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A B S T R A C T   

We investigate the microscopic and macroscopic instabilities developing in magnetoactive elastomer (MAE) 
composites undergoing large deformations in the presence of an external magnetic field. In particular, we 
consider the MAEs with bi-phasic layered microstructure, with phases exhibiting ferromagnetic behavior. We 
derive an explicit expression for the magnetic field-induced deformation of MAEs with hyperelastic phases. To 
perform the magnetoelastic instability analysis, we employ the small-amplitude perturbations superimposed on 
finite deformations in the presence of the magnetic field. We examine the interplay between the macroscopic and 
microscopic instabilities. We find that the layered MAEs can develop microscopic instability with antisymmetric 
buckling modes, in addition to the classical symmetric mode. Notably, the antisymmetric microscopic instability 
mode does not appear in a purely mechanical scenario (when a magnetic field is absent). Furthermore, our 
analysis reveals that the wavelength of buckling patterns is highly tunable by the applied magnetic field, and by 
the properties and volume fractions of the phases. Our findings provide the information for designing materials 
with reconfigurable microstructures. This material ability can be used to actively tune the behavior of materials 
by a remotely applied magnetic field. The results can be utilized in designing tunable acoustic metamaterials, soft 
actuators, sensors, and shape morphing devices.   

1. Introduction 

Magnetoactive elastomers (MAEs) belong to a class of soft active 
materials that respond to remotely applied magnetic field. The appli
cation of magnetic field results in the modification of mechanical 
behavior and deformation (also referred to as magnetostriction) of these 
active materials. Thanks to their simple, remote, and reversible principle 
of operation, MAEs can provide the material platform for applications 
such as variable-stiffness devices [1,2], tunable vibration absorbers [3, 
4], damping devices [5,6], sensors [7,8], noise barriers [9,10], remotely 
controlled actuators [11–14], biomedicine [15], and soft robotics [16, 
17] among many others. 

In principle, MAEs are composite materials consisting of magnetiz
able particles (for example, carbonyl iron, nickel, or Terfenol-D) 
embedded in an elastomeric matrix material (such as silicone rubber, 
polyurethane) [18]. The magnetizable particles (from micro- to 
nano-size) are added into the matrix material in its liquid state. Upon 
polymerization, the MAEs with randomly distributed magnetizable 
particles are produced. Curing in the presence of a magnetic field, 

however, results in the alignment of magnetizable particles into 
chain-like structures (for a detailed description of the MAE synthesis, 
interested readers are referred to the review article by Bastola and 
Hossain [19]). 

There is a significant body of studies concerning the magneto- 
mechanical characterization of MAEs with different microstructures “ 
random and chain-like” are present in the literature. Jolly et al. [18] and 
Danas et al. [20] studied the shear response of chain-structured MAEs, 
showing, for example, that the effective shear modulus increases in the 
presence of a magnetic field. The effective moduli of MAEs are also re
ported to be increased by the applied magnetic field under uniaxial 
compression [21] and tensile tests [22]. The magnetostriction of MAEs 
with randomly distributed magnetizable particles under a very high 
magnetic field is analyzed by Bednarek [23]. Ginder et al. [2] and Guan 
et al. [24] determined the magnetostriction of random and 
chain-structured MAEs. The effect of particle rotation on the effective 
magnetization of MAEs is investigated by Lanotte et al. [25]. Moreno 
et al. [26] provided a comprehensive experimental characterization of 
MAEs with a special focus on the material response under various strain 
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rates. Dargahi et al. [27] performed the dynamic characterization of 
MAEs subjected to a wide range of excitation frequencies and magnetic 
flux densities. In these studies, the magnetizable particles are effectively 
rigid as compared to the elastomer matrix. The magneto-mechanical 
coupling observed in these MAEs is therefore majorly governed by the 
two underlying mechanisms, namely, magnetic torques and magnetic 
interaction between the particles. 

The pioneering works of Brown [28], Maugin and Eringen [29], 
Tiersten [30], Toupin [31], Truesdell and Toupin [32] laid the foun
dation for the theory of magnetoelastic (and mathematically analogous 
electroelastic) behavior of continuum, which has been reformulated and 
further developed [33–35]. In parallel, a number of 
microstructural-based magneto-elastic constitutive models are also 
developed, for example the lattice model [18,36,37]. Additionally, sig
nificant efforts have been made to implement the non-linear magne
toelastic framework into numerical schemes [38–40]. Castañeda and 
Galipeau [41] proposed an analytical approach to estimate the effective 
behavior of MAEs with the random distribution of magnetoactive par
ticles. In particular, they developed a finite strain nonlinear homoge
nization framework to determine the total magnetoelastic stress in MAEs 
under the combined mechanical and magnetic loading. By employing 
this framework, Galipeau and Castañeda [42] studied the effects of 
randomly distributed magnetizable particle shape, distribution, and 
concentration on the effective properties of MAEs. Moreover, Galipeau 
et al. [43] investigated the behavior of MAEs with periodic arrange
ments of circular and elliptical fibers, showing that by tailoring the 
periodic microstructure of MAEs, their magneto-mechanical behavior 
could be highly tuned. We note that these systems share some similar
ities with their mathematically analogous dielectric elastomer compos
ites [44–46]. 

While the heterogeneity provides access to the tailored and enhanced 
coupled behavior, it is also a source for the development of micro
structural instabilities. The instability phenomenon historically has been 
considered as a failure mode, which is to be predicted and avoided. This 
motivated the investigation of instabilities in composites subjected to 
purely mechanical loading [47–56]. Recently, the elastic instability 
phenomenon has been embraced to design materials with unusual 
properties and switchable functionalities [57,58]. Examples include 
instability-induced elastic wave band gaps [59,60], auxetic behavior 
[61–63], and photonic switches [64]. The possibility of controlling the 
instability development via magnetic field can provide the opportunity 
to activate these functionalities remotely. 

Extending the instability analysis for the coupled magneto- 
mechanical case, Ottenio et al. [65] studied the onset of 
magneto-mechanical instabilities in isotropic MAEs with a focus on 
surface instabilities of a homogeneous magnetoactive half-space. Kan
kanala and Triantafyllidis [66] investigated the failure modes of a 
rectangular MAE subjected to plane-strain loading conditions in the 
presence of a magnetic field. Rudykh and Bertoldi [67] analyzed the 
onset of macroscopic instabilities in anisotropic MAEs by deriving the 
exact solution for MAEs with layered microstructure. Danas and Tri
antafyllidis [68] studied the finite-wavelength instability modes occur
ring in an MAE substrate/layer system under a transverse magnetic field. 
Recently, Goshkoderia and Rudykh [69] employed a numerical finite 
element-based code to investigate macroscopic instabilities in MAEs 
with circular and elliptical inclusions. Very recently, Goshkoderia et al. 
[70] experimentally illustrated that the instability pattern can be 
tailored by the application of magnetic field in particulate magneto
active composites. 

Motivated by recent experimental studies showing the tunability of 
finite-wavelength instabilities via magnetic field [70,71], in this work, 
we study the onset of microscopic instabilities and associated buckling 
patterns in MAEs. In particular, we consider the MAEs with bi-phasic 
layered microstructure exhibiting ferromagnetic behavior. To investi
gate the onset of instabilities, we consider the small-amplitude pertur
bations superimposed on finite deformations in the presence of magnetic 

field to perform the microscopic instability analysis. Moreover, we 
analyze the limit corresponding to the long-wave or macroscopic 
instability. We examine the influences of the applied magnetic field and 
material parameters on MAE’s stability. Additionally, we study the 
magnetostriction of layered MAEs and derive an explicit expression for 
the induced stretch as a function of the applied magnetic field, me
chanical and magnetic properties of layers, and their volume fractions. 

This paper is structured as follows: Section 2 presents the theoretical 
background on magneto-elastostatics and incremental analysis together 
with the constitutive laws for magnetically linear and ferromagnetic 
behavior. Section 3 is concerned with the analysis of the magneto- 
deformation and determination of the microscopic and macroscopic 
instabilities in layered MAEs. Section 4 illustrates the results with ex
amples of magnetostriction and magnetoelastic instabilities in MAEs 
with various morphologies and material properties. Section 5 concludes 
the paper with a summary and a discussion. 

2. Theoretical background 

2.1. Magneto-elastostatics 

Consider a magnetoelastic deformable body that occupies a region 
B0 in the undeformed configuration. Under the action of a combination 
of mechanical loading and magnetic field, the body deforms into the 
current configuration B. The deformation is described by the function x 
that maps the reference point X in B0 to its deformed position x = x(X)

in B. The deformation gradient is thus defined as F = ∂x/∂X with its 
determinant J ≡ detF > 0. 

In this work, we consider quasi-static deformation in the absence of 
an electric field, electrical charges, or electrical currents within the 
material. Consequently, the magnetic induction B and magnetic in
tensity H (in the current configuration) satisfy the following field 
equations 

divB = 0 and curlH = 0, (1)  

where the div and curl are the differential operators defined with respect 
to x. In the Lagrangian form, Eq. (1) can be written as [33] 

DivB0 = 0 and CurlH0 = 0, (2)  

where the Div and Curl operators are defined with respect to X, B0 =

JF− 1B and H0 = FTH are the Lagrangian counterparts of the magnetic 
fields. Moreover, in a heterogeneous body, magnetic fields satisfy the 
jump conditions across the interface 

[[B]]⋅N = 0 and [[H]] × N = 0, (3)  

or alternatively, 
[[

B0]]⋅N0 = 0 and
[[

H0]]× N0 = 0, (4)  

where N and N0 denote the normal to the interface in the deformed and 
reference configurations, respectively. The jump operator [[•]] ≡ (•)

+
−

(•)
− is defined such that N and N0 are pointing towards phase (•)− . The 

magnetization is customarily defined as 

M =
B
μ0

− H, (5)  

where μ0 is the vacuum magnetic permeability. 
Following the works of Brown [28], Coleman and Noll [72], Kovetz 

[73], the magnetization is constitutively defined in terms of free-energy 
function ϕ(F,B) as 

M = − ρ ∂ϕ
∂B

, (6)  

where ρ is the material density in the current configuration. The total 

P. Pathak et al.                                                                                                                                                                                                                                  



International Journal of Mechanical Sciences 213 (2022) 106862

3

Cauchy stress σ is given by 

σ = ρ ∂ϕ
∂F

FT −
1

2μ0
(B⋅B)I + H ⊗ B + (M⋅B)I. (7) 

In terms of these relations, the energy-density function ϕ fully 
characterizes the behavior of magneto-active elastomers. Note that in 
the absence of material (or vacuum), the stress tensor (7) is still non-zero 
and depends on the magnetic field. The corresponding stress tensor is 
also referred to as Maxwell stress. The free energy in Lagrangian form is 
defined as Φ(F,B0) = ϕ(F,J− 1FB0). In terms of Φ, a Lagrangian amended 
energy function can be constructed as [33] 

W
(
F,B0) = ρ0Φ

(
F,B0)+

FB0⋅FB0

2μ0J
, (8)  

where ρ0 = ρJ is the material density in the reference configuration. 
Then, the corresponding Lagrangian variables are given by 

H0 =
∂W
∂B0 and P =

∂W
∂F

, (9)  

where P is the 1st Piola Kirchhoff stress tensor. Eqs. (7)–(9) hold true for 
compressible hyperelastic materials. For incompressible materials (J =
1), however, the total Cauchy stress tensor is 

σ =
∂W
∂F

FT − pI, (10)  

where p is the Lagrange multiplier associated with the incompressibility 
constraint. 

In the absence of body forces, the total Cauchy and 1st Piola- 
Kirchhoff stress tensors satisfy the equilibrium conditions 

divσ = 0 and DivP = 0. (11) 

The corresponding jump conditions at the interface are 

[[σ]]⋅N = 0 and [[P]]⋅N0 = 0. (12)  

2.2. Incremental equations 

Here, following the approach commonly used to study instabilities 
[65,67,69,74,75], we define the governing equations for the incre
mental deformation superimposed on finite deformation in the presence 
of a magnetic field. The incremental governing equations are 

DivṖ = 0, DivḂ0
= 0 and CurlḢ0

= 0, (13)  

where Ṗ, Ḃ0, and Ḣ0 are the incremental changes in P, B0, and H0, 
respectively. Under the assumption that the incremental quantities are 
sufficiently small, the linearized constitutive relations can be expressed 
using the Einstein summation notation as 

Ṗij = A
0
ijklḞkl + M

0
ijkḂ0

k , and Ḣ0
i = M

0
iklḞkl + H

0
ikḂ0

k , (14)  

where 

A
0
ijkl =

∂2W
∂Fij∂Fkl

, M
0
ijk =

∂2W
∂Fij∂B0

k
, and H

0
ik =

∂2W
∂B0

i ∂B0
k
. (15)  

For an incompressible material, Eq. (14)1 modifies to 

Ṗij = A
0
ijklḞkl + M

0
ijkḂ0

k − ṗF− T
ij + pF− 1

jk ḞklFli, (16)  

where ṗ is the incremental change in p. 
In the current configuration, the magnetoelastic moduli are defined 

as 

A ijkl = J− 1FjαFlβA
0
ikαβ, M ijk =FjαF− 1

kβ M
0
iαβ, and H ij = JF− 1

iα F− 1
jβ H

0
αβ, (17)  

and they possess the following symmetries 

A ijkl = A klij, M ijk = M kij, and H ij = H ji. (18)  

The updated incremental governing equations take the form 

divσ̇ = 0, divḂ = 0, and curlḢ = 0, (19)  

where σ̇, Ḃ, and Ḣ are the “push-forward” counterparts of Ṗ, Ḃ0, and Ḣ0, 
respectively. These incremental changes are related as 

σ̇ = J− 1FT Ṗ, Ḃ = J− 1FḂ0
, and Ḣ = F− T Ḣ0

. (20) 

We define the incremental displacement v = ẋ with Ḟ = (gradv)F. 
Substituting Eqs. (14), (16), and (17) into Eq. (20), we obtain 

σ̇ij = A ijkl
∂vk

∂xl
+ M ijkḂk − ṗδij + p

∂vj

∂xi
, and Ḣi = M ijk

∂vj

∂xk
+ H ikḂk. (21)  

Upon substitution of Eq. (21) into Eqs. (19)1 and (19)3, we obtain 

A ijkl
∂2vk

∂xj∂xl
+M ijk

∂Ḃk

∂xj
−

∂ṗ
∂xi

= 0 and ϵisp

⎛

⎝M ijk
∂2vj

∂xk∂xp
+H ij

∂Ḃj

∂xp

⎞

⎠= 0, (22)  

where ϵisp is the Levi-Civita permutation tensor. 

2.3. Magnetic energy functions 

In this work, we assume the magnetoactive elastomers to be 
magnetically soft, so that the hysteresis effects can be neglected. More
over, we consider the magnetic particles to be isotropic and super
paramagnetic, i.e., demagnetization effects are neglected. On the basis 
of whether the materials show saturation effects, they can be constitu
tively defined either by linear or ferromagnetic material models. 

2.3.1. Linear magnetic materials 
Linear magnetic materials show a linear dependence of magnetiza

tion on the magnetic induction B, namely, 

μ0M = χB, (23)  

where χ is the magnetic susceptibility.1 Alternatively, the constitutive 
relation can be written as 

B = μH, (24)  

where μ = μ0/(1 − χ) is the magnetic permeability. The corresponding 
magnetic energy is 

ρϕm(B) = −
1

2μ0
B⋅χB. (25)  

2.3.2. Ferromagnetic materials 
For ferromagnetic materials, the magnetization reaches a saturation 

state at sufficiently high magnetic fields, beyond which there is no 
further increase in magnetization. Assuming the soft ferromagnetic 
behavior and magnetic particles being large compared to the typical 
domain size, the material behavior can be idealized as having a single- 
valued constitutive behavior. Although other models can be used, we 
use the isotropic Langevin model to define the ferromagnetic behavior in 
the forthcoming analysis. For this model, the magnetization is defined 
by the following relation 

1 In this work, we use the magnetic susceptibility, χ, defined via magnetic 
induction as μ0M = χB. Note the alternative definition of magnetic suscepti
bility in terms of magnetic intensity is M = χHH. These susceptibilities are 
related as χH = χ/(1 − χ). 
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M(B) = ms

B

[

coth
(

3χB
μ0ms

)

−
μ0ms

3χB

]

B, (26)  

where ms is the saturation magnetization and B is the magnitude of the 
magnetic induction vector B, i.e., B = |B|. Alternatively, the constitutive 
relation can also be expressed as 

B = μ(B)H, (27)  

where 

μ(B) = μ0

(

1 −
μ0ms

B

[

coth
(

3χB
μ0ms

)

−
μ0ms

3χB

])− 1

. (28)  

The corresponding magnetic energy is 

ρϕm(B) = −
μ0m2

s

3χ

[

ln
(

sinh
[

3χB
μ0ms

])

− ln
(

3χB
μ0ms

)]

. (29) 

Fig. 1 a illustrates the magnetic B − H dependence for linear and 
ferromagnetic materials. Here, we plot the magnitude of magnetic in
tensity H as the function of B, for materials with initial susceptibility χ =
0.9. The black solid curve represents the behavior of the linear magnetic 
material. The non-solid curves show the response of ferromagnetic 
materials with magnetic saturation values: μ0ms = 2 T (red dash-dotted 
curve), μ0ms = 5 T (blue dotted curve), and μ0ms = 10 T (green dashed 
curve). As expected, the B − H curve for linear magnetic material shows 
a linear response. However, for ferromagnetic materials, the depen
dence is nonlinear, specifically at small magnetic fields. However, once 
the saturation limit of magnetization is achieved at a relatively high 
magnetic field, they show the linear relation in H and B. 

Fig. 1 b shows the normalized magnitude of magnetization M /ms as 
the function of normalized magnetic induction B/(μ0ms). The solid 
curves represent the response of the ferromagnetic materials, whereas 
the dash-dotted curves correspond to the linear magnetic materials. We 
consider the materials with three initial susceptibilities: χ = 0.9 (black 
curves), χ = 0.7 (green curves), and χ = 0.5 (red curves). As expected, 
the linear magnetic materials show the linear dependence of magneti
zation on magnetic induction, with slopes proportional to their corre
sponding magnetic susceptibilities χ. Ferromagnetic materials also show 
the linear response, however, only at small magnetic fields. At relatively 
high magnetic induction magnitudes, the magnetization in these mate
rials approaches the saturation values, M/ms→1 (see the solid curves). In 
ferromagnetic materials with higher initial susceptibilities, the satura
tion magnetization values are achieved at comparatively smaller mag
netic induction magnitudes. 

3. Analysis and Results 

We examine incompressible magnetoactive elastomers with bilayer 
microstructure (schematically shown in Fig. 2) having lamination di
rection L. The volume fraction of the matrix phase is c(m), and that of the 
stiff layer is c(f) = 1 − c(m). Here and thereafter, we denote the param
eters and fields corresponding to the matrix and stiff layers as (•)(m) and 
(•)

(f), respectively. The average deformation gradient F and magnetic 
induction B are defined as 

F = c(m)F(m) + c(f )F(f ) and B = c(m)B(m) + c(f )B(f ). (30) 

In this work, we investigate the magneto-mechanical loading defined 
as 

F = λe1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3 and B = Be2, (31)  

where λ is the stretch along the direction of layers, and λ2 = λ− 1 for 
incompressible MAEs. Note that we consider an idealization of the pe
riodic microstructure unit cells (schematically shown in Fig. 2b) situated 
far from the specimen boundaries. Under the assumed separation of 
length scales, the mechanical and magnetic fields can be considered to 
be homogeneous in each layer of the laminate and are determined by the 
appropriate jump conditions. 

The displacement continuity condition at the layer interface implies 
(
F(m) − F(f ))⋅s = 0 (32)  

where s is a unit vector perpendicular to the lamination direction L. 
Using Eq. (32), for the deformation gradient F (31)1 with incompressible 
phases, we can write 

F(m) = F(f ) = λe1 ⊗ e1 + λ− 1e2 ⊗ e2 + e3 ⊗ e3. (33) 

In the deformed configuration, the thicknesses of the matrix and stiff 
layers are L(m) = c(m)L and L(f) = c(f)L, respectively, where L is the period 
of the layered material in the current state. Moreover, using the mag
netic induction jump condition (3) at the interface for the current 
magnetic loading (31)2, we obtain 

B(f ) = B(m) = Be2. (34) 

We consider the laminates with the isotropic layers, with each layer 
(r) ∈ {m, f} defined by the following amended energy function 

W(r) = W(r)
e + W(r)

m , (35)  

where W(r)
e is the elastic part and W(r)

m is the magnetic part. Although the 
analysis presented here is general, we consider the elastic part of both 

Fig. 1. The dependence of magnetic intensity magnitude H (a) and magnetization M (b) on the magnetic induction magnitude B; initial susceptibility is χ = 0.9 in (a).  
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phases to adopt the neoHookean material model for simplicity. The 
corresponding energy function is 

W(r)
e =

G(r)

2
(I1 − 3), (36)  

where G(r) is the shear modulus of the phase (r) and I(r)1 = trC(r), C(r) =

F(r)⊺F(r) is the right Cauchy-Green deformation tensor, and F(r) is the 
deformation gradient. The magnetic part of the amended energy func
tion W(r)

m for each layer is defined as 

W(r)
m = ρ(r)ϕ(r)

m +
1

2μ0
B⋅B, (37)  

where the term ρ(r)ϕ(r)
m can be defined either using the expression (25) or 

(29), according to the magnetic behavior of the layer; B(r) denotes the 
magnetic induction vector. Note that the second term, B(r)⋅B(r) /(2μ0), is 
independent of material constants; therefore, the magnetic energy is 
non-zero in the free space or in a non-magnetic material. The non-zero 
components of the corresponding magnetoelastic moduli tensors A ijkl, 
M ijk, and H ij for each phase are provided in Appendix A, separately for 
both types of magnetic behaviors – linear and ferromagnetic. 

3.1. Magnetostriction 

Here, we evaluate the deformation of the magnetoactive laminates 
with the application of magnetic field (31)2, without any mechanical 
traction. In particular, we study the homogenized response of the peri
odic unit cell shown in Fig. 2b. Using Eq. (10), the stress field inside an 
incompressible layer (r), with the amended energy function given by 
Eqs. (35)–(37) can be written as 

σ(r) = G(r)FFT
+

1
μ(r)B ⊗ B − p(r)I, (38)  

where the magnetic permeability μ(r) can either be constant or a function 
of B (28) depending on the choice of the energy function. 

The stress field jump condition across the interface L = e2 yields σ(m)

22 

= σ(f)
22. We assume that the finite MAE specimen (Fig. 2a) is surrounded 

by a vacuum. Using the mechanical traction-free boundary conditions 
and the stress field jump condition, we obtain 

c(m)σ(m) + c(f )σ(f ) = σ*
m, (39)  

where σ*
m is the Maxwell stress tensor defined as 

σ*
m =

1
μ0

(

B ⊗ B −
1
2

(
B⋅B

)
I
)

. (40)  

Then, the stress components become 

σ(r)
22 =

G(r)

λ2 +
B2

μ(r) − p(r) =
B2

2μ0
, and

c(m)σ(m)

11 + c(f )σ(f )
11 = Gλ2 −

(
c(m)p(m) + c(f )p(f )) = −

B2

2μ0
,

(41)  

where G = c(m)G(m) + c(f)G(f). By eliminating the Lagrange multipliers 
p(m) and p(f) from Eq. (41), the relation between the applied magnetic 
field and induced stretch is obtained as 

λ2 − λ− 2 =
B2

Gμ0

(

μ̃− 1
r − 1

)

, (42)  

where μ̃r is the weighted harmonic mean of relative magnetic perme
abilities, defined as 

μ̃r =

(
c(m)

μ(m)
r

+
c(f )

μ(f )
r

)− 1

. (43)  

Here, μ(r)
r = μ(r)/μ0 is the relative magnetic permeability of phase (r). In 

the case of the linear magnetic layer, μ(r)
r is a constant. However, for the 

ferromagnetic layer, μ(r)
r can be expressed as a function of B, in terms of 

layer’s magnetic saturation value m(r)
s and the initial magnetic suscep

tibility χ(r) (see Eq. (28)). Hence, expression (42) is applicable for MAEs 
having layers with any type of magnetic behavior — linear or ferro
magnetic. Equation (42) further simplifies to yield an explicit expression 
for λ, namely, 

λ =

[
α + (α2 + 4)1/2

2

]1/2

, (44)  

where 

α =

B2
(

μ̃− 1
r − 1

)

Gμ0
. (45) 

For magnetoactive layers (μ̃r > 1), the application of magnetic field 
results in contraction along the layer direction, λ < 1 (or λ2 > 1). We 
note that certain magneto-mechanical loading conditions can lead to the 
development of magnetoelastic instabilities [66,67]; the analysis of the 
magnetoelastic instabilities is provided in the next subsection. 

3.2. Magnetoelastic instabilities 

The onset of instabilities in MAE with bilayer microstructure is 
determined as follows. In each layer, we seek a solution for Eq. (22) of 
the form 

Fig. 2. Magnetoactive elastomer (MAE) specimen is placed in the presence of an external magnetic field (a). The MAE has layered microstructure (b).  
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vi = vi(x2)eik1x1 , ṗ(x1, x2) = q(x2)eik1x1 , and
Ḃi(x1, x2) = Ḃi(x2)eik1x1

(46)  

where k1 is the wavenumber along the e1-direction. The incompressi
bility constraint implies 

ik1v1 + v′

2 = 0, (47)  

where (•)
′

= (•),2. Substitution of Eq. (46)3 into the Eq. (19)2 results in 

ik1Ḃ1 + Ḃ
′

2 = 0. (48)  

In terms of the non-zero components of magnetoelastic tensors, the in
cremental governing Eq. (22) can now be written as 

− ik1q − k2
1A 1111v1 + A 1212v′′1 + M 121Ḃ

′

1 = 0,
iq′

+ ik2
1A 2121v2 − k1A 2222v′

1 + k1(M 121 − M 222)Ḃ1 = 0,

M 121v′′1 + k2
1(M 121 − M 222)v1 + H 11Ḃ

′

1 − ik1H 22Ḃ2 = 0.

(49)  

Eqs. (47), (48), and (49) provide a set of six linear homogeneous first- 
order differential equations that depend on the vector of six unknown 
quantities ̃u = (v1,v

′

1,v2,Ḃ1,Ḃ2,q). The equations can be written together 
as 

Rũ = ũ
′

, (50)  

where the non-zero components of the matrix R are given in Appendix B. 
The solution to Eq. (50) can be determined in the form 

ũ = WZ(x2)u0, (51)  

where W is the eigenvector matrix of R, Z(x2) = diag[exp(zx2)] is a di
agonal matrix. Here, z is the eigenvalue vector of matrix R; u0 is an 
arbitrary constant vector which will be determined using the continuity 
and quasi-periodicity conditions of the unit cell. 

For the periodic unit cell of the layered composite (as shown in 
Fig. 2), the quasi-periodic boundary conditions are 

ũ(x2 +L) = ũ(x2)exp(ik2L), (52)  

where k2 ∈ [0, 2π /L) is the Floquet parameter. In the domain 0 < x2 < L 
+ L(m), solution (51) takes the form 

ũ(x2) = W
m

Z
m
(x2)u0

m−
, 0 < x2 < L(m),

ũ(x2) = W
f

Z
f
(x2)u0

f
, L(m) < x2 < L, and

ũ(x2) = W
m

Z
m
(x2)u0

m+
, L < x2 < L + L(m).

(53)  

On substituting Eq. (53) into (52), we obtain 

u0
m+

= exp(ik2L)
(

Z
m
(L)

)− 1
u0
m−
. (54) 

The set of interface jump conditions for the incremental fields are 

[[vi]] = 0, [[σ̇]]L = 0,
[[

Ḃ
]]

L = 0, and
[[

Ḣ
]]

× L = 0. (55)  

Using Eqs. (46), (47), and (48), the jump conditions (55) can be 
rewritten in terms of the components of ũ as 

[[v1]] = 0, [[v2]] = 0,
[[

Ḃ2

]]
= 0,

[[
M 121Ḃ1 + ik1pv2 + A 1212v

′

1

]]
= 0,

[[
M 222Ḃ2 − ik1(A 2222 + p)v1 − q

]]
= 0,

[[
H 11Ḃ1 + M 121v

′

1 + iM 121k1v2

]]
= 0.

(56)  

Eq. (56) can be written in the form [[Qũ]] = 0. The non-zero components 
of the matrix Q are 

Q11 = Q23 = Q55 = − Q46 = 1, Q32 = A 1212, Q33 = ik1p,
Q34 = M 121, Q41 = − ik1(A 2222 + p), Q45 = M 222,

Q62 = M 121, Q63 = ik1M 121, Q64 = H 11.

(57) 

Finally, by using Eq. (53) we obtain 

Q
m

W
m

Z
m
(L(m))u0

m−
= Q

f
W

f
Z
f
(L(m))u0

f
and Q

m
W
m

Z
m
(L)u0

m+
= Q

f
W

f
Z
f
(L)u0

f
. (58)  

Combining Eqs. (54) and (58) results in the following condition for the 
existence of a non-trivial solution 

det[K − exp(ik2L)I] = 0, (59)  

where 

K =
(

Q
m

W
m )− 1

Q
f

W
f

Z
f (

L(f ))
(

Q
f

W
f
)− 1

Q
m

W
m

Z
m
(L(m)). (60) 

Thus, if the condition (59) is satisfied for a combination of me
chanical and magnetic loads, a solution of the form (46) exists. The 
solution ũ lies in the real space, and from Eq. (52), exp(ik2L) is also real- 
valued; hence, non-trivial solutions are exp(ik2L) = ±1.The instability 
criterion (59) is evaluated with scanning over the values of k1 at 
different deformation levels for a given magnetic field until the eigen
value with |exp(ik2L)| = 1 is obtained. Once the condition is satisfied, the 
corresponding stretch along the direction of layers (e1) that separates the 
unstable and stable domain (illustratively shown in Fig. 6a) is termed as 
the critical stretch λcr and the corresponding wavenumber is the critical 
wavenumber k1cr. 

Based on the buckling pattern wavelength, we distinguish the 
macroscopic (or long-wave) and microscopic instabilities. Macroscopic 
instability is characterized by the critical wavelength significantly larger 
than the characteristic microstructure (k1cr→0), whereas microscopic 
instability may lead to the formation of a new periodicity of the order of 
the initial microstructure (see [48] for the purely mechanical case). 
Furthermore, depending on the two possible values of eigenvalue: 
exp(ik2L) = 1 and − 1, the buckling modes can be classified as sym
metric for k2L = 2nπ and antisymmetric for k2L = (2n − 1)π (with n 
being an integer). For illustrating these instability modes in the plots, 
hereafter, we use k2L = 2π and k2L = π (with n = 1) to represent the 
symmetric and antisymmetric modes, respectively. These buckling 
modes are schematically shown in Fig. 3. 

4. Examples 

In this section, we illustrate the analysis through the examples for the 
laminate MAEs with magnetically inactive matrix (i.e., χ(m) = 0), and 
different magnetic behaviors of the stiffer active layer. In the discussion 
hereafter, we denote the magnetic parameters corresponding to the 
stiffer active layer without the superscript (f). 

4.1. Magnetostriction in layered MAEs 

In this subsection, we analyze the magnetic field induced deforma
tion in the layered MAEs. In Fig. 4, we plot the field-induced stretch as 
the function of normalized magnetic induction Bm = B/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
G(m)μ0

√
. Here, 

λmag is the stretch induced along the direction of applied magnetic field 
(e2), which is determined using Eq. (44) as λmag = λ2 = λ− 1. The results 
are shown for MAEs with stiff layer volume fraction c(f) = 0.4, initial 
magnetic susceptibility χ = 0.9, and initial shear modulus contrast G(f)/

G(m) = 10. The black solid curve denotes the response of the MAE with 
the stiff layer characterized by the linear magnetic behavior. For the stiff 
layer with ferromagnetic behavior, we consider three magnetic satura
tion values: msμ0 = 10 T (green dashed curve), msμ0 = 5 T (blue dotted 
curve), and msμ0 = 2 T (red dash-dotted curve). 

Clearly, the magnetic field induced stretch λmag increases with an 
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increase in the applied magnetic field for both the MAEs with linear 
magnetic and ferromagnetic behaviors. We observe that MAE with the 
linear magnetic behavior undergoes larger deformations as compared to 
those with the ferromagnetic behavior. For instance, at Bm = 7, the 
induced stretch corresponding to linear magnetic MAE is λmag = 2.01, 
whereas in MAE with msμ0 = 2 T it is λmag = 1.66. Moreover, among the 
MAEs with ferromagnetic behavior, the stretch λmag decreases with a 
decrease in magnetic saturation value. For example, at Bm = 10, the 
magnetic field-induced stretch decreases from λmag = 2.74 to λmag = 2.03 
as magnetic saturation decreases from msμ0 = 10 T to msμ0 = 2 T (see 
green and red curves). 

The observed dependence of magneto-deformation on msμ0 values is 
due to the variation in MAE’s effective magnetic permeability. In 
particular, with the decrease in the magnetic saturation values, the 
effective magnetic permeability also decreases (28), leading to an in
crease in the contribution of magnetic stress into the total stress, Eq. 
(38). However, Maxwell’s stress σ*

m does not change with MAE’s mag
netic properties, and to satisfy the mechanical traction-free boundary 
conditions, the total stress inside the MAE also remains constant, Eq. 
(39). Therefore, an increase in magnetic stress is compensated by a 

decrease in mechanical stress. Thus, the MAE undergoes comparatively 
smaller deformations as the active layer’s magnetic saturation value 
decreases. 

Next, in Fig. 5, we plot the magnetic field induced stretch as the 
function of stiff active layer volume fraction c(f). The MAEs with χ = 0.9 
are subjected to the magnetic field of magnitude Bm = 10. Similar to 
Fig. 4, in Fig. 5a, we consider the ferromagnetic MAEs with G(f)/G(m) =

10 having different magnetic saturation values. For completeness, we 
show the results for linear magnetic MAEs with different shear modulus 
contrasts in Fig. 5b. 

We observe that the field-induced stretch monotonically increases 
with an increase in c(f), regardless of MAE’s magnetic behavior (see 
Fig. 5a) and shear modulus contrast (see Fig. 5b). This is because, only 
the stiff layer contributes to the response of MAEs under the applied 
magnetic field. Similar to the observations in Fig. 4, the induced stretch 
is higher for linear magnetic behavior, and λmag decreases with a 
decrease in msμ0. As expected, the magnetic field induced deformation 
decreases with an increase in shear modulus contrast (see Fig. 5b). 

4.2. Magnetoelastic instabilities in layered MAEs 

In this subsection, we analyze the magnetoelastic instabilities in 
MAEs with bilayered microstructure. First, we investigate the effect of 
the applied magnetic field Bm on the critical stretch λcr and wavenumber 
kcr, and related instability modes. Here, λcr denotes the critical stretch 
value (λ1 along the direction of layers e1) corresponding to the onset of 
instability. In the second part of this subsection, we examine the role of 
phase volume fraction in the development of instabilities in MAEs with 
different magnetic behaviors. In the following examples, we consider the 
MAEs with initial shear modulus contrast G(f)/G(m) = 10. 

4.2.1. Effect of magnetic field on magnetoelastic instabilities 
We start by illustrating the influence of the applied magnetic field on 

the stability of MAEs with linear magnetic behavior. Fig. 6 shows the 
critical stretch (a) and normalized critical wavenumbers: k*

1 and k*
2 (b) as 

the functions of normalized magnetic induction Bm. The wavenumbers 
are normalized with respect to the period length L in the current 
configuration (see Fig. 2) as k*

1 = k1L and k*
2 = k2L. We consider the 

MAEs with stiff layer volume fraction c(f) = 0.6 and initial magnetic 
susceptibility χ = 0.95. Here and thereafter, we use solid and dotted 
curves for macroscopic and microscopic instabilities, respectively (see 
Fig. 6a). Furthermore, solid and dash-dotted curves denote the critical 
wavenumbers k*

1 and k*
2, respectively (see Fig. 6b). 

We find that the critical stretch increases with an increase in the 
applied magnetic field. Furthermore, we observe that when the MAE is 
subjected to a smaller magnetic field (Bm ≤ 2.5), it develops instabilities 

Fig. 3. Schematic representation of the symmetric (a) and antisymmetric (b) microscopic instability modes.  

Fig. 4. Magnetic field-induced stretch λmag = λ2 as the function of normalized 
magnetic induction Bm = B/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
G(m)/μ0

√
. MAE with stiff layer’s volume fraction 

c(f ) = 0.4, initial magnetic susceptibility χ = 0.9, and initial shear modulus 
contrast G(f)/G(m) = 10 are considered. 
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under compressive strains (λcr < 1). Interestingly, at higher magnetic 
fields, MAE is unstable even under tensile strains. For example, the MAE 
is unstable for λ < 1.59, when subjected to Bm = 7. Moreover, we find 
that the instability mode switches at a certain threshold magnitude of 
magnetic induction Bth

m . In particular, macroscopic instability appears 
for Bm < Bth

m , whereas microscopic instability emerges for Bm > Bth
m . For 

the considered MAE, the threshold value is Bth
m = 4.1. 

The transition in the instability mode is also evident from the evo
lution of the critical wavenumbers (k*

1 and k*
2) with the magnetic field 

(see Fig. 6b). For Bm > Bth
m , the wavenumbers have finite non-zero 

values, hence, representing the microscopic instability. In particular, 
the MAEs develop an antisymmetric mode of microscopic instability, as 
the critical wavenumber k*

2 = π, when subjected to this range of mag
netic field values (see. Fig. 6b). Moreover, we find that the wavenumber 
k*

1 monotonically decreases with an increase in Bm, hence, showing the 
tunability of buckling patterns with an applied magnetic field. For 
magnetic induction magnitudes smaller than Bth

m , both the critical 
wavenumbers (k*

1 and k*
2) approach zero, kcr→0, showing the long-wave 

or macroscopic loss of stability. 
Next, we investigate the development of magnetoelastic instabilities 

in MAEs with ferromagnetic behavior. Fig. 7 shows the critical stretch 
(a),(c), and critical wavenumbers (b),(d) as functions of Bm for MAEs 

with χ = 0.95. The results are shown for MAEs with stiff layer volume 
fractions: c(f) = 0.4 (Fig. 7a and b) and (Fig. 7c and d). We consider the 
MAEs with magnetic saturation values: msμ0 = 10 T (blue curves), 
msμ0 = 5 T (red curves), and msμ0 = 2 T (green curves). The results for 
MAEs with the linear magnetic behavior are included for comparison 
(black curves). 

Similar to MAEs with linear magnetic behavior, the MAEs with 
ferromagnetic behavior also develop instabilities at higher stretches 
when subjected to higher magnetic fields. However, we observe that the 
critical stretch, at a particular magnetic induction magnitude, decreases 
with a decrease in the MAE magnetic saturation value. For example, in 
MAEs with c(f) = 0.4 at Bm = 8, the critical stretches (with corre
sponding magnetic saturation values) are λcr = 1.55 (msμ0 = 10 T), λcr =

1.22 (msμ0 = 5 T), and λcr = 0.96 (msμ0 = 2 T); for linear magnetic 
behavior, λcr = 1.88. Moreover, the critical stretches of MAEs with 
smaller magnetic saturation values, for example, msμ0 = 5 T and msμ0 =

2 T, approach a saturation value at higher values of Bm (see the red and 
green curves in Fig. 7a and c). These observations hold regardless of the 
volume fraction of phases. 

The effect of the applied magnetic field on the buckling patterns and 
instability modes strongly depends on the stiff layer volume fraction and 
its magnetic behavior. First, consider the MAEs with a high stiff layer 
volume fraction, c(f) = 0.4. We observe that in these MAEs, the 

Fig. 5. Magnetic field induced stretch λmag = λ2 as the function of active layer volume fraction c(f). The results are shown for (a) ferromagnetic MAEs with G(f) /G(m)

= 10 and (b) linear magnetic MAEs with different shear modulus contrast values. MAEs with initial magnetic susceptibility χ = 0.9 are subjected to magnetic field Bm 

= 10. 

Fig. 6. Critical stretch λcr (a) and normalized critical wavenumbers (b) vs. the normalized magnetic field Bm. MAEs with stiff layer’s volume fraction c(f) = 0.6 and 
initial magnetic susceptibility χ = 0.95. 
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threshold magnetic induction Bth
m , at which the instability mode 

switches, increases with a decrease in msμ0. Thus, the MAEs composites 
with lower magnetic saturations favor the long instability over the 
microscopic one. For the considered MAEs, the transition occurs at Bth

m =

4 (linear) and Bth
m = 6.1 (msμ0 = 10 T). Interestingly, the MAEs with 

magnetic saturation values msμ0 = 5 T and msμ0 = 2 T do not show any 
transition in the considered range of Bm, and develop macroscopic in
stabilities. We find that the MAEs with c(f) = 0.4 develop the antisym
metric mode of microscopic instabilities (k*

2 = π), for both magnetic 
behaviors. However, the wavelength of the buckling pattern is smaller 
(higher k*

1) in MAEs with the ferromagnetic behavior as compared to 
linear ones, when they are to develop microscopic instabilities (see the 
black and blue curves in Fig. 7b). 

The MAEs with smaller volume fraction, c(f) = 0.05, develop 
microscopic instabilities when subjected to smaller magnitudes of the 
magnetic field. The instability mode switches to macroscopic at mag
nitudes Bm > Bth

m (see Fig. 7c and d). Moreover, the threshold magnitude 
Bth

m increases with a decrease in msμ0 (see inset in Fig. 7c). However, for 
smaller magnetic saturation values, msμ0 = 5 T and msμ0 = 2 T, the 
transition in the instability mode does not occur in the considered range 
of the applied magnetic field. Hence, as opposed to MAEs with high 
volume fractions (c(f) = 0.4), in MAEs with c(f) = 0.05, a decrease in 
magnetic saturation values promotes microscopic (or finite-wavelength) 
instabilities. Moreover, these MAEs develop the symmetric mode of 

microscopic instability, with the critical wavenumber k*
2 = 2π (see the 

dash-dotted curves in Fig. 7d). 
The results indicate that in addition to the influence of the applied 

magnetic field and phase magnetic behavior, the instability develop
ment and associated buckling patterns significantly depend on the vol
ume fraction of layers. A detailed analysis of the effect of phase volume 
fractions is provided in Section 4.2.2. 

Next, we study the influence of initial magnetic susceptibility on the 
magnetoelastic instabilities in the ferromagnetic layered MAEs. To this 
end, in Fig. 8, we show the critical parameters corresponding to MAEs 
with initial magnetic susceptibilities: χ = 0.95 (a), (b); χ = 0.80 (c), (d); 
and χ = 0.375 (e). The results are shown for MAEs with stiff layer vol
ume fraction c(f) = 0.4. 

The critical stretch decreases with a decrease in the initial magnetic 
susceptibility; this is observed for all magnetic saturation values. For 
instance, the critical stretch at Bm = 10 corresponding to MAEs with 
msμ0 = 10 T decreases from λcr = 1.69 to λcr = 1.10 as susceptibility 
varies from χ = 0.95 to χ = 0.375 (compare the blue curves in Fig. 8a 
and e). Moreover, the critical wavenumber k*

1 increases with a decrease 
in χ, in the MAEs that develop microscopic instabilities. We note that the 
effect of initial magnetic susceptibility on the critical parameters, λcr and 
kcr, is similar to that observed in the case of magnetic saturation values 
(see Fig. 7a and b). This is because a decrease in magnetic saturation 
and/or initial magnetic susceptibility values leads to a decrease in 
MAE’s magnetization and vice-versa, at a given magnetic field 

Fig. 7. Critical stretch λcr (a),(c), and normalized critical wavenumbers (b),(d) vs. the normalized magnetic field Bm. MAEs with stiff layer’s initial magnetic sus
ceptibility χ = 0.95 and volume fractions: c(f) = 0.4 (a),(b) and c(f) = 0.05 (c),(d) are considered. 
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magnitude. 
The initial magnetic susceptibility also significantly influences the 

instability mode in the MAEs. In particular, lower values of χ favor the 
occurrence of macroscopic instabilities in MAEs. For instance, in the 
linear magnetic MAEs the threshold magnetic induction, at which the 
instability mode switches, increases from Bth

m = 4 to Bth
m = 7.4 as sus

ceptibility changes from χ = 0.95 to χ = 0.80. For further smaller 

magnetic susceptibilities, for example, χ = 0.375, no transition in the 
instability mode is observed, and the MAEs develop macroscopic in
stabilities, regardless of their magnetic behavior (see Fig. 8e). 

4.2.2. Effect of volume fraction of phases on magnetoelastic instabilities 
Here, we study the effect of the phase volume fraction on the mag

netoelastic instabilities. First, we examine the linear magnetic MAEs 

Fig. 8. Critical stretch λcr (a),(c),(e) and normalized critical wavenumbers (b),(d) vs. the normalized magnetic field Bm. MAEs with stiff layer’s volume fraction c(f)

= 0.4 and initial magnetic susceptibilities: χ = 0.95 (a), (b); χ = 0.80 (c), (d); and χ = 0.375 (e) are considered. 
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with χ = 0.95. In Fig. 9, we plot the critical stretch (a) and wavenumber 
(b) as the functions of stiff layer volume fraction c(f). We consider the 
MAEs subjected to Bm = 1 (blue curves), Bm = 5 (green curves), and Bm 
= 10 (red curves). For the sake of convenient discussion, in Fig. 9a, we 
have marked the first and second instability mode transition points as ‘S 
and ‘A, respectively. In particular, ‘S represents the switch from sym
metric microscopic instability mode to macroscopic, whereas ‘A denotes 
the transition from macroscopic to antisymmetric microscopic instability, 
with an increase in c(f). 

For the MAEs subjected to smaller magnetic field levels, for example, 
Bm = 1, the critical stretch increases with an increase in c(f) up to a 
certain value; beyond that volume fraction value, the critical stretch 
decreases with a further increase in the volume fraction. Moreover, 
when the stiff layer volume fraction is smaller than a particular 
threshold value, c(f)th , the MAEs develop symmetric microscopic buckling 
modes (k*

2 = 2π). However, at higher values of c(f), a macroscopic loss of 
stability occurs. We also observe that the wavelength of the buckling 
pattern increases (k*

1 decreases) with an increase in c(f), and it ap
proaches the long-wave limit (k*

1→0) for c(f) ≥ c(f)th . The corresponding 

threshold value is c(f)th = 0.07, which is marked as ‘S on the blue curve 
(see Fig. 9a). We note that similar variation of critical parameters with 
stiff layer volume fraction has also been reported for layered composites 
subjected to purely mechanical loadings [55]. 

However, MAEs subjected to higher magnetic induction values show 
contrastingly different instability mode transitions and highly non- 
monotonous variation of critical parameters. For example, consider 
the MAEs under Bm = 5; these MAEs, similar to MAE under Bm = 1, also 
show the first transition ‘S in the instability mode. Interestingly, these 
MAEs undergo an additional transition, back to microscopic instability, 
at higher values of c(f); this shift in the instability mode is marked as ‘A 
on the green curve in Fig. 9a. Both transitions are also evident from the 
evolution of critical wavenumbers with stiff layer volume fraction (see 
the green curves in Fig. 9b). Furthermore, we observe that in the MAEs 
developing microscopic instabilities, the critical wavelength signifi
cantly varies with the volume fraction. This high tunability of wave
length (or k*

1) is very pronounced in the vicinity of the extreme volume 
fraction values, i.e., c(f)→0 and c(f)→1 (see Fig. 9b). 

Remarkably, the morphologies of MAEs that are to develop micro

scopic instabilities, can exhibit antisymmetric and symmetric instability 
modes with distinct values for critical wavenumber k*

2, dictated by the 
stiff layer volume fraction. In particular, MAEs with c(f) smaller than that 
corresponding to first transition point ‘S, i.e., c(f) < c(f)thI

, has k*
2 = 2π. 

However, for stiff layer volume fraction higher than that of, c(f) > c(f)thII
, 

has k*
2 = π (see green dash-dotted curve). Similar behavior is observed 

for MAEs subjected to Bm = 10 (see the red curves). Thus, at high 
magnetic field magnitudes, MAEs with smaller c(f) develop symmetric 
mode of microscopic instability, long-wave instability emerges at 
moderate values of c(f), and microscopic instability with antisymmetric 
buckling pattern arises at higher stiff layer volume fractions. 

The threshold stiff layer volume fractions for both transition points 
decrease with an increase in the magnitude of the applied magnetic 
field. For example, the threshold c(f) corresponding to the ‘S transition 
point decreases from c(f)th = 0.07 to c(f)th = 0.04 as the applied magnetic 
field changes from Bm = 1 to Bm = 5. Moreover, the threshold values for 
‘A decreases from c(f)th = 0.25 (at Bm = 5) to c(f)th = 0.14 (at Bm = 10). 
Hence, the application of a strong magnetic field favors the occurrence 
of the antisymmetric mode of microscopic instability. 

Next, we study the effect of volume fraction in MAEs with ferro
magnetic behavior. Fig. 10 shows the critical stretch (a) and critical 
wavenumbers (b) versus stiff layer volume fraction for the MAEs with 
magnetic saturation values msμ0 = 10 T (blue curves) and msμ0 = 5 T 
(red curves). We consider the MAEs with χ = 0.95 subjected to magnetic 
induction Bm = 10. The results for the linear magnetic MAEs are 
denoted by the black curves and are added for comparison. 

We observe that the instability in ferromagnetic MAEs develops at 
smaller stretches than in their linear magnetic counterparts. Among the 
ferromagnetic MAEs, the lesser the magnetic saturation value, the 
smaller is the critical stretch. Moreover, the critical wavelength 
(wavenumber) decreases (increases) with a decrease in msμ0. These 
findings are consistent with the previous observations in Fig. 7. Similar 
to the linear magnetic MAEs, ferromagnetic MAEs also offer a high 
tunability of the critical wavenumber k*

1, especially in the vicinity of the 
extreme volume fraction values (see Fig. 10b). 

Comparing the critical parameters of ferromagnetic MAEs (Fig. 10) 
with those of linear magnetic MAEs (in Fig. 9), we find that a decrease in 

Fig. 9. Critical stretch λcr (a) and normalized critical wavenumbers (b) vs. the stiff layer volume fraction c(f). Linear magnetic MAEs with χ = 0.95 are subjected to Bm 

= 1, Bm = 5, and Bm = 10. 
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the magnetic field magnitude (in linear MAEs) has a similar influence as 
decreasing the magnetic saturation value (in ferromagnetic MAEs under 
a constant magnetic field). This occurs because of the magnetic satura
tion effect present in the ferromagnetic MAEs. In particular, the satu
ration effect takes place at smaller magnetic fields in MAEs with small 
saturation values. Therefore, when subjected to higher values of Bm, the 
influence of the applied magnetic field on the magnetoelastic tensors of 
ferromagnetic MAEs is significantly weaker than that in their magneti
cally linear counterparts. 

The transition of instability modes also demonstrates the behavior 
resembling that in Fig. 9. For instance, MAEs with smaller saturation 
values (msμ0 = 5 T) have only the first transition point ‘S, whereas MAEs 
with higher saturation value (msμ0 = 10 T) show two transitions. 
Moreover, the threshold values corresponding to the transitions 
decrease with an increase in msμ0. For example, the ‘A transition occurs 
at c(f) = 0.3 (for msμ0 = 10 T) and c(f) = 0.15 (for linear magnetic). The 
‘S transition in MAEs with msμ0 = 5 T and msμ0 = 10 T occurs at c(f) =
0.1 and c(f) = 0.07, respectively. Hence, the MAEs with smaller values of 
msμ0 are less likely to develop antisymmetric microscopic instabilities. 

Finally, we illustrate the influence of the initial magnetic suscepti
bilities on the critical parameters and instability mode transition with 
phase volume fraction. Fig. 11 shows the critical parameters for linear 
magnetic MAEs with χ = 0.95 (black curves), χ = 0.80 (blue curves), 
and χ = 0.375 (red curves). We consider the MAEs subjected to magnetic 
inductions Bm = 1 (Fig. 11a and b), Bm = 5 (Fig. 11c and d), and Bm = 10 
(Fig. 11e and f). 

Consistent with the findings in Fig. 8, we observe that the MAEs with 
lower values of χ develop instabilities at smaller stretch levels. More
over, the critical wavenumber k*

1 decreases with an increase in χ, in the 
MAEs that develop microscopic instabilities. This holds independent of 
the magnitude of magnetic induction. 

The interplay between the instability modes is also dictated by the 
magnetic susceptibility of the MAEs. In particular, we observe that the 
threshold value corresponding to the transition point ‘S increases with a 
decrease in χ, irrespective of the magnetic fields magnitude. For 
example, under Bm = 5, the transition ‘S occurs at c(f) = 0.04 (for χ =
0.95), c(f) = 0.07 (for χ = 0.80), and c(f) = 0.13 (for χ = 0.375). 
Moreover, we find that the occurrence of the second switch in instability 
mode with c(f) depends on the value of χ, together with the magnetic 

field. For instance, ‘A transition point is not observed for any of the 
MAEs subjected to Bm = 1. Under Bm = 5, however, ‘A transition only 
takes place for MAEs with χ = 0.95. For MAEs subjected to Bm = 10, the 
second switch in instability mode is observed for χ = 0.95 and χ = 0.8. 
Similar to ‘S instability transition, for ‘A transition, the threshold volume 
fraction increases with a decrease in χ. For example, the corresponding 
threshold values for MAEs under Bm = 10 are c(f) = 0.15 (for χ = 0.95) 
and c(f) = 0.32 (for χ = 0.80). 

5. Conclusion 

In this paper, we investigated the behavior of MAEs with bi-phasic 
layered microstructure with ferromagnetic hyperelastic phases. We 
considered the MAE laminates subjected to a magnetic field perpen
dicular to the direction of layers. First, we derived an explicit expression 
for the field-induced stretch in response to the remotely applied mag
netic field. Second, we performed the magnetoelastic instability analysis 
for layered MAEs, by employing the small amplitude perturbation 
superimposed on finite deformations in the presence of a magnetic field. 
While the formulation developed here is general – for any magnetic 
behavior of phases, the results are presented for the special class of MAEs 
with magnetically inactive matrix and active stiff layer phase. 

We found that the layered MAEs experience tension along the di
rection of the magnetic field, and the induced stretch increases with an 
increase in the applied magnetic field. However, because of the mag
netic saturation effect, the MAEs with smaller saturation values attain 
smaller deformation levels. We also showed that the MAEs with higher 
volume fractions of the active phase develop large deformations, irre
spective of shear modulus contrast between the phases. 

The layered MAEs, when subjected to higher magnitudes of the 
magnetic field, develop instabilities at higher stretches along the di
rection of layers (perpendicular to the magnetic field). In fact, MAEs are 
observed to be unstable even under tensile strains in the presence of a 
strong magnetic field. The magnetic saturation effect, however, results 
in a decrease of critical stretch levels. Moreover, the wavelength of 
buckling patterns is shown to be highly tunable by the applied magnetic 
field. The comparison of critical parameters – for MAEs with various 
morphologies – shows that a decrease in magnetic susceptibility and/or 
magnetic saturation values (at a given magnetic field magnitude) has a 
similar response as reducing the applied magnetic field magnitude. 

Fig. 10. Critical stretch λcr (a) and normalized critical wavenumbers (b) vs. the stiff layer volume fraction c(f). Linear magnetic MAEs with χ = 0.95 are subjected to 
Bm = 10. The results are shown for ferromagnetic MAEs with msμ0 = 5 T and msμ0 = 10 T, together with linear magnetic MAEs. 
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The instability mode and their transitions in layered MAEs are 
strongly dictated by the volume fraction of phases together with the 
applied magnetic field. In the presence of a weak magnetic field, similar 

to the purely mechanical case of layered composites, the layered MAEs 
also show the transition in instability modes once, with the change in 
volume fraction. Thus, the symmetric microscopic instability occurs at 

Fig. 11. Critical stretch λcr (a),(c),(e) and normalized critical wavenumbers (b), (d), (f) vs. the stiff layer volume fraction c(f). Linear magnetic MAEs with initial 
magnetic susceptibilities χ = 0.95, χ = 0.80, and χ = 0.375 are subjected to Bm = 1 (a), (b); Bm = 5 (c), (d); and Bm = 10 (e), (f). 
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small volume fractions of the active stiff phase, whereas macroscopic 
loss of stability occurs at higher volume fractions. Under higher mag
netic fields, however, the MAE laminates show two transitions with 
three distinct instability modes at different active phase volume frac
tions. First, the symmetric microscopic instability is detected at smaller 
volume fractions. Second, at moderate volume fractions, the long-wave 
instability emerges. Interestingly, the MAEs with higher volume frac
tions develop microscopic instability with antisymmetric buckling pat
terns. We found that under stronger magnetic fields, the range of active 
stiff phase volume fractions, at which the antisymmetric mode is 
attained, further increases. Hence, the application of magnetic field 
promotes the development of the antisymmetric buckling patterns. It is 
worth noting that the antisymmetric microscopic instability mode is 
inadmissible in the purely mechanical setting (without a magnetic field). 

The presented results can help widen the design space for novel 
materials with switchable functionalities with potential applications in 
remotely controlled soft microactuators and sensors. Moreover, the 
theoretically predicted antisymmetric buckling mode can motivate 
further experimental studies of the microstructured MAEs. In the study, 
we have considered the MAEs subjected to quasi-static loading; there
fore, the viscous and inertial effects have not been considered. However, 
for the dynamic loading, these effects can influence the material 

stability, as observed, for example, in the soft laminates [76]. To 
investigate of the influence of time-dependent magneto-mechanical 
loading on the instability development in MAEs, one should account for 
the phase rate-dependent behavior and inertia in the modeling. Addi
tionally, the understanding of the material behavior can benefit from the 
implementation of multiscale modeling that could more accurately 
capture the global finite size effects, as well as smaller length-scale ef
fects (such as, for example, dipole-dipole interactions). 
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Appendix A. Magnetoelastic moduli tensors 

For the layer (r) ∈ {m, f} exhibiting linear magnetic behavior, the non-zero components of magnetoelastic moduli tensors are 

A
(r)
1111 = A

(r)
2121 = G(r)λ2,

A
(r)
1212 = A

(r)
2222 = G(r)λ− 2 + B2/(μ(r)μ0),

(A.1)  

H
(r)
11 = H

(r)
22 = (μ(r)μ0)

− 1
, (A.2)  

and 

M
(r)
121 = M

(r)
211 = B(μ(r)μ0)

− 1

M
(r)
222 = 2B(μ(r)μ0)

− 1
.

(A.3) 

For ferromagnetic behavior, the components of tensors are 

A
(r)
1111 = A

(r)
2121 = G(r)λ2,

A
(r)
1212 = G(r)

[
1
λ2 +

B2

G(r)μ0
+

(
m(r)

s μ0
)2

3χ(r)G(r)μ0
−

B
m(r)

s μ0
coth

(
3χ(r)B
m(r)

s μ0

)]

,

A
(r)
2222 = G(r)

[
1
λ2 +

B2

G(r)μ0
−

(
m(r)

s μ0
)2

3χ(r)G(r)μ0
+

3χ(r)B2

G(r)μ0

(

csch
(

3χ(r)B
m(r)

s μ0

))2]

,

(A.4)  

H
(r)
11 =

1
μ0

[

1 +

(
m(r)

s μ0
)2

3χ(r)B2 − χ(r)m
(r)
s μ0

B
coth

(
3χ(r)B
m(r)
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)]

,

H
(r)
22 =

1
μ0

[

1 −

(
m(r)

s μ0
)2

3χ(r)B2 + 3χ(r)
(

csch
(

3χ(r)B
m(r)

s μ0
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,

(A.5)  

and 

M
(r)
121 = M

(r)
211 =

B
μ0

[

1 +

(
m(r)

s μ0
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3χ(r)B2 −
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B
coth
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M
(r)
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.

(A.6)  
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Appendix B. Components of matrix R 

Here, we provide the non-zero components of matrix R, namely, 

R12 = 1,
R31 = R54 = − ik1,

R21 = k2
1β
(
A 1111H 11 + M

2
121 − M 121M 222

)
,

R25 = − ik1βH 22M 121,

R26 = ik1βH 11,

R41 = − k2
1β[A 1111M 121 + A 1212(M 121 − M 222)],

R45 = ik1βA 1212H 22,

R46 = − ik1βM 121,

R62 = − ik1A 2222,

R63 = − k2
1A 2121, and

R64 = ik1(M 121 − M 222),

(B.1)  

where β = (A 1212H 11 − M 2
121)

− 1. 
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