich and Rudykh, 2017), for example, Arruda-Boyce or Gent phases.

Fig. 6. Dispersion diagrams for transverse waves in HMAE laminates with neo-Hookean phases; the geometric and material parameters are v(1) = 0.5, ρ(1)/ρ(2) = 1.0, 

and G(1)/G(2) = 15. (a) Dispersion curves and (b) the evolution of the first four band gaps with respect to Bn. The frequency is normalized as fn = (ωL /2π)
̅̅̅̅̅̅̅̅̅

ρ/G̃
√

. 
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