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a b s t r a c t

We report the observation of deformation-induced negative group velocity (NGV) state in the non-
periodic media. The phenomenon is illustrated by examples of the shear waves traveling along the
non-periodic direction of pre-strained soft laminates. We show that the NGV state can be induced
in absolutely stable laminates without invoking buckling. These stable composites with activated
NGV states are achieved through tailored stiffening behavior of their non-Gaussian soft phases. The
deformation range – for which the NGV state is activated – is multiple times higher in the proposed
absolutely-stable composites than those prone to buckling. Finally, we analyze how this unusual NGV
state can be induced and further tuned by variations in the material and geometric parameter spaces.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic metamaterials, a class of architectured composite
edia, allow us to engineer and control the propagation of waves.
hese materials exhibit intriguing or unusual physical phenom-
na, including negative phase [1–3] and group velocities [4], fre-
uency filtering [5,6], cloaking [7], acoustic diode [8], among oth-
rs. The left-handed behavior of these metamaterials originates
rom their peculiar microstructure, which can be predesigned to
chieve desired functionalities. Furthermore, soft metamaterials
an be designed to actively tune their acoustic properties through
pplied deformation [9–16].
In this work, we focus on the occurrence of an anomalous

tate of negative group velocity (NGV). In such a state, the mate-
ial may exhibit left-handed behavior characterized by opposite
igns of phase and group velocities. The behavior has been ob-
erved under extreme conditions, for example, in liquid Helium-3
a Fermi-liquid) [17] and Helium-4 (a Bose-liquid) [18] at low
emperatures. Recently, the occurrence of NGV has been demon-
trated in an architectured 3D metamaterial [19]. The NGV state
s often accompanied by unusual behaviors, including backward
ropagation of waves and co-existence of three different modes
ith the same polarization at one frequency. This left-handed
ehavior can be utilized for inducing negative refraction [20,21].
Here, we study the appearance of the NGV state for the trans-

erse or shear (S) waves in soft layered composites (LC). Remark-
bly, the NGV state can be induced for the waves traveling along
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the non-periodic direction of the composite, i.e., in parallel to the
layers [see Fig. 1]. Moreover, the transition from positive to nega-
tive group velocity is not accompanied by significant geometrical
changes and can be reversibly controlled by applied deformation.
Such transition in the acoustic state of soft composites has been
reported to foreshadow elastic instabilities [22]. Here, however,
we show that the NGV state is not necessarily followed by an
elastic instability. In particular, we propose the design of abso-
lutely-stable composites (not prone to buckling) exhibiting the
left-handed behavior when compressed. As we shall show, the
deformation range – for which the NGV state is activated –
is multiple times higher in the stable composites as compared
to laminates that develop instabilities. Therefore, these stable
composites curtail the need to operate in the vicinity of elastic
instability, together with a meaningfully larger NGV attainable
deformation range. These properties altogether make the soft
laminate a viable medium for achieving deformation-controlled
switch from right to left-handed acoustic behavior.

2. Problem definition and modeling

Consider a periodic layered composite consisting of two alter-
nating hyperelastic phases – stiff layer and matrix, as shown in
Fig. 1. The volume fraction of the stiff layer is c(f ) and that of the
matrix phase is c(m) = 1−c(f ). Here and thereafter, the fields and
parameters for the stiff layer and matrix are denoted by (•)(f ) and
(•)(m), respectively. Geometrically, the thickness of the stiff layer
is c(f )a, where a is the period of the laminate in the reference

configuration [see Fig. 1]. The constitutive behavior of the phases
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Fig. 1. Schematic of a deformed layered composite subjected to compression
along the layers (e1-direction). The dashed boundaries in the background show
he laminate in the undeformed state. The representative volume element (RVE)
s shown on the right.

s defined by the Gent strain energy density function (SEDF) [23],
amely,

(r)
= −

µ(r)

2
J (r)m ln

(
1 −

F(r) : F(r) − 3

J (r)m

)
+
κ (r)

2
(J (r) − 1)2, (1)

where µ(r) and κ (r) denote the shear and bulk modulus of the
phases, r ∈ {f ,m}; F(r) is the deformation gradient tensor, and
J (r) ≡ det F(r). Here, the locking parameter J (r)m captures the
stiffening behavior (arising due to, for example, finite extensi-
bility of the polymer chains [24]). The phase locks up, leading
to a significant increase in the stress levels as the deformation
approaches the limiting deformation level, (I(r)1 − 3) → J (r)m . Here,
I(r)1 is the first invariant of the right Cauchy–Green deformation
tensor, C(r) = F(r)⊤F(r). To realize the absolutely-stable scenario in
soft laminates, we consider the matrix phase possessing stiffening
behavior and stiff layer to be non-stiffening [25]. To this end,
we set a very high value for the stiff layer’s locking parameter,
J (f )m = 103. To model the nearly incompressible behavior of both
phases, we set a high bulk-to-shear modulus ratio, κ (r)/µ(r) =

103. The layered composite is subjected to in-plane deformation
defined by the following homogeneous macroscopic deformation
gradient:

F = λe1 ⊗ e1 + λ−1e2 ⊗ e2 + e3 ⊗ e3, (2)

here λ is the applied macroscopic stretch ratio and ei are the
asis vectors as shown in Fig. 1. The locking condition, (I1 − 3) =
(m)
m , together with the assumed deformation Eq. (2), yields the
ock-up stretch for the Gent matrix subjected to compression

λ < 1), namely, λlock =

√
(J (m)m + 2 −

√
J (m)2m + 4J (m)m )/2.

To study S-wave propagation in hyperelastic layered compos-
ites, we employ small amplitude motions superimposed on finite
deformations [13,26–28]. The incremental equation of motion is

DivṖ = ρ0
D2u
Dt2

, (3)

where operator D2(·)/Dt2 represents the material time derivative,
Div denotes the divergence operator with respect to the reference
(or undeformed) configuration position vector X, ρ0 is the initial
density, u is the incremental displacement. The incremental first
Piola–Kirchhoff stress tensor is defined as Ṗ = A ∂u

∂X , where
=

∂2ψ
∂F∂F is the tensor of elastic moduli for a SEDF ψ . In

articular, we implemented the small-amplitude motions in the
orm of Bloch waves u(X, t) = U(X) exp [i(K · X − ωt)], where
is the angular frequency, K is the Bloch wave vector in the

eference configuration, and U is a periodic function subjected
o the periodicity condition U(X + R) = U(X), R denote the
patial periodicity in the reference configuration. In the present
ork, we examine the wave propagation along the e1-direction,
herefore, the Bloch wave vector is K = K1e1. The two-step
loch–Floquet analysis is performed in COMSOL 5.4 as follows.
2

irst, the solution for finitely deformed periodic composite is
btained. Second, the Bloch–Floquet conditions are superimposed
n the deformed state for each strain level and the eigenvalue
roblem associated with the wave equation is solved for various
alues of wavenumber K1. Hence, for each strain level, we obtain
he dispersion relation ω = ω(K1). The Bloch-wave vector in
the deformed configuration, k = k1e1, is related to that in the
ndeformed configuration as k = F

−⊤

K.
Recall that the soft composites may develop elastic instabili-

ties under deformation [29–34]. Following the instability analysis
employed in previous studies [35–38], we utilize the dispersion
relations obtained through Bloch–Floquet analysis to predict the
onset of elastic instabilities. In particular, instability occurs at a
critical deformation level for which ω(k1) = 0(k1 ̸= 0). Based
on the corresponding wavelength of the buckling pattern, the
instabilities can be classified into macroscopic (or longwave) and
microscopic instability. Macroscopic instability is characterized
by the critical wavelength significantly larger than the charac-
teristic microstructure (k1 → 0), while microscopic instability
leads to the formation of new periodicity of the order of initial
microstructure.

3. Results

We start with analyzing the influence of the matrix phase
stiffening on the instabilities and occurrence of NGV state in lam-
inates. In Fig. 2, we plot the critical stretch λcr (blue circles) for
aminates with initial shear modulus contrast µ(f )/µ(m)

= 10 and
c(f ) = 0.02 as a function of matrix locking parameter J (m)m . Here
and thereafter, both phases have identical densities, i.e., ρ(f )/ρ(m)

(until stated otherwise). We observe that these laminates develop
microscopic instabilities at higher values of the matrix locking
parameter. Moreover, the stability of the composite increases (λcr
decreases) with the increase in the stiffening of matrix phase (a
decrease in J (m)m ). Notably, a completely stable scenario is realized
at smaller values of matrix locking parameter (J (m)m < 1.12). The
region where instability is attainable (J (m)m ≥ 1.12) is shaded
in yellow. In this region, the composites also show the transi-
tion in group velocity from positive to negative at deformations
smaller than the critical level; the corresponding stretch ratio is
represented using orange triangles in Fig. 2. In this region, the
deformation range for which NGV state is active is bounded by
the composite’s stability, hence, the NGV strain range is defined
as ∆εngv = λs − λcr . This strain range, as the function of J (m)m , is
highlighted by the checker-shaded area between the NGV onset
(orange) and the critical stretch (blue) curves. We observe that
similar to λcr , λs also decreases with the decrease in matrix
ocking parameter.

Remarkably, the left-handed behavior is even observed in
ome of the LCs that do not develop instability, J (m)m < 1.12. In
articular, the NGV state is exhibited by LCs with 0.98 < J (m)m <

.12; this region is shaded in red [see Fig. 2]. In these composites,
he slope of the dispersion curves turns negative at λs [see orange
ollow triangles] and switches back to positive at stretch λe
ermed as NGV ends [see hollow red squares]. Note that in this
egion, the laminates are absolutely-stable, and the critical stretch
oes not exist, therefore, the NGV strain range is defined as
εngv = λs−λe (highlighted by the checker-shaded area between

he NGV onset and NGV ends curves). Clearly, the absolutely-
table composites belonging to this (red) region are characterized
y wider NGV strain ranges as compared to those that develop
nstabilities (yellow region). We observe that with the decrease
n J (m)m , λs decreases, whereas λe increases, thus overall, there is a
ecrease in NGV strain range. Subsequently, at very small values
f matrix locking parameter (J (m) ≤ 0.98), the absolutely-stable
m
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Fig. 2. Critical stretch (blue circles) and stretch ratios for the onset (yellow
triangles) and end (red squares) of NGV state vs the matrix locking parameter
J (m)m . The checker-shaded region between the two curves shows the NGV strain
range ∆εngv . LCs with µ(f )/µ(m) = 10 and c(f ) = 0.02 are considered. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

aminates do not show the left-handed behavior, i.e., ∆εngv = 0;
his area is shaded in blue color.

Next, we study the evolution of dispersion relation with ap-
lied compression in the absolutely-stable composites that also
xhibit NGV state. In Fig. 3, we show the frequency (a) and the
roup velocity vgr = ∂ω/∂k1 (b) as the function of normalized
avenumber k̃1 = k1a/(2π ) in the absolutely-stable laminates
ith µ(f )/µ(m)

= 10, c(f ) = 0.02, and J (m)m = 1.1. The frequency is
ormalized as f̃ =

ωa
2π

√
ρ/µ̃ and the group velocity is normalized

by v0 =
√
µ̃/ρ, where µ̃ = (c(m)/µ(m) + c(f )/µ(f ))−1, and ρ =

(m)ρ(m) + c(f )ρ(f ) is the average density.
Clearly, the dispersion relation of the shear waves propagating

along the layers is highly tunable by the applied compression
level. First, the relation turns non-linear at smaller compression
levels (for example, at λ = 0.83), from linear in the undeformed
laminate (λ = 1). The applied contraction preferably affects the
shear waves with wavenumbers closer to the critical wavenum-
ber value. For the laminate considered in Fig. 3(a), the influence
becomes weak outside of the approximate range 0.0625 ≲ 1/k̃1 ≲
1. At further higher deformation levels, for example, at λ =

0.79, the slope of the dispersion curves turns negative at certain
wavenumbers, ∂ω/∂k1 < 0, however, the frequency remains
positive throughout, ω > 0. This state corresponds to the appear-
ance of NGV, which is activated via applied deformation [see the
dotted curves in Fig. 3(a) and (b)]. The range of wavenumber for
which the NGV is attained, ∆kngv , also varies with deformation.
First, the range increases with compression for λs ≲ 0.8, and
reaches its maximum at λ ≈ 0.76. Afterwards, ∆kngv decreases
for λ ≲ 0.76 and approaches ∆kngv = 0 at λe ≈ 0.72.

With further increase in the compression levels, we observe
that the slope of the dispersion curves switches back to positive
for all wavenumbers; for example, see the orange solid curves
corresponding to λ = 0.71 in Fig. 3(a) and (b). Moreover, at even
higher deformations, λ = 0.67, the non-linearity of the dispersion
curve further decreases. This change in the acoustic behavior can
3

be attributed to the significant stiffening of the matrix phase at
higher deformations, which results in the decrease of effective
stiffness contrast between the stiff layer and matrix phase. The
variation in the sign of group velocity with compression, for the S-
waves with wavenumber k̃1 = 5, is also illustrated by the scale in
Fig. 3(d), highlighted in color according to the direction of group
velocity – green for positive and red for negative. In particular,
the group velocity is negative between the deformation levels
λ ≈ 0.8 and λ ≈ 0.725 when k̃1 = 5.

Note that the appearance of the NGV state is also dictated by
the wavelength of the S-waves together with the deformation
level. For example, at wavenumbers k̃1 = 3 and k̃1 = 7, the
group velocity remains positive regardless of applied deforma-
tion [see green dash-dotted and black solid curves in Fig. 3(c)].
However, for waves with k̃1 = 5, the negative group velocity
is induced in the deformation level range from λ ≈ 0.8 to
λ ≈ 0.725. Recall that in the laminates that develop instability,
the appearance of NGV signals the forthcoming onset of buckling
with a comparable characteristic wavelength [22]. In the vicinity
of critical deformation level, the NGV state indicates the existence
of soft shear mode of equivalent wavelengths. In an absolutely-
stable laminate (considered in Fig. 3), the wavenumbers at which
the NGV occurs correspond to the similar soft mode that could
have transitioned into the buckling of the stiff layer. However,
a further compression leads to a decrease in the phase shear
modulus contrast due to strong stiffening of the matrix, resulting
in completely stable behavior. Moreover, in the vicinity of lock-
up stretch, because of extensive increase in stiffening of matrix
phase, the group velocity significantly increases irrespective of
the wavenumber of shear waves; for matrix phase with J (m)

m =

1.1, the lock-up stretch is λlock = 0.605.
Fig. 3(d) illustrates the change in the eigenmodes with applied

deformation for shear waves with wavenumber k̃1 = 5. The
modes are plotted for the undeformed (λ = 1), moderately
deformed (λ = 0.76), and highly deformed (λ = 0.64) laminates.
In the undeformed state, when the group velocity is positive, the
maximum amplitude of displacement occurs in the matrix phase.
At the deformation level λ = 0.76, the group velocity is negative,
highlighting the existence of soft shear mode that is closely re-
lated to the instability. Since laminate instability is manifested as
buckling of stiff layers, in the eigenmode corresponding to NGV,
we observe that comparatively larger displacement occurs in the
stiff layer. However, at higher deformation levels, for example
at λ = 0.64, there is a significant increase in the matrix phase
stiffness due to the stiffening phenomenon. This results in LC
with effectively very small stiffness contrast between the phases;
the composite does not develop instability and its behavior ap-
proaches the one similar to a homogeneous material. Therefore,
at this deformation level, the eigen mode has almost an equal
distribution of displacement field in the layer and matrix phase,
and the group velocity is positive.

Hitherto, we have shown that the NGV state can be induced
in the absolutely-stable composites. Next, we investigate the
deformation range for which the NGV state is active in these
composites and compare it with the results of laminates that are
prone to instabilities. To this end, in Fig. 4, we plot the NGV strain
range ∆εngv as the function of J (m)m . The results for laminates with
c(f ) = 0.06 and various initial shear modulus contrasts µ(f )/µ(m)
are shown in Fig. 4(a), and for different volume fractions and
µ(f )/µ(m) = 10 in Fig. 4(b). Recall that laminates with higher
values of J (m)m develop instabilities [see Fig. 2]; the NGV strain
range ∆εngv = λs − λcr in these composites is represented
using filled symbols and dotted curves. However, LCs with the
J (m)m values smaller than the transition value are absolutely-stable;
hollow symbols and solid curves show ∆εngv = λs −λe values for
these composites.
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Fig. 3. Dispersion relation, group velocity vgr = ∂ω/∂k1 , and eigen modes for absolutely-stable LC with µ(f )/µ(m) = 10, c(f ) = 0.02, and J (m)m = 1.1. (a) and (b)
Frequency and group velocity vs the normalized wavenumber k̃1 = k1a/(2π ), respectively, at different compression levels. (c) Group velocity as the function of
he stretch at different wavenumbers. (d) The eigen modes corresponding to k̃1 = 5 at λ = 1, 0.76, and 0.64. The color on the eigenmodes shows the relative
isplacement magnitude as per the color bar on right. The scale below shows the variation of group velocity’s sign with stretch ratio (green – positive and red –
egative). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. NGV strain range as the functions of matrix locking parameter. Laminates with c(f ) = 0.06 (a) µ(f )/µ(m) = 10 (b) are considered.
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Consider, for example, the laminates with shear modulus con-
trast µ(f )/µ(m)

= 10 and c(f ) = 0.06 [green triangles in Fig. 4(a)
nd (b)]. We observe that with an increase in the matrix phase
tiffening (decrease in J (m)m ), the NGV strain range increases for
he LCs that develop instabilities [see filled triangles]. Note that
here is a sharp increase in ∆εngv values close to the transition
oint (J (m)m ≈ 1.12). In contrast, in composites with J (m)m values
maller than transition point (corresponding to the absolutely-
table composites), the NGV strain range decreases with a de-
rease in J (m)m . Eventually, no NGV state is observed in composites
ith very small values of J (m)m . The NGV strain range attains its
aximum value, ∆εmax

ngv , at matrix locking parameter just smaller
han the transition value, i.e., in the absolutely-stable composites.
similar trend of ∆εngv dependence on the matrix locking pa-

ameter is observed for every LC, regardless of their initial shear
odulus contrast or volume fraction of phases [see Fig. 4(a) and

b)].
4

We observe that the ∆εmax
ngv value monotonically increases

ith a decrease in the initial shear modulus contrast of the
aminate. For example, in the laminates considered in Fig. 4(a),
he (µ(f )/µ(m), ∆εmax

ngv ) values are: (5, 8.5%), (10, 7%), (20, 4.37%),
and (40, 3.11%) [see Fig. 4(a)]. Similarly, ∆εmax

ngv also decreases
with an increase in the stiff layer volume fraction [see Fig. 4(b)].
Moreover, the value of J (m)m corresponding to transition and con-
equently the J (m)m value at which the ∆εmax

ngv is attained also
ecreases with increase in µ(f )/µ(m) and c(f ). This is due to the
act that the influence of matrix phase stiffening decreases in a
omposite with an increase in its shear modulus contrast and stiff
ayer’s volume fraction.

Next, we study the effect of phase densities on the NGV strain
ange. Fig. 5 shows the ∆εngv dependence on the density contrast
etween the phases, ρ(f )/ρ(m). In particular, the results are shown
or four different classes of laminates (with morphologies defined
n the caption of Fig. 5). Note that the composites (a) and (b)
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Fig. 5. NGV strain range as the function of density contrast. Four different class
of laminates are considered: (a) µ(f )/µ(m) = 10, c(f ) = 0.02, J (m)m = 1.11; (b)
(f )/µ(m) = 10, c(f ) = 0.06, J (m)m = 1.11; (c) µ(f )/µ(m) = 5, c(f ) = 0.06, J (m)m = 4;
nd (d) µ(f )/µ(m) = 10, c(f ) = 0.06, J (m)m = 1.5.

Fig. 6. Emergence of NGV state in laminate with µ(f )/µ(m) = 15 and c(f ) =

.13565. This laminate develops macroscopic instability at λ = 0.88184.

re absolutely-stable composites (represented using solid lines
nd hollow symbols), whereas LCs (c) and (d) develop micro-
copic instability (dotted lines and filled symbols). As expected,
he phase densities do not affect the stability characteristics of
he LCs. However, the NGV strain range is significantly affected
y the density contrast. We observe that ∆εngv monotonically
ncreases with increase in ρ(f )/ρ(m), regardless of the composite’s
orphology.
Thus far, we have studied the emergence of NGV state in LCs

hat either are absolutely-stable or exhibit microscopic instability.
an the LCs developing macroscopic mode of instability show this
eft-handed behavior? We find that there exist only a few special
orphologies of the composites that show the NGV state ahead of
acroscopic instability. These special morphologies correspond

o composites that have the material/geometric parameters in the
icinity of threshold values (where the transition in the instability
ode from micro to macro takes place). For example, in neo-
ookean laminates with shear modulus contrast µ(f )/µ(m)

= 15,
he instability mode switches from microscopic to macroscopic
ith an increase in stiff layer volume fraction at c(f ) ≈ 0.135.
th

5

As an example, consider the LC with stiff layer volume fraction
slightly higher than the threshold value c(f )th , i.e., c(f ) = 0.13565
and µ(f )/µ(m)

= 15 [see Fig. 6]; this composite develops macro-
scopic instability at λcr = 0.88184. However, at deformation
levels preceding the critical level, we observe that, for instance,
at λ = 0.88186, the dispersion curve turns non-linear. Moreover,
the negative slope of the dispersion curve is observed at λ =

.88185, which corresponds to the NGV state [see red dotted in
ig. 6 and its inset]. We note that the width of the deformation
ange at which the NGV state is activated is narrow, for this case,
εngv ≈ 1.5 × 10−3%. Arguably, from the experimental point

of view, this strain range may not be detectable. Nevertheless,
this allows us to conclude that composites with macroscopic
instability as the primary mode of failure can also exhibit NGV
state.

4. Conclusion

In summary, we have studied the emergence of the NGV state
corresponding to S-waves in layered composites traveling parallel
to the layers, which is the non-periodic direction. This state can
be reversibly activated via compression along the layers. We find
that this left-handed behavior can be evoked in the absolutely-
stable laminates. Remarkably, the strain range for which group
and phase velocity are anti-parallel, can be significantly higher in
laminates that do not buckle. We find that with an increase in ma-
trix phase stiffening the NGV strain range increases in laminates
that develop instabilities, whereas the strain range decreases in
the absolutely-stable composites. In practice, the extent of matrix
stiffening may be regulated through, for example, varying the
level of crosslink density [24]. For instance, the crosslink density
can be controlled by the light intensity during the polymerization
process of a 3D printed soft polymer [39,40]. Furthermore, de-
signing matrix phase using the combination of polymer networks
and stiff-inclusions can provide better control on its stiffening
behavior [41,42]. We also find that an increase in the density con-
trast between the phases results in further widening of the NGV
strain range (up to 11% in our examples). The enhancement can
be important for realizing the deformation-activated NGV states.
This unusual behavior may be further utilized in developing novel
acoustic metamaterials with negative time delays and backward
propagation of pulse, also known as fast light in optics [43–47].

Finally, we note that the reported dispersion relations resem-
ble those observed for the gravity-capillary waves on the surface
of stationary flowing water [48]. In particular, similar to surface
waves in water at a given current velocity, in laminates subjected
to certain deformation levels there exist horizons (points at which
the group velocity direction reverses). For example, see Fig. 3(a),
the slope of the red dotted curve switches twice: positive to
negative at k̃1 ≈ 3.5 and turns back positive at k̃1 ≈ 6.6;
these two (blocking) points are respectively termed as white and
blue horizons (for details see Rousseaux et al. [48]). Therefore, an
equally exciting prospect to investigate in future studies is that
akin to surface waves on fluids, S-waves in soft composites can
be potentially demonstrated as the mechanical wave analogue of
the Hawking effect (black hole radiation) and/or used to simulate
interstellar travels [49–52].
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