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In this work, we study the macroscopic and microscopic instabilities in 2D incompressible nacre-like composite
materials induced by uniaxial loadings. The interchange between macro- and micro-instabilities in bioinspired
composite materials has been investigated by examining different combinations of platelets volume fraction,
aspect ratio, and shear modulus contrast between the stiff (platelets) and soft (matrix) phases. It has been high-
lighted that the critical instability mode shapes, together with their critical load factors and wavelengths, are
highly influenced by the microscopic geometrical arrangement and the material composition. For a wide range
of geometrical and material parameters, the instabilities are found to be global with an in-phase mode shape. It
has been shown that the out-of-phase instability mode shapes occur at a significantly higher magnitude of the
homogenized energy compared to the in-phase ones. The results indicate that, adopting a small unit cell assem-
bly, the microscopic stability analysis provides in most of cases strong underestimates of the critical stretch
ratios, and that an accurate and efficient instability prediction can be instead obtained based on the loss of
strong ellipticity condition of the homogenized incremental moduli tensor, except for few cases in which local

modes occur.

1. Introduction

Natural materials, such as wood, bones and shells, aided the scien-
tific progress in its early stages, but these materials were steadily
replaced by synthetic composite materials reinforced by means of par-
ticles, fibers or platelets that have been intensely investigated in the
past decade with the aim to satisfy the industrial request to achieve
superior mechanical, optical, electrical, magnetic, and thermal proper-
ties [1-4]. Engineers and scientists today continue to be attracted by
the remarkable characteristics of natural structures which, in the light
of their microstructural heterogeneity, can both be lightweight and
offer mechanical properties exceeding those of their microstructural
parts [5-7]. In parallel to this, the advanced technologies landed in
the field of additive manufacturing allowed to produce innovative
composite materials characterized by complex microstructures. There-
fore, the combination of these events, together with the availability of
modern modeling tools, pulled the researchers to investigate the intri-
cate interplay of the mechanisms operating in such natural materials
on various observation scales, from the nanoscopic scale to the macro-
scopic one, promoting thus the development of new research lines
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based on the mechanical characterization of composite materials
whose microstructure is inspired by the nature [8-11]. The nacre
microstructure represents one of the most studied microgeometrical
arrangements in the light of the excellent combination of high strength
and toughness properties achieved at the macroscopic scale and it pro-
vided a rich source of inspiration for designing high-performance
materials. The excellent properties of nacre-like materials are based
on the unique arrangement of stiff aligned mineral platelets (reinforce-
ment) linked together by a soft organic interface (matrix) in a brick
and mortar scheme [12,13], leading to a particular class of bioinspired
materials whose macroscopic properties are derived from their hierar-
chical structure. Since nacre-like composite materials are heteroge-
neous solids belonging to the class of the microstructured composite
materials, quite recently considerable attention has been paid to the
investigation of the nonlinear phenomena characterizing such material
class. Generally speaking, such composite materials, if subjected to
extreme loading processes, show microstructural evolutions due to,
for instance, the occurrence of nonlinear phenomena such as interface
debonding, coalescence of micro-cracks and delamination [14-17], or
due to the onset of geometrical or material nonlinearities induced by
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large deformations [18-20]. The material models commonly adopted
for 3D printed nacre-like composite materials belong to the class of
hyperelastic models. For several years great effort has been devoted
to the study of the macroscopic nonlinear behavior of undamaged
hyperelastic material models subjected to nonlinear phenomena at
the microstructural scale [21-26] and subjected to the combination
of different microscopic failure phenomena such as both instability
and fracture [27-30]. The study of the macroscopic response of
microstructured composite materials considering different kinds of
microscopic nonlinear phenomena requires overwhelming computa-
tional effort due to the necessity to model all the microstructural
details. About that, several publications have appeared in the past
years highlighting efficient modeling techniques requiring the devel-
opment of advanced numerical procedures based on FEM in the frame-
work of small and large deformations to reduce the computational
effort needed to model every phenomenon acting at the microstruc-
tural scale, for instance, the classical homogenization techniques
[31-34] and the multiscale approaches [35-39]. Such advanced com-
putational techniques are not still adopted frequently to investigate the
behavior of bioinspired composite material such as nacre-like compos-
ites but, recently, in a previous work by some of the authors, a multi-
scale strategy was proposed to predict the mechanical behavior of the
composite material and, in a large deformation context, the best com-
promise between penetration resistance and flexibility was identified
with the aim to design a body protective bio-inspired material archi-
tecture [40]. Numerous authors have reported also that the physical
behavior of nacre-like materials is mainly characterized by the plate-
lets’ interaction and that their superior properties are usually provided
by several mechanisms operating on separate length scales [41]. The
matrix, identified as the soft phase of the heterogeneous solid, repre-
sents the main component that affects the mechanical performance
of such a natural composite [42,43] due to the fact that, in every defor-
mation process, it regulates the interaction between the platelets
(identified as the stiff phase). Some works have shown that the weak-
est part of such materials is the interface between the soft and the stiff
phases, and thus several models have been developed to investigate
the damage mechanisms in nacre-like materials subjected to extreme
loading processes [44]. For instance in [45] a discrete element
approach using rigid brick elements with cohesive zone interactions
has been developed and, more recently, in [46] the effect of the inter-
faces on both mechanical strength and fracture toughness has been
investigated with the aim to provide design guidelines for synthetic
nacre-like composite materials. Definitively, the literature on the
mechanical characterization of nacre-like composite materials shows
a variety of approaches able to optimize the microstructural parame-
ters with the aim to reach extreme performance in terms of strength,
fracture toughness, penetration resistance, flexibility, but most of the
previous studies do not take into account large deformations. There-
fore, to the authors” best knowledge, only few publications are avail-
able in the literature that address the investigation of the
mechanical behavior of nacre-like composite materials in terms of
instabilities at the microscopic as well as the macroscopic scale in a
large deformation context.

In this work, we study the instability phenomena induced by uniax-
ial loading processes in bidimensional nacre-like composite
microstructures made by incompressible hyperplastic materials. The
interchange between the macroscopic and the microscopic instabilities
in bioinspired composite materials has been investigated by examining
different combinations of geometrical parameters (platelets volume
fraction and platelets aspect ratio) and material parameters (shear
modulus contrast between the platelets and the matrix). Comparing
the microscopic and the macroscopic critical instability load factors
evaluated in terms of critical stretch ratio, it has been obtained that
the macroscopic behavior of nacre-like composite materials resulted
to be strongly influenced by the material phase composition and the
microscopic geometrical arrangement. Specifically, for a wide range
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of geometrical and material parameters, the obtained instabilities
resulted to be global in nature with an in-phase mode shape, whereas
the out-of-phase instability mode shapes occurred at a higher magni-
tude of the homogenized energy compared to the in-phase ones. The
microscopic stability analysis provided high underestimates of the crit-
ical stretch ratios by adopting a small unit cell assembly, while it pro-
vides outcomes in line with the classical macroscopic stability analysis
when it is performed by adopting a unit cell assembly with an appro-
priate size along the load direction. Definitively, the obtained results
demonstrate that the macroscopic stability analyses performed on
nacre-like composite materials, based on the classical criterion of the
loss of strong ellipticity condition of the homogenized incremental
moduli tensor, resulted more effective than a microscopic stability
analysis involving larger unit cell assemblies. In addition, we found
that, for a specific combination of geometrical and material parame-
ters, nacre-like composite materials have shown local instabilities,
requiring thus a full microscopic stability analysis.

2. Theoretical background

In this section, we summarize the background on the homogeniza-
tion procedure and the stability conditions at the microscopic (section
2.1) and macroscopic (section 2.2) lengthscales. The analysis is further
adopted for the nacre-like composite materials undergoing large defor-
mations. Consider an RVE of a perfectly periodic nacre-like microstruc-
ture (see Fig. 1) characterized by an arbitrary assembly of the unit cells
consisting of stiff platelets (reinforcement) interspaced with thin layers
of soft material (matrix). As depicted in the figure on the left, the vol-

ume of the homogenized nacre-like solid is denoted by \7(i) (the sub-
script (i) is referred to variables in the undeformed configuration)
and the surface enclosing the volume, on which the first Piola—Kirch-

hoff traction vector ;R acts, is denoted by 8\7(i). The undeformed and
the deformed representative volume element (RVE) configurations
are associated with an infinitesimal neighborhood of a generic point

X of the homogenized continuous body, and the macroscopic deforma-
tion gradient tensor is defined as F. With reference to the RVE, the
microscopic gradient tensor is defined as F = dx/0X, and the position
vectors, corresponding to the undeformed (also identified as reference
configuration) and the deformed configurations at the time t, are
defined as X and x, respectively. The volume change of the homoge-
nized composite material with respect to the undeformed configura-
tion is defined as J=detF and it represents the Jacobean of the
transformation.

Let us consider a finitely deformed nacre-like composite material
with nearly-incompressible neo-Hookean constituents characterized
by a strain energy-density function W(F). The equilibrium problem
at the microscopic level is here formulated in terms of the deformation
gradient tensor and its conjugated stress measure (the first-Piola Kirch-
hoff stress Ty) since, as can be seen in the following, it leads to a sim-
ple definition of the essential boundary conditions on the RVE. The
loading process can be parametrized in terms of a monotonically
increasing time-like parameter t > 0; thus, by assuming a sufficiently
small value of it, the incremental quantities can be considered as rate
quantities. The microconstituents are characterized by the following
incrementally linear relation:

TR:CR[FL (1)

where T is the rate of the first-Piola Kirchhoff stress tensor, C® is the
fourth-order tensor of tangent moduli. The tensor enjoys the major sym-
metry condition Cfj, = Ciy;, and F is the rate of the deformation gradi-
ent tensor. The stress tensor Tk and the corresponding tangent moduli
tensor C® can be expressed as the first and the second derivative of the
strain energy—density function, respectively as:
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Fig. 1. Homogenized nacre-like solid material (to the left) and the corre-
sponding undeformed and deformed representative volume element config-
urations (to the right) defined by a 2 x 2 unit cell assembly.
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Under the classical homogenization theory assumptions, the macro-
scopic constitutive response is based on an equilibrium state in which
the volume forces are neglected and, as a consequence, the local stress
field Tr(X) is divergence-free. Therefore, considering a quasi-static
deformation process, the equation of the motion related to the unde-
formed configuration can be expressed in the following form:

DivTg = 0. 3)

The microscopic and the macroscopic scales are coupled by the fol-
lowing relations. The first defines the macroscopic first Piola-Kirchhoff
stress tensor T as a function of the traction field #z , and the second
defines the macroscopic deformation gradient F as a function of the
deformation field x:

1 = 1
TR =7— tr @ XdS;), F=——
¥ }V(i)‘ ‘/Wm N v |V(i>} JOV(

x @ ndSp), 4)
where ® denotes the tensor product, tgr = Tzn; the first Piola—Kirch-
hoff traction vector, and n; the outward normal at X € 9V ;. The micro-
scopic deformation field x, expressed as a function of the macroscopic
deformation gradient F, is assumed defined by the sum of a linear part,
which represents the homogeneous deformations, and a correction part
w, also called fluctuation field:

x=FX+w. (5)

By replacing the microscopic deformation field (5) into the expres-
sion of the macroscopic deformation gradient (4),, it follows that the
subsequent integral constraint has to be satisfied by the fluctuation
field w to make the latter a kinematically admissible field:

/ w@npdSy = 0. (6)
v

Coherently with the periodic nature of the nacre-like microstruc-
ture, by ensuring a periodic distribution of the stress and strain field
quantities which is compatible with the assumed periodic distribution
of the geometrical and material properties, the integral constraint (6)
can be satisfied, as in the following, by imposing periodic fluctuations
on the RVE boundary oV ;:

w(XT,t) =w(X",t) on OV, (7
where the superscripts + and - are referred to as pair of points
placed on the opposite sides of the RVE boundaries. Such applied

boundary conditions correspond to impose, from the viewpoint of
deformation, a periodic deformation:

xt—x =FX"—X)ondVgy, (8)

while, from the viewpoint of the equilibrium, they correspond to
imposing antiperiodic tractions:
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(Trnw) " = (~Tan) ondV. )

Therefore, the nonlinear quasi-static boundary value problem
(BVP) has been identified by the following relations:

{ DivTy = 0in V (10)

(Trn) " = (~Trnp) ondViy'

The microstructural RVE boundary value problem is then solved by
means of the finite element method in a variational framework:

/ Tg - VowdVy =0V sweH" (K"Vyy), (11)
V(i)

where w denotes the fluctuation solution at a given F and H* (k" V ;4)
denotes the order one Hilbert space of vector-valued functions which
are periodic over all possible unit cell assembly k" = [0,k]", with k
equal to an arbitrary integer and N = 2 for bidimensional problems.
The variational form defining the microscopic incremental equilib-
rium problem induced by an incremental change in the macroscopic

deformation gradient F is characterized by the following variational
form:

/)QT+WWVNMMZOVNEW@M%M (12)
Vi

where w denotes the incremental fluctuation field induced by F. Once
the variational problem (12) is solved, by virtue of the following
relation:

iR = CR[F), (13)

and by virtue of the fundamental identity f‘R = T, it follows that the
macroscopic constitutive response, written in terms of the homoge-

R _
nized tangent moduli tensor C (F), is determined by the following
relation:

cs, (F) = ﬁ /V ) Chon (X F) [T+ V| dvig

with %" being the incremental fluctuation field induced by F = I'* and
thus I = §,n 8.

2.1. Macroscopic instability

The macroscopic stability analysis performed on a unit cell of a
periodic heterogeneous material is based on its macroscopic proper-
ties. Specifically, the classical macroscopic stability measure was iden-
tified as the strong ellipticity condition of the homogenized tangent
moduli tensor related to the unit cell:

A(F(2)) =

= min {E‘g(m®n)<m®n} >0, (15)
[[m]] = [|n]|=1
in which the minimum is taken over all unit vectors m and n, 1 denotes

the load parameter and 6{; denotes the fourth-order tensor of nominal
instantaneous moduli that is defined by the following expression:

— 1 —
Rk = o FmFn CR i (16)

The load factors associated with the classical macroscopic instabil-
ity measure are defined as:

A(%) =0
{ A() o a7
AA)>0V0<A< A
where ;IC is the macroscopic critical load factor. Geymonat et al. [47]
have demonstrated that in heterogeneous materials subjected to mono-
tonic macroscopic loading, the onset of a primary instability can be
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detected by means of a macroscopic stability analysis uniquely in the
cases in which the instability mode shape is global (that is when the wave-
length of the first instability is much larger than the unit cell size). In the
case of instabilities characterized by wavelengths comparable with the
unit cell size, the macroscopic stability condition still holds and the
one-cell homogenized moduli tensor results to be still strongly elliptic.

2.2. Microscopic instability

The microscopic stability analysis is performed by superimposing at
the microscopic scale an additional displacement field u(x, z) by taking
the current equilibrium configuration as the reference one and assum-
ing it as known. Such field is superimposed on the unit cell boundary
OV satisfying the essential boundary conditions and deforming the unit
cell from the current configuration K"V to the generic configuration
kK"V(z), where 7 > 0 denotes a time-like parameter. The incremental
version of the classical stability criterion related to the current equilib-
rium configuration has been used to obtain the microscopic stability
condition [48]. Greco and Luciano [33] considered the difference
between the internal deformation work D and the work done by the
anti-periodic traction vectors L, acting in the current configuration
during the transformation from K"V to k" V(z). The microscopic struc-
tural stability condition of the examined unit cell at a given macro-
scopic deformation F is identified by examining the sign of the
following stability functional:

2
DfL:(/ Tro - LdV) = + o(£2), (18)
JKVv 2

where Ty denotes the incremental form of the first Piola-Kirchhoff
stress tensor evaluated in the configuration K"V = k"V(z = 0). The
incremental stress tensor can be expressed as:
Tro = CRIL] (19)
where L is the gradient of the fluctuation field velocity:
L =Vw(x) (20)

and definitively, the microscopic stability functional becomes:
/ CR[Vw(x)] - Viw(x) dV > 0 (21)
JKVv

Therefore, a given microstructure that is characterized by the fluc-
tuation field w(x) induced by the macroscopic gradient deformation
tensor F results to be stable if the minimum eigenvalue of the stability
functional (21) is positive if taken over all the admissible incremental
periodic fluctuations on the k" V ensemble of unit cells:

A(F) = inf min
keN | weH'(iNv#)

/ CR[VW(x)] - Vi (x) dV
KNy

Vi(x) - Vi(x) dV
JKNv

>0. (22)

3. Numerical results

The analyzed 2D unit cell (see Fig. 2) for the considered nacre-like
composite microstructure, is composed by stiff platelets (grey areas)
and a soft matrix (white areas) arranged in a brick and mortar pattern.
The length and the height of the unit cell are denoted with L and H,
respectively, and the amount of the stiff inclusions is defined by the
volume fraction vy = (L,H,)/[(L, + H;)(H, + H;)], where L, is the plate-
lets length equal to 20 mm, H, is the platelets height and H; is the
thickness of the matrix interphase. The platelets geometry is character-
ized by an aspect ratio w = L,/H,, and the constitutive law adopted to
model the mechanical behavior of each microstructural phase (plate-
lets and matrix) is the neo-Hookean hyperelastic, which is defined
by the following energy density function:
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Fig. 2. Unit cell of the periodic nacre-like composite material in which the
gray and white areas represent the stiff inclusions and the soft matrix
interphase, respectively, together with an example of mesh discretization for
the specific case with ¥y = 0.8 and w = 8.

W = 2 pe(t(Co) —3) — In(J) + 3 4 cn(d)? (23)

1
=5He
where ¢ stands for p or m when it refers to the platelets or the matrix,
respectively, u, is the initial shear modulus, C;: is the right elastic
Cauchy-Green tensor, J; is the Jacobian of the 2D transformation and
A¢ is the first Lamé parameter which governs the material
compressibility.

The ratio between the initial shear modulus of the stiff platelets and
the soft matrix is denoted as k = p, /p,, with y,, equal to 20 MPa and to
impose the incompressible behavior of the microstructural con-
stituents 4: has been fixed equal to 1000u,. The numerical analyses
have been performed under plane strain conditions in a finite deforma-
tion framework, specifically, the nacre-like composite material has
been subjected to a uniaxial macroscopic compression load along the
X; direction which is imposed, in terms of the macroscopic deforma-
tion gradient tensor F(1), by means of the periodic boundary condi-
tions applied on the external RVE boundaries. The corresponding
macroscopic deformation gradient tensor assumes the following
expression:

- —1
F(l):lel X eq +ﬂ e R ey (24)

where A represents the macroscopic stretch ratio in the X; direction
that is equal to (1 — ) with g defined as the load parameter, e; and e
are the unit basis vectors in the direction of X; and X, respectively.
Note that the component of F with reference to the direction X, is

imposed equal to A ' with the aim to maintain the incompressibility
condition during the uniaxial deformation process. A typical mesh dis-
cretization has been reported in Fig. 2 and it is composed of about
9000 quadratic Lagrangian quadrilateral elements that are mapped fol-
lowing a structured pattern. The number of mesh elements providing
accurate results at the minimum computational effort has been
obtained by performing a mesh convergence test for different values
of volume fraction Vy, aspect ratio w, and shear modulus contrast k.
Fig. 3 shows the critical stretch ratios 4. of the macroscopic instabil-
ities for the lowest and the highest investigated values of k and w (i.e.
k = 20,k = 1000 and w = 0.1, w = 10) and for Vsranging from 0.1 to
0.9 with an increment of 0.1. In addition, with the aim to investigate
the macroscopic instability behavior in the limit case of almost homo-
geneous materials, the values of V¢ equal to 0.05 and 0.95 have been
also investigated. From this figure it can be seen that 9000 quadratic
elements are enough to obtain accurate results. The numerical simula-
tions have been performed by employing the commercial software



F. Greco et al.

a) Hy /u,, =20
I I I I I I
Mesh elements  Aspect ratio
1.1 L — 9000 e w=0.1 _
— 18000 4 w=10
o™ 36000 i
09 _
1<
0.8 —
0.7 _
0.6 _
0.5 L | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Vr

Composite Structures 269 (2021) 114004

b) My [, =1000
I I I I I I
Mesh elements  Aspect ratio
1.1 — 9000 e w=0.1 -
— 18000 4 w=10
1ob— 36000 i
0.9 -
1<’
0.8 —
0.7 -
0.6 -
0.51 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Ve

Fig. 3. Mesh sensitivity analysis of the macroscopic critical stretch ratio for different values of volume fraction (Vy), platelets aspect ratio (w) and shear modulus

contrast k = u, /u,m = 20 (a) and k = 1000 (b).

COMSOL MULTIPHISICS v5.5 together with two different subroutines
written in the COMSOL Application Builder environment. The first one
has been implemented to perform the macroscopic stability analysis
and thus to evaluate, once the solution of the principal path is
obtained, the homogenized tangent moduli tensor and, subsequently
to evaluate the lowest eigenvalue associated with the acoustic tensor
Qoin(n) = cﬁijhkﬁjﬁk. The second one, instead, has been implemented
to evaluate in a sequential way, for each loading step of the principal
path, the minimum eigenvalue associated with the microscopic struc-
tural stability functional for an increasing assembly of unit cells in the
X, direction, allowing to investigate the interplay between the instabil-
ities with short and long wavelengths.

3.1. Macroscopic stability analysis

We start with determining the critical stretch ratios corresponding
to the onset of elastic instability with long wavelength (macroscopic
instabilities) in uniaxially compressed nacre-like composite materials.
A comprehensive parametric analysis with respect to the main mate-
rial and microstructural parameters (i.e., shear modulus contrast, pla-
telets volume fraction, and platelets aspect ratio) has been carried out.
Specifically, the shear modulus contrasts considered in the analysis are
k = 20, 100, 500, and 1000, the investigated aspect ratios are equal to
w = 0.1, 0.5, 1, 5, and 10, combining these parameters with a volume
fraction Vs ranging from 0.1 to 0.9 with an increment of 0.1, and with
Vs equal to 0.05 and 0.95 representing the limit cases of almost homo-
geneous material. To investigate the influence of the platelets volume
fraction on the onset of macroscopic instabilities, in Fig. 4 the macro-
scopic instability curves have been reported as a function of the plate-
lets volume fraction, for a wide range of aspect ratios w (i.e., w = 0.1,
0.5, 1, 5 and 10).

We observe that the critical stretch ratio has an increasing trend for
low volume fractions until reaching a peak and then a decreasing trend
for high volume fractions. The curves peaks have been denoted by the
cross symbols, while the intersections between the black critical curves
(corresponding to w = 0.1) and the red critical curves (corresponding
to w = 0.5) are marked by the black dashed straight lines to easily
identify the geometrical parameters giving the lowest critical stretch
ratios. The nacre-like microstructures with a high shear modulus con-
trast (i.e., with k = 500 and k = 1000) experience macroscopic insta-
bilities at lower uniaxial compressive loading (corresponding to higher
critical stretch ratios). No significant differences have been observed in

the instability critical curves by incrementing the initial shear modulus
from 500 to 1000 (see Fig. 4c and d), thus in the following results, the
highest analyzed shear modulus contrast is referred to k equal to 1000.

As can be seen in Fig. 4a, in the nacre-like materials with shear
modulus contrast k = 20, the macroscopic instability critical curve
peaks have been reached for intermediate values of volume fraction
(i.e., 0.5 < Vf £ 0.7), while for the high value of k = 1000 (see
Fig. 4d) the peaks are reached for higher volume fractions (i.e., 0.8
< V< 0.9). For the cases with k < 100, low values of platelets volume
fraction (i.e., V¢ < 0.5) allow the composite to reach higher uniaxial
deformations (as compared to those reached with high volume frac-
tions) before the appearance of macroscopic instabilities, except for
the case with k = 20 and w = 0.1 in which a symmetric trend of
the critical stretch ratio with respect to ¥y = 0.5 has been obtained.
This behavior becomes more pronounced as initial shear modulus con-
trasts is increased. For example, for the cases with k > 500, the macro-
scopic instability curves show an increasing branch as the volume
fraction increase until reaching a peak, and subsequently, they hold
an almost constant value without starting a decreasing branch (see
Fig. 4c and d).

Generally speaking, the nacre-like microstructures exhibit different
macroscopic stability properties by varying the main geometrical
parameters; in particular, with except of the curves with w = 0.1
the critical stretch ratio decreases with a decrease in the platelets
aspect ratio with slight variations in the slopes depending on the value
of the volume fraction adopted. Thus, for the case with k = 20 and
V¢ = 0.05 a percentage decreases of the critical stretch ratio of about
31% can be reached by decreasing the platelets aspect ratio from 10 to
1, while with the same value of shear modulus contrast and with the
highest value of volume fraction (i.e., Vy = 0.95) a percentage decrease
of about 12% can be reached. For an increasing shear modulus con-
trast, such as percentage decrease remains stable at about 30% for
low platelets volume fractions, while it strongly decreases for high pla-
telets volume fractions, reaching merely 1% for the case with
k = 1000 and Vy = 0.95. As shown in Fig. 4, the highest critical stretch
ratios have been obtained for a platelets aspect ratio w equal to 10
(blue curves), which indicates the destabilizing effect of high platelets
aspect ratios, while the lowest critical stretch ratio has been obtained
for wequal to 1 or 0.1 (depending on the value of the volume fraction)
highlighting the stabilizing effect instead of low platelets aspect ratios.

To further elucidate the influence of the platelets aspect ratio w on
the onset of macroscopic instabilities, in Fig. 5 the macroscopic insta-
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Fig. 4. Dependence of the macroscopic critical stretch ratio on the reinforcement volume fraction Vs (platelets) for nacre-like composite materials with different
values of platelets aspect ratio w and shear modulus contrast equal to k = 20 (a), k = 100 (b), k = 500 (c) and k = 1000 (d).

bility curves has been reported as a function of the platelets aspect
ratio w for a wide range of volume fractions Vs (i.e., Vs = 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95). We can observe that
for the cases with a shear modulus contrast k < 100 (Fig. 5a and b)
and platelets volume fractions V; > 0.6, the critical stretch ratio
increases as the platelets aspect ratio increases until reaching an
almost zero slope for w > 10, while for platelets volume fractions V¢
< 0.6 the critical curves show initially a decreasing branch until reach-
ing a point of minimum for 0.5 < w < 1 and then an increasing branch.

In addition, for the cases with a shear moduli contrast k > 500
(Fig. 4c and d), the critical instability curves related to a platelets vol-
ume fraction V¢ > 0.6 increase only slightly as the aspect ratio increases
(barely visible in the figure), maintaining very high values of the crit-
ical stretch ratios. While the critical instability curves related to a pla-
telets volume fraction V¢ < 0.6 show a similar trend to those obtained
with k < 100, but they highlight higher values of the critical stretch
ratios.

To further investigate the influence of the shear modulus contrast k
on the onset of the macroscopic instabilities, in Fig. 6 the macroscopic
instability curves has been reported as functions of the platelets vol-
ume fraction Vy for different values of k (i.e., k = 20, 100, 500 and
1000) and platelets aspect ratio equal to w = 0.1 (a), w = 0.2 (b),
w=05(),w=1(),w=5()andw = 10 ().

Consistent with the previous observation, we find no remarkable
differences between the composites with shear modulus contrast k

equal to 500 (red curve) and 1000 (black curve) for the considered
range of the platelets volume fractions and aspect ratios. However,
the change in the shear modulus contrast from k = 20 (blue curve)
to 100 (magenta curve), results in a significant change of the critical
stretch ratio. The critical stretch ratio decreases significantly as the
stiffness ratio between the stiff platelets and the soft matrix is
decreased.

By taking the critical stretch ratios obtained with a shear modulus
contrast k equal to 1000 as the reference, the percentage decreases in
the critical stretch ratios have been summarized in Table 1 for compos-
ites with varying shear modulus contrasts, platelets volume fractions,
and platelets aspect ratios. Here we observe that despite the low values
of the percentage changes obtained by decreasing the shear modulus
contrast from 1000 to 500 (which are about 1%), the general trend
of the percentage changes is decreasing as the shear modulus contrast
decreases and as the platelets aspect ratio increases, thus, obtaining in
some cases remarkable percentage changes. We note that in the com-
posites with low shear modulus contrasts, the platelets can develop
high deformations leading to a stabilizing effect. Similar behaviors
have been reported in other composite materials, such as in soft com-
posites with stiff circular inclusions periodically distributed [49], in
compressible layered composites [50], and in 3D periodic fiber-
reinforced composites [51]. The higher percentage changes have been
obtained for high platelets volume fractions (i.e., 0.8 < Vy< 0.95). This
indicates that a change in the shear modulus contrast significantly
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Fig. 5. Dependence of the macroscopic critical stretch ratio on the platelets aspect ratio w for nacre-like composite materials with different values of platelets
volume fraction Vy and shear modulus contrast equal to k = 20 (a), k = 100 (b), k = 500 (c) and k = 1000 (d).

affects the critical stretch ratio in the composites with high volume
fractions. The highest percentage decrease is 43.57%, which is
obtained by decreasing the shear modulus contrast from 1000 to 20
in the composite with platelets aspect ratio 0.1 and platelets volume
fraction 0.95.

3.2. Microscopic stability analysis

Here, by employing the microscopic stability analysis described in
Section 2.2, the onset of microscopic instability in nacre-like compos-
ite materials subjected to uniaxial compression has been analyzed. To
capture the domain size of the microscopic stability analysis in the
case of a global instability mode, different assemblies of the considered
unit cell have been evaluated.

We note that based on physical grounds supported by the numeri-
cal analysis reported in Fig. 7, for the investigated range of microstruc-
ture and material parameters, we exclude the onset of out-of-phase
instability modes, so that, for the uniaxial macroscopic compression

load along the X; direction considered here, it is sufficient considering
only assemblies in the load direction, i.e. consisting of n X 1 cells. In
particular, the figure illustrates the first two instability modes for the
composite characterized by a shear modulus contrast k = 20, platelets
volume fraction V¢ = 0.5, and platelets aspect ratiow = 1, by adopting
an RVE assembly of n x 2 cells withn = 1, 2, 4, 8, 16, 32 at a fixed
stretch ratio A coinciding with the macroscopic critical stretch ratio,

i.e. A = 1. = 0.876. Specifically, in Fig. 7a the trends of the first (low-
est) and second eigenvalues, respectively denoted as A; and A, (both
normalized with respect to the matrix shear modulus y,), are depicted
by varying the RVE size in the X; direction. As can been seen in Fig. 7b,
A1 is related to the in-phase mode shape while A, is related to the out-
of-phase mode shape. It is worth noting that the in-phase mode shape
shows a one-cell periodicity in the X, direction.

Definitively, it can be seen that, at the microscopic scale, two char-
acteristic failure modes may occur and that the stiff platelets can either
show in-phase or out-of-phase instability modes. Comparing the trends
of the related eigenvalues shown in Fig. 7a, we observe that the eigen-
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Fig. 6. Dependence of the macroscopic critical stretch ratio on the platelets volume fraction V for nacre-like composite materials with different values of shear
modulus contrast k and platelets aspect ratio equal tow = 0.1 (a), w = 0.2 (b),w = 0.5 (c),w = 1 (d), w = 5 (e) and w = 10 (f).

Table 1

Percentage reductions in the critical stretch ratios by varying the shear modulus contrast k, aspect ratio w and volume fraction Vy and by taking as reference value the
critical stretch ratio obtained for a shear modulus contrast equal to 1000.

Vs

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Reference values 0.630 0.765 0.886 0.935 0.960 0.975 0.981 0.985 0.986 0.986 0.975
k = 500 0.03% 0.04% 0.02% 0.11% 0.01% 0.19% 0.09% 0.16% 0.20% 0.60% 1.57%

w =01 k = 100 2.39% 1.95% 2.11% 1.85% 1.97% 2.31% 2.44% 2.85% 4.01% 7.14% 13.65%
k=20 12.70% 12.39% 11.87% 11.26% 11.46% 12.31% 13.36% 15.74% 19.88% 30.53% 43.57%

Reference values 0.565 0.691 0.830 0.900 0.937 0.961 0.975 0.983 0.986 0.985 0.976
k = 500 0.85% 0.09% 0.36% 0.11% 0.07% 0.03% 0.08% 0.16% 0.21% 0.54% 1.09%

w=0.2 k = 100 2.69% 2.18% 1.79% 1.67% 1.70% 1.67% 1.83% 2.18% 2.96% 5.51% 10.30%
k=20 10.57% 8.86% 8.99% 8.86% 8.98% 9.47% 10.25% 11.90% 15.17% 23.57% 35.39%

Reference values 0.520 0.640 0.775 0.854 0.905 0.941 0.965 0.977 0.985 0.985 0.980
k = 500 0.79% 0.78% 0.62% 0.06% 0.02% 0.01% 0.11% 0.02% 0.22% 0.39% 0.82%

w=05 k = 100 2.87% 2.32% 1.90% 1.51% 1.30% 1.27% 1.45% 1.56% 2.33% 4.40% 8.14%
k=20 9.57% 8.52% 7.52% 6.84% 7.00% 7.04% 7.73% 8.86% 11.34% 17.76% 27.40%

Reference values 0.525 0.640 0.766 0.845 0.900 0.936 0.961 0.976 0.985 0.986 0.981
k = 500 0.89% 0.51% 0.09% 0.11% 0.17% 0.04% 0.11% 0.12% 0.25% 0.25% 0.27%

w=1 k = 100 2.83% 2.34% 1.38% 1.70% 1.58% 1.22% 1.28% 1.48% 2.12% 3.62% 6.69%
k=20 10.40% 8.56% 7.12% 6.82% 6.63% 6.42% 6.77% 7.69% 10.14% 15.28% 23.41%

Reference values 0.700 0.765 0.856 0.911 0.945 0.966 0.980 0.986 0.991 0.991 0.990
k = 500 0.01% 0.30% 0.05% 0.05% 0.13% 0.03% 0.12% 0.16% 0.02% 0.04% 0.53%

w=5 = 100 1.46% 1.97% 1.46% 1.15% 1.07% 1.01% 1.13% 0.97% 1.41% 2.55% 5.01%
k=20 7.15% 7.22% 7.08% 6.08% 5.79% 5.75% 6.11% 6.14% 8.03% 12.23% 19.16%

Reference values 0.750 0.820 0.905 0.950 0.970 0.980 0.987 0.991 0.995 0.995 0.990
k = 500 0.13% 0.25% 0.33% 0.10% 0.00% 0.20% 0.10% 0.08% 0.12% 0.28% 0.28%

w=10 k = 100 1.86% 1.35% 1.05% 1.14% 0.91% 0.73% 0.79% 0.95% 1.49% 2.58% 4.49%
k=20 8.67% 7.94% 6.64% 6.29% 5.66% 5.12% 5.27% 5.88% 7.54% 12.05% 18.19%
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Fig. 7. First two normalized eigenvalues (associated with the in-phase and out-of-phase instability mode shapes) obtained for the microscopic stability problem,
versus the size of the RVE assembly in the X; direction (a), and related critical mode shapes (b).

Table 2
Comparison between the macroscopic critical stretch ratios (reported as ref. value in the table) and microscopic critical stretch ratios obtained for an increasing unit
cell assembly in composites with shear modulus contrast k = 20 together with the corresponding percentage changes.

Unit cell assembly

k =20 1x1 2 x1 4 x1 8 x 1 16 x 1 32 x 1 64 x 1
A 0.361 0.361 0.425 0.612 0.660 0.672 0.674
V¢ = 0.1 ref. value 0.670
% change —46.18% —46.18% —36.64% —8.68% —1.55% 0.22% 0.62%
Ae 0.518 0.520 0.564 0.670 0.779 0.832 0.848
- o1 V¢ = 0.5 ref. value 0.855
w=0o % change —39.42% —39.17% —34.01% —21.58% —8.90% —2.72% —0.77%
Ae 0.392 0.546 0.564 0.564 0.564 0.591 0.637
V¢ = 0.9 ref. value 0.685
% change —42.83% —20.26% —17.67% -17.71% —17.60% —13.66% —7.08%
Ae 0.414 0.546 0.574 0.585 0.585 - -
V¢ = 0.1 ref. value 0.585
% change —29.29% —6.80% -1.97% —0.02% —0.03% - -
Ae 0.515 0.750 0.828 0.865 0.874 - -
-1 V¢ = 0.5 ref. value 0.876
w= % change —41.18% —14.37% —5.41% -1.27% —0.14% - -
A 0.535 0.628 0.744 0.810 0.829 - -
Vr = 0.9 ref. value 0.835
% change —35.93% —24.84% —10.86% —3.02% —0.77% - -
Ae 0.756 0.758 0.758 0.758 0.758 - -
Vs = 0.1 ref. value 0.755
% change 0.11% 0.35% 0.35% 0.35% 0.35% - -
Ae 0.913 0.925 0.930 0.930 0.930 - -
- 10 Vf= 0.5 ref. value 0.93002
w= % change —1.84% —0.51% 0.02% 0.02% 0.02% - -
A 0.851 0.871 0.876 0.878 0.878 - -
V¢ = 0.9 ref. value 0.87508
% change —2.75% —0.46% 0.11% 0.30% 0.33% - -
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value A, associated with the out-of-phase instabilities (red curve) does
not converge to 0, and that an in-phase critical mode shape should
occur at the first onset of the instability (black curve). Therefore, the
most relevant critical mode in the considered nacre-like microstruc-
ture (subjected to uniaxial compression) is the in-phase instability
mode, as depicted in Fig. 7. This behavior is similar to that reported
for the fiber-reinforced heterogeneous materials [32], indicating that
the out-of-phase instability modes occur at a significantly higher mag-
nitude of homogenized energy than the in-phase ones. In the light of
such results, in the next numerical analyses we use only a single unit
cell in the X, direction while varying the number of unit cells in the
loading direction X;. This allows us to reduce the computational effort
of the numerical analysis by limiting the investigations to a single row
of unit cells. Therefore, the microscopic stability analysis has been per-
formed on nacre-like composite materials with increasing RVE size in
the X; direction. The microscopic geometrical and material parameters
are Vs = 0.1, 0.5, and 0.9, w = 0.1, 1 and 10, and shear modulus con-
trast k = 20, 100, and 1000. The obtained microscopic critical stretch
ratios are summarized in Tables 2-4 for each investigated unit cell
assembly to compare the macroscopic critical factors with the micro-
scopic ones. In addition, to investigate the convergence of the micro-
scopic critical load factors to the macroscopic ones at increasing RVE
size, the percentage changes between the microscopic and the macro-
scopic critical stretch ratios (previously evaluated in section 3.1) have
been evaluated. The assemblies with an increased number of unit cells
show the predictions of the microscopic instability critical loads
approaching the macroscopic ones. Moreover, the convergence
between these predictions occurs with a relative tolerance of less than
1% being the assumed convergence threshold (the critical load values
for which the convergence is reached have been highlighted in bold in
the tables). It is important to note that, once the convergence of the

Table 3
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predictions is achieved, the values of the percentage oscillate around
the zero value, often changing their sign. This is due to the error
related to the FE discretization and the error related to the linear inter-
polation method adopted to evaluate the critical stretch ratio. Table 2
summarizes the microscopic critical stretch ratios for a nacre-like
microstructure with shear modulus contrast k = 20. Among the exam-
ined unit cell assemblies, the critical stretch ratio is underestimated by
the microscopic critical stretch ratio compared to the macroscopic one
(reported in the table as ref. value). The largest difference in the pre-
dictions is about 46.18% for the microscopic stability analyses
performed on the 1 X 1 unit cell assemblies with w = 0.1 and 1. This
is due to the fact that for nacre-like microstructures, the critical insta-
bility modes are global and thus, an RVE with a significantly large
number of unit cells in the loading direction of the load is required
to capture the global instability mode. Similar differences have been
obtained for the cases with k = 100 and w = 0.1 (see Table 3). The
results highlight that the difference in the predicted critical load
decreases as the platelets aspect ratio w and the shear modulus con-
trast k increase. For nacre-like microstructures with k = 1000 (whose
microscopic critical load factors are summarized in Table 4),
significantly smaller differences have been obtained (no more
than 4%).

We note that composites with platelets aspect ratio w = 10 show
the prediction difference of the instability critical loads lower than
3%. This is regardless of the values of the platelets volume fraction
and shear modulus contrast. As can be seen in Tables 2-4 the micro-
scopic critical stretch ratios approach to the macroscopic ones from
below leading to negative percentage changes with the except of the
case reported in Fig. 8 in which the primary instability mode is of local
type and, thus, the microscopic critical stretch ratio approaches to the
macroscopic one from the above with positive percentage changes.

Comparison between the macroscopic critical stretch ratios (reported as ref. value in the table) and microscopic critical stretch ratios obtained for an increasing unit
cell assembly in composites with shear modulus contrast k = 100 together with the corresponding percentage changes.

Unit cell assembly

k = 100 1x1 2x1 4 x1 8 x1 16 x 1 32 x1 64 x 1
Ae 0.435 0.439 0.652 0.716 0.744 0.751 -
Vy= 0.1 ref. value 0.750
% change —42.01% —41.47% —13.02% —4.49% —0.77% 0.19% -
Ae 0.504 0.666 0.766 0.861 0.917 0.949 -
- 01 Vs = 0.5 ref. value 0.953
w=0 % change —47.12% —30.07% —19.56% —9.66% —3.75% —0.34% -
Ae 0.837 0.835 0.835 0.836 0.836 0.881 0.898
Vy= 0.9 ref. value 0.916
% change ~8.64% —8.76% —8.76% —8.65% —8.70% -3.79% ~-1.89%
Ae 0.450 0.586 0.615 0.626 0.626 - -
Vy= 0.1 ref. value 0.625
% change —27.97% —6.23% —1.65% 0.17% 0.13% - -
Ac 0.692 0.825 0.886 0.915 0.923 0.925 -
-1 Vs = 0.5 ref. value 0.924
w= % change —25.16% —10.74% —4.09% —0.99% —0.14% 0.07% -
Ac 0.672 0.780 0.866 0.922 0.943 0.950 0.952
Vr = 0.9 ref. value 0.950
% change —29.27% —17.87% —8.89% —2.90% —0.74% 0.03% 0.16%
Ac 0.788 0.798 0.806 0.809 0.810 - -
Vr= 0.1 ref. value 0.809
% change —2.60% —1.34% —0.32% 0.05% 0.16% - -
Ae 0.945 0.963 0.971 0.973 0.973 - -
- 10 Vs = 0.5 ref. value 0.973
W= % change —2.84% —1.03% —0.24% —0.02% 0.01% - -
Ae 0.941 0.962 0.968 0.969 - - -
V= 0.9 ref. value 0.969
% change —2.90% —0.72% —0.14% —0.03% - - -

10



F. Greco et al.

Table 4

Composite Structures 269 (2021) 114004

Comparison between the macroscopic critical stretch ratios (reported as ref. value in the table) and microscopic critical stretch ratios obtained for an increasing unit
cell assembly in composites with shear modulus contrast k = 1000 together with the corresponding percentage changes.

Unit cell assembly

k = 1000 1x1 2x1 4 x1 8 x1 16 x 1 32 x 1 64 x 1
Ae 0.747 0.745 0.745 0.758 0.768 - -
Vr = 0.1 ref. value 0.765
% change —2.30% —2.59% —2.60% —0.97% 0.39% - -
Ac 0.938 0.935 0.935 0.940 0.970 - -
— 01 Vr= 0.5 ref. value 0.975
w=o % change =3.77% —4.07% —4.07% —3.57% —0.55% - -
Ae 0.975 0.975 0.975 0.975 0.975 0.975 0.977
Vr= 0.9 ref. value 0.986
% change —-1.12% —-1.12% -1.12% -1.12% —-1.12% —-1.12% —0.92%
Ae 0.616 0.618 0.633 0.645 0.648 - -
Vr= 0.1 ref. value 0.640
% change =3.77% —3.51% -1.13% 0.79% 1.16% - -
Ae 0.908 0.906 0.913 0.931 0.932 - -
-1 Vs = 0.5 ref. value 0.936
w= % change —2.97% —3.12% —2.46% —0.54% —0.43% - -
Ae 0.960 0.960 0.960 0.964 0.982 0.987 0.989
Vs = 0.9 ref. value 0.986
% change —2.58% —2.58% —2.58% —2.22% —0.40% 0.11% 0.29%
Ae 0.809 0.812 0.821 0.822 0.824 - -
Vr= 0.1 ref. value 0.820
% change —1.35% —1.03% 0.12% 0.29% 0.52% - -
Ae 0.957 0.962 0.962 0.981 0.983 0.984 -
- 10 Vs = 0.5 ref. value 0.980
w= % change —2.40% -1.87% -1.87% 0.08% 0.31% 0.36% -
Ae 0.965 0.987 0.994 0.995 0.996 - -
Vr = 0.9 ref. value 0.995
% change —2.97% —0.77% -0.15% 0.01% 0.05% - -

The geometrical and the material parameters combination for
which the critical mode shape is local is given by k = 20, Vs = 0.1,
w = 10. In this case, the percentage change is positive and, the onset
of the local instability precedes the macroscopic loss of strong elliptic-
ity. The related percentage variation is not significant, meaning that
for this specific microstructure the macroscopic stability condition pro-
vides a good estimate of the primary instability, even if of local type.
However, in the presence of different combinations of geometrical and
material parameters, it is expected that the macroscopic stability anal-
ysis could lead to a more strongly unconservative prediction of the crit-
ical stretch ratio (namely, a larger value of the critical load factor is
provided) with respect to a rigorous microscopic stability analysis.
As can be seen in Fig. 8, the microscopic instability mode is character-
ized by a finite wavelength with the periodicity corresponding to a
2 X 1 unit cell assembly.

The results reported in Tables 2-4 also show that different conver-
gence speeds can be obtained by varying the microstructure and the

material parameters. Specifically, for the cases with low platelets
aspect ratio (i.e., w 0.1), the convergence speed increase as the
shear modulus contrast increases. Fig. 9 illustrates this observation
showing the critical mode shapes for the composites with identical
microstructure parameters and varying shear modulus contrasts and
the unit cell assembly. In Fig. 9a, the convergence between the micro-
scopic and the macroscopic critical stretch ratios is reached by adopt-
ing unit cell assemblies n X 1 with n > 32; while in Figs. 9b and c the
convergence is faster, and it is reached by adopting n > 16 and n > 8,
respectively.

On the other hand, for the cases with high platelets aspect ratio
w = 10 the convergence speed decrease as the shear modulus contrast
increases. However, for the cases with intermediate values of platelets
aspect ratio w = 1 the convergence speed is not significantly influ-
enced by the other geometrical and material parameters. The combina-
tion of microstructure parameters for which the critical instability
modes is characterized by the longest wavelength (regardless of the

k=20 v,=01 w=10
BT BN W s AV,
I ! I | — 1 — 2x1 cell periodicity
1x1 2x1 4x]1 8x1 16x1
0.11 0.35 0.35 0.35 0.35 % change

Fig. 8. Critical mode shapes exhibiting a local instability at increasing RVE size in the X; direction for a nacre-like microstructure with platelets volume fraction

Vs = 0.1, platelets aspect ratio w = 10 and shear modulus k = 20.
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Fig. 9. Critical instability mode shapes at increasing RVE size in the X; direction for a nacre-like microstructure with platelets volume fraction V; = 0.1, platelets
aspect ratio w = 0.1 and shear modulus k = 20 (a), k = 100 (b) and k = 1000 (c).
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Fig. 10. Critical instability mode shapes at increasing RVE size in the X; direction for a nacre-like microstructure with shear modulus k = 1000, platelets volume
fraction V¢ = 0.9, and platelets aspect ratiow = 0.1 (a), w = 1 (b) and w = 10 (o).

shear modulus contrast) is V¢ = 0.9 and w = 0.1 (see Fig. 10). In this
case, a considerable number of unit cells in the X; direction is needed
to capture the onset of the global instability by means of a microscopic
stability analysis. For instance, in the case of a unit cell assembly
64 X 1 is needed to achieve the convergence between the microscopic
and macroscopic critical stretch ratios highlighting thus that, by
increasing the platelets aspect ratio, the critical instability wavelength
can be reduced and, consequently, the convergence speed is increased.
Definitively, for the investigated range of geometrical and material
parameters, we found that the macroscopic stability analysis resulted
to be more effective than the microscopic one to detect the onset of
instabilities in nacre-like composite materials subjected to uniaxial
loads in a large deformation context because, in many cases, the pri-
mary instabilities were of global type. On the other hand, we found
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that the combination of geometrical and material parameters
characterized by high values of platelets aspect ratio and low values
of platelets volume fraction and shear moduli contrast requires a full
microscopic stability analysis since the local instability precedes the
global one.

4. Conclusions

The present work deals with the stability analysis at both the
microscopic and the macroscopic scale of 2D bioinspired incompress-
ible composite materials characterized by a nacre-like microstructure
and subjected to uniaxial loading processes in a finite-strain frame-
work. The microscopic and the macroscopic instabilities have been
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investigated by examining different combinations of platelets volume
fraction, aspect ratio and shear modulus contrast between platelets
and matrix phase. The macroscopic stability analyses were performed
by employing the classical macroscopic stability condition (coinciding
with the strong ellipticity condition of the homogenized tangent mod-
uli tensor), and the related results have been reported in terms of the
critical stretch ratios corresponding to the onset of elastic instabilities
with long wavelengths. The results highlighted that the critical stretch
ratios and the instability mode shapes, resulted to be highly influenced
by both microscopic geometrical arrangement and material composi-
tion. Specifically, we can observe that the critical stretch ratios have
an increasing trend for low volume fractions, until reaching a peak,
and then a decreasing trend. The shear modulus contrast between
the reinforcement platelets and the matrix represents an important
material parameter influencing the instability phenomena in nacre-
like composite materials. In the range of low shear modulus contrast
it acts as weak stabilizing factor while, in the range of high shear mod-
ulus contrast it acts as an unstabilizing factor that leads thus to macro-
scopic instabilities at lower uniaxial compressive loading. In addition,
has been highlighted that a change in the shear modulus contrast has a
more significant effect on the critical stretch ratio in nacre-like
microstructures with high volume fractions since, for instance, the
highest percentage decrease of the critical stretch ratio (equal to
43.57%) has obtained by decreasing the shear modulus contrast from
1000 to 20 in the case with platelets aspect ratio equal to 0.1 and pla-
telets volume fraction equal to 0.95. Next, the microscopic instabilities
have been investigated by superimposing to an RVE of nacre-like com-
posite material (defined by a single unit cell or an ensemble of cells) a
perturbation of the equilibrium fluctuation field in the current config-
uration. We have found that for a wide range of geometrical and mate-
rial parameters, the instabilities resulted to be characterized by long
wavelengths with an in-phase mode shape and it has been also proved
that the out-of-phase instability mode shapes occur at a significantly
higher magnitude of the homogenized energy compared to the in-
phase ones. We also observed that by adopting a small unit cell assem-
bly, the microscopic stability analyses provide strong underestimates
of the critical stretch ratios, while they provide similar results at the
macroscopic stability analyses when they are performed by adopting
large unit cell assemblies with prevalent dimension in the load direc-
tion. Just in one combination of the investigated geometrical and
material parameters the critical mode shape resulted to be local and,
in this case, the onset of the local instability precedes the macroscopic
loss of strong ellipticity. Definitively, the obtained results have proved
that the stability analyses performed on nacre-like composite materials
subjected to uniaxial deformation in a large deformation context, can
be based on the criterion of the loss of strong ellipticity condition of
the homogenized incremental moduli tensor which is computationally
less expensive than a microscopic stability analysis performed on a
very large assembly of unit cells and that only a few microstructural
morphologies, characterized in particular by low values of platelets
volume fraction and shear moduli contrast together with high values
of platelets aspect ratio, require a full microscopic analysis. However,
also in such cases, the macroscopic stability analysis is able to provide
reasonable estimate of the critical load factor.
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