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A B S T R A C T   

Large deformations of soft materials can give rise to the development of various elastic instabilities. The phe
nomenon is associated with a sudden and dramatic change in structure morphologies. The underlying mechanism 
is crucial for the formation of complex morphologies in biology. Moreover, the concept of instability-induced 
pattern transformations is promising for designing novel materials with switchable functions and properties. 
In this paper, we review the state of the art in elastic instability phenomena in soft materials. We start by 
considering the classical buckling in beam-based structure lattice designs. Then, we discuss the instability- 
induced microstructure transformations in soft porous materials, and heterogeneous multiphase and fiber 
composites. Next, the mechanisms – often involving the post-buckling consideration – leading to the wrinkling 
and folding, creasing, fringe, and fingering are discussed.   

1. Introduction 

Soft materials such as elastomers, gels, and biological tissues can 
easily develop large deformation in response to various stimuli. The 
large deformations may lead to the development of elastic instabilities 
and associated pattern formations. For example, various morphogenesis 
of flowers and leaves during differential growth [1], the wrinkling of 
skins on human fingers and toes in response to long immersion in water 
[2,3], and the creasing in dough during the constrained swelling [4] 
have been observed. The elastic instabilities are usually accompanied by 
a dramatic change in structure configurations and a sudden loss in load 
capacities. Historically, the phenomenon is perceived as a failure mode 
(for example, buckling of columns and shells). Recently, the new 
concept of using the rich instability-induced pattern transformations in 
soft materials has been put forward. Examples include mechanical 
metamaterials with unusual properties [5], photonic [6] and phononic 
[7,8] switches, soft robot [9,10], sensors [11], flexible electronics [12], 
adhesion [13] and energy absorption [14]. Moreover, the knowledge 
about the mechanical instability phenomenon can help elucidate the 
morphogenesis in organs during growth in various biological systems 
[15–17]. 

The diverse potential applications of the instability phenomena in 
soft materials motivated a significant body of theoretical, numerical, 

and experimental studies. These works addressed the rich variety of 
elastic instabilities, including buckling, wrinkling, folding, creasing, 
cavitation, fringe, and fingering in various soft material systems under 
different stimuli [18–23]. In this paper, however, we will focus on the 
instability phenomena induced by mechanical loadings. The paper is 
structured as follows. Section 2 presents recent advances in the buckling 
of beam-like structures, including single beam, fiber composite, porous 
composite, and lattice structure. Section 3 discusses the wrinkling of stiff 
films on a compliant flat soft substrate. Section 4 reviews various in
stabilities emerging in a constrained soft layer. The review is concluded 
by a summary and discussion. 

2. From beams and fibers to fiber composites, periodic porous 
and lattice structures. 

2.1. Single beam 

The study of elastic instability dates back to the 18th century when 
Leonard Euler introduced the calculation of the critical load for the 
buckling of a slender beam in 1744 [24], followed by Lagrange’s anal
ysis for higher modes in 1770 [25] (Fig. 1(a)). The critical buckling load 
Fc of a homogeneous linear elastic slender beam with hinged ends can be 
calculated as 
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Fc =
π2EI
L2 , (1)  

where E is Young’s modulus, I is the second moment of area, L is the 
beam length. Recently, Coulais et al. [26] pointed out that the slope of 
the force–displacement curve of Euler’s slender beam in the post- 
buckling regime is 1/2 (Fig. 1(b)). Moreover, and the slope is indepen
dent of the end boundary conditions. However, for the non-linear elastic 
beams with larger aspect ratios (t/L > 0.12, t refers to the beam width), 
the material nonlinearities can lead to the discontinuous buckling. This 
postbuckling regime is charterezed by a decrease in the compressive 
force decreases with an increase in the applied deformation (Fig. 1(b)). 
In beams with larger aspect ratios (t/L > 0.24), Chen and Jin [27,28] 
identified a new snapping-back mode. In this scenario, both force and 
displacement decrease after the onset of buckling. The authors show that 
for t/L > 1, the beam transitions from a snapping-back mode to the 
barreling mode. Remarkably, the phase diagram can be violated with 
specially designed metabeams. For example, Coulais et al. [26] indi
cated that a slender meta-beam consisting of periodic voids in a soft 
matrix exhibits discontinuous buckling; Oliveri and Overvelde [29] 
utilize the topology optimization of beam geometry to design meta- 
beams with targeted buckling load or maximum buckling load. 

The beam buckling behavior significantly depends on the type of 
loadings and boundary conditions. Lazarus et al. [30] show the wavy- 
like buckling of a slender rod under twisting deformation and 
analyzed the role of the initial rod curvature on the buckling behavior 
(Fig. 1(c)). Miller et al. [31,33] investigate the buckling of a thin elastic 
rod in a cylindrical constraint, identified the sequential buckling from 
straight to sinusoidal, then to helical shape configurations, and, finally, 
to the lock-up state due to the friction (Fig. 1(d)). For the frictionless 

case, Xiao et al. [34] show that the helical configuration transitions to an 
alpha shape. 

Another important situation arises when the beam is surrounded by a 
softer matrix. Such constraint results in a more stable behavior (as 
compared to the isolated beam buckling), and the buckling behavior is 
dictated by the contrast in matrix-to-beam material properties (in 
addition to the boundary conditions). Su et al. [35] show that the 
occurrence of the planar wavy pattern and non-planar coiled buckling 
mode of stiff fiber surrounded by a soft matrix depends on the interplay 
of the two lowest buckling modes. Zhao et al. [36] examined the 
buckling of short elastic fiber in a soft matrix; their theoretical analysis 
shows that the buckling of fibers can be tuned by several orders of 
magnitude via altering the length ratio of stiff fiber over the height of the 
soft matrix. Chen et al. [37] numerically illustrate that the long stiff wire 
embedded in a soft matrix initially buckles in 2D sinusoidal configura
tion, and then gradually transits from the 2D sinusoidal into the 3D 
helical mode. Li et al. [32] experimentally investigated the buckling of a 
3D printed fiber embedded in a soft matrix (Fig. 1(e)). The work intro
duced an explicit formula for the buckling wavelength estimation, 

log
(

2πd
Lcr

)

= − 0.265log
(

Gf

Gm

)

+ 0.265log
(

4
1 + νf

)

, (2)  

where d and Lcr are the fiber diameter and critical wavelength, respec
tively; Gf and Gm are the shear moduli of stiff fiber and soft matrix 
materials; νf is the Poisson’s ratio of stiff fiber material; here the soft 
matrix is assumed to be incompressible, i.e., νm = 0.5. Note that Eq. (2) 
is obtained under the assumption of negligible shear deformation in the 
fiber and matrix. While this assumption provides a good approximation 
for large fiber-to-matrix modulus ratios, the shear deformation is 

Fig. 1. Single-beam buckling. (a) Classical Euler buckling [24,25]. (b) Hyperelastic slender-, wide- and meta-beam, adapted from Ref. [26]. (c) Beam buckling under 
twisting deformation, adapted from Ref. [30]. (d) Buckling of beam confined in a hollow cylinder, adapted from Ref. [31]. (e) Bucking of beam embedded in a soft 
matrix, reproduced with permission from Ref. [32]. 
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essential for the case with a small modulus ratio [38]. Thus, the estimate 
provides more accurate predictions for relatively stiff fibers. In partic
ular, Li et al. [32] reported a good agreement between the prediction of 
Eq. (2) and finite element simulations in the range of Gf/Gm > 100. 

2.2. Fiber composite 

Fig. 2 illustrates the buckled patterns in periodic stiff-fiber-soft- 
matrix composites. Due to the interaction between neighboring fibers, 
the buckling behavior of the fibers is determined by their volume frac
tion and material properties. Rosen [39] analyzed the stability of linear 
elastic layered composite, for which the buckling strain is 

εcr =
Gm

Ef

1
cf (1 − cf )

(3)  

where c is volume fraction, the properties of the fiber and matrix are 
denoted by subscript f and m, respectively. By considering the inter
acting stress between matrix and fiber interface, Parnes and Chiskis [40] 
re-examined Rosen’s solution and showed that the buckling of layered 
composite has two separate regimes. In particular, the dilute composites 
buckle at finite wavelengths, while the non-dilute composites buckle at 
infinite large wavelengths or so-called long-wave mode; the buckling 
strain of the non-dilute composites agrees with the Rosen’s solution 
[39]. 

In the instability analysis within the non-linear elasticity framework, 
these modes are frequently referred to as microscopic and macroscopic 
instabilities. The instability analysis is performed in terms of the line
arized incremental equations [41] for small motions superimposed on 
the finite deformation state. The detection of microscopic instabilities 
relies on the Bloch-Floquet analysis applied for periodic composites 
[42]. Geymonat et al. [43] showed the equivalence for the long-wave 
limit in the Bloch-Floquet analysis and the loss of ellipticity condition. 
The loss of ellipticity condition is frequently utilized to predict the onset 
of the macroscopic (or long-wave) instabilities. The analysis requires the 
determination of the tensor of the elastic moduli (or related acoustic 
tensor), which can be deduced from the constitutive laws in terms of the 

energy density functions. By employing the phenomenologically-based 
energy functions, the stability of fiber-reinforced hyperelastic compos
ites has been derived [44–47]. Recently, Hamdaoui et al. [48] used a 
similar approach to predict the fiber kinking and splitting failure modes 
in aligned fiber-reinforced hyperelastic solids. Moreover, Demirkoparan 
et al. [49,50] utilized the phenomenological models to study the effect of 
pre-deformation and anisotropy on the bulging and helical buckling 
behavior of soft tubes. An alternative approach is based on the effective 
or homogenized responses of the composites utilizing the micro
mechanics consideration. For example, Agoras et al. [51], Rudykh and 
Debotton [52] used the method to predict the onset of macroscopic in
stabilities in transversely isotropic fiber composites with hyperelastic 
phases. Employing the numerical Bloch-Floquet analysis, Li et al. [53] 
studied the elastic instability in compressible laminate and found that 
the phase compressibility has the stabilization effect. Slesarenko and 
Rudykh [54] identified both the macroscopic and microscopic in
stabilities in 3D periodic hyperelastic fiber composites loaded along the 
fiber direction. Galich et al. [55] studied the influence of 3D fiber 
arrangement on the instabilities showing, for example, that the com
posite with a higher in-plane periodicity aspect ratio is more prone to 
instabilities. Recently, Arora et al. [56] examined instabilities in 3D fiber 
composites with non-Gaussian hyperelastic phases illustrating the sig
nificant influence of the phase stiffening on the composite stability. 
Greco et al. [57,58] investigated the influence of matrix or fiber/matrix 
interface microcracks on the failure behaviors of periodic fiber- 
reinforced composites. 

Recent developments in material fabrication and 3D-printing of soft 
multiphase composites allowed the experimental realization of the 
instability phenomenon in soft composites. For example, Li et al. [59] 
reported the experimental observation of wrinkling in interfacial layers 
subjected to in-plane compressive deformation (Fig. 2(a)). Slesarenko 
and Rudykh [60] experimentally illustrated the tunability of wrinkling 
patterns in soft layered composites via viscoelasticity. Arora et al. [61] 
studied the role of interphase layers on the instabilities of laminate 
composites. Li et al. [32] investigated elastic instabilities and pattern 
formations in 3D-printed deformable fiber composites and observed the 
transition of the instability induced patterns from small wavelength 

Fig. 2. Instabilities and pattern formations in periodic heterogeneous soft composites. (a) Layered composites, reproduced with permission from Ref. [59]. (b) 3D 
fiber composites, reproduced with permission from Ref. [32]. (c) Particulate composites, reproduced with permission from Ref. [62]. 
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wavy patterns to the long-wave mode. Galich et al.[55] numerically 
predicted that the co-operative buckling of the fiber could happen in the 
“stiff” direction where the fibers are close to each other. This interesting 
buckling behavior has been observed in recent experiments on 3D- 
printed periodic fiber composites (Fig. 2(b)). 

Particulate composites are another important class of soft hetero
geneous materials exhibiting the elastic instability phenomenon that can 
be used to switch the functions and properties through pre-designed 
microstructure transformations. The composites with the random dis
tribution of circular particles are stable [63]; however, similar random 
distribution composites with aligned stiff elliptical inclusions exhibit the 
macroscopic instability; this difference is due to the symmetry breakage 

in the elliptical fiber orientation [64]. For periodic composites, Michel 
et al. [63] and Triantafyllidis et al. [65] numerically predicted the onset 
of microscopic and macroscopic instabilities in the two-phase hypere
lastic solids under biaxial loadings. 

Recently, Li et al. [62] experimentally observed the pattern transi
tions in periodic circular stiff inclusion composites (see Fig. 2(c)). The 
wavy-like buckling patterns are reported in the composite with sparse 
inclusions, whereas the anti-symmetric domains emerge in the com
posite with a dense inclusion arrangement. Note that the wavelength of 
the experimentally observed domains is comparable to the characteristic 
size of composite microstructure, although the numerical instability 
analysis predicts the long-wave mode. Similar domain or twinning 

Fig. 3. Instability-induced pattern transformations in periodic porous composites. (a) Stress–strain curve for a square array of circular voids embedded in an 
elastomer with associated undeformed and buckled configurations, adapted from Ref. [87]. (b) Difference in critical strain between microscopic and macroscopic 
instabilities as functions of geometrical coefficients, adapted from Ref. [92]. (c) Multiple pattern formations in void-inclusion-matrix composites, reproduced with 
permission from Refs. [96,97]. (d) Programmable bi-sized void system through external constraints, adapted from Ref. [99]. 
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patterns were also identified in other material systems, such as thin films 
on compliant substrates [66–68], liquid crystals [69], and nematic 
elastomers [70,71]. 

It is worth mentioning that the heterogeneous composites can also be 
utilized in electro/magneto-active elastomeric composite design to 
enhance their pattern morphologies and actuation capability [72]. The 
instabilities in these composites developing under large deformations in 
external (electric or magnetic) fields are a crucial issue for the material 
design and application [73]. While this review paper is focused on the 
material instabilities under pure mechanical loadings, interested readers 
are referred to recent relevant works on these topics [74–80]. 

2.3. Porous composite 

The instability phenomenon in soft porous materials manifests in the 
sudden collapse of voids upon reaching the critical deformation level 
(see Fig. 3). For porous composite with a random distribution of circular 
voids, only macroscopic instabilities are detected by the homogeniza
tion method [81–83], predicting the development of the shear band-type 
instability in the post-buckling regime [81,82]. For periodic composites, 
however, both microscopic and macroscopic instabilities with associ
ated pattern transformations are predicted theoretically and numeri
cally, and realized experimentally [65,83–90]. Interestingly, the 
periodically distributed circular voids suddenly switch into ellipses ar
ranged in the mutually orthogonal configuration due to the elastic 
instability phenomena [87] (Fig. 3a). The underlying mechanism of the 
pattern transformations in porous composites is the buckling of thin 
ligaments between voids, as well as the corresponding folding mecha
nisms. The initial void shape plays a significant role in the instability 
induced pattern transformations [91,92] (Fig. 3b); thus, the topological 
optimization can help achieve the targeted functionalities [92,93]. To 
rationalize the folding mechanisms in the periodic porous composites, a 
simplified model has been introduced. In particular, the holey sheet is 
considered as a network consisting of the corner-rigid-hinged polygons 
that can rotate freely at the hinges [7]. Constrained by the geometrical 
compatibility, only limited folding patterns are allowed [94,95]. 
Remarkably, multiple folding patterns can be achieved in the same 
porous composites by altering the loading directions [7]. Shim et al. 
[95] further utilized the folding patterns in designing 3D Buckliball. 
Through the numerical simulation and experiments, the guidelines for 
the pattern design of the Buckliball have been provided. Thus, the 
Buckliball behavior can be pre-designed by the geometry of thin shell 
ligaments. 

Recently, Li et al. [96,97] put forward the concept of multiphase 
composites consisting of periodic stiff inclusions and voids distributed in 
a soft matrix. The proposed composites exhibit multiple pattern trans
formations through the positioning of stiff inclusions and composite 
anisotropy (Fig. 3c). The system exhibited wide tunability of the Pois
son’s ratio, attaining the extreme negative levels of auxetic behavior. In 
addition, the application of the system to control elastic wave propa
gation and band gaps has been demonstrated numerically [97,98]. 

An interesting concept of programming the void-matrix system via 
lateral confinement has been proposed [99,100] to tailor the force
–displacement response. In particular, the bi-sized void system (illus
trated in Fig. 3d) showed monotonic, non-monotonic, and hysteretic 
behavior depending on the lateral confinement strain [99,100]. In 
addition to the rich pattern transformations of periodic porous com
posites, Overvelde et al. [92,101] discovered that the elastomer with a 
square array of circular pores under equibiaxial deformation develops 
tensile instability, resulting in a checkerboard pattern with two different 
pore sizes. 

2.4. Lattice structure 

While the beam elements of lattice structures can experience local 
failure described by the classical Euler buckling, the overall structural 

co-operative behavior is rather different and opens potential ways for 
utilizing the instability phenomenon [102,103]. For example, a tilted 
elastic beam-element can snap between different stable configurations 
[104], even further, retain the buckling state after unloading [14] (Fig. 4 
(a)). This mechanism can be used to trap the elastic energy and, thus, to 
design energy absorption metamaterials. A similar mechanism was 
employed in the double-curved beams under tensile load [105]. A 
different design of lattice structures with varying beam thicknesses was 
proposed to design fault-tolerance materials [106]. Through the pre- 
designed sequence of localized bucking and evenly distributed failure 
of thin and thicker beams, the fault-tolerant lattice material showed the 
energy absorption capacity (Fig. 4(c) and (d)) [106]. Fernandes et al. 
further illustrated the improvement of buckling resistance of lattice 
composite through optimizing the arrangement and thickness of beams 
[107]. To overcome the limitation of deformation sequence un
certainties (induced by the imperfections stemming from, for example, 
manufacturing processes and/or boundary conditions) in metamaterials 
consisting of identical unit cells, a pre-designed variation in beam 
thickness can be utilized to obtain a deterministic deformation sequence 
[108]. 

2D lattice structures subjected to biaxial loadings show multiple 
buckled patterns that can be tuned by varying the combination of 
loadings in different directions and lattice microstructure. By applying 
the beam-column matrix method, Haghpanah et al. [109] systematically 
examined lattice structures’ buckling. The authors produced the buck
ling maps for biaxially loaded lattices with square (Fig. 4b), triangle, and 
hexagonal grids. Notably, different buckling patterns can be switched by 
altering the cross-section of the beams [112]. Furthermore, with the 
advancement in material fabrications, recent works showed that the 
buckling pattern of lattice structure could be induced not only by me
chanical loading [113], but also by temperature [114], electrical field 
[115], and hydration-induced swelling [116,117]. 

The snapping of a single beam under confined geometrical con
straints can be populated into 3D structures. For example, polymeric 3D 
micro-lattice shows highly repeatable mechanical energy-absorbing 
through allowing the tailored buckling mechanism (Fig. 4e); self- 
recovering and non-self-recovering lattices can be pre-designed 
through altering lattice geometry [110,118]. Mechanical metamaterial 
design with a strategical assembling of cubic building blocks consisting 
of beams with outward and inward buckling have been proposed to 
achieve programmable shape changes; the design has been illustrated by 
the flat metacube programmed into a smile face-like shape changes 
under uniaxial compression (Fig. 4f) [111]. 

3. Stiff film on a compliant flat soft substrate 

When the system of a thin stiff film on a compliant flat soft substrate 
is uniaxially compressed beyond a critical level, wrinkling instability 
develops (as illustrated in Fig. 5(a)). Since the bending energy and 
stretching energy scale as (see for example, [119]) 

Ubending̃ Et3
/
(
1 − ν2)

∫

κ2dV, and Ustretching̃ Et
/
(
1 − ν2)

∫

ε2dV

(4) 

Here, t is the stiff film thickness, κ is the bending curvature. For small 
t, Ubending≪Ustretching, thus, the thin film prefers the bending mode with 
long-wavelength; the buckling of the underlying soft substrate, however, 
favors short wavelengths [120,121]. Based on the energy consideration 
of the bending and stretching modes, one can conclude that the inter
action between stiff film and soft substrate results in a characteristic 
length of wrinkling pattern. Through considering the thin film as an 
elastic non-linear von Karman beam and the soft substrate as a semi- 
infinite solid, the critical wrinkling strain εcr and wrinkling wave
length λcr in small deformation (usually defined as the deformation level 
is less than 5%) can be calculated by [66,122] 
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εcr =
1
4

(

3Es

Ef

)2
3

, and λcr = 2πt

(
Ef

3Es

)1
3

(5)  

where E = E/(1 − ν2) is the plane-strain modulus. The predictions of Eq. 
(5) are in good agreement with experimental results for the system with 
large modulus contrast [123]; these systems buckle at relatively small 
strain levels. However, for lower modulus contrasts, large deformations 
are required to trigger the buckling. In this case, the experiments showed 
that the wrinkling wavelength depends on the applied pre-strain in the 
substrate [124,125]. This observation was explained by a refined me
chanical model considering the geometrical and material nonlinearities 

under large deformation [124,126–128]. 
The instability-induced wrinkling may transit to more complex pat

terns with further deformation. These secondary patterns include folds 
[129–131], ridge [132,133], period-double [134–136], period- 
quadrupling [134], and hierarchical wrinkles[137,138]; alternative 
scenarios include surface failure through cracks [139] or delamination 
[140–142]. In particular, for the system with a moderate modulus 
contrast between stiff film and soft substrate, the stiff film wrinkles may 
transit to crease [132,143], or even directly developing creasing insta
bility [144]; the latter is the homogeneous material buckling form that 
will be discussed in Section 4. Through setting adhesion energy between 
film and substrate, Wang and Zhao [145–147] produced a phase map to 
describe the pattern selections in the system with different modulus 

Fig. 4. Bucking and functionalities of lattice composites. (a) Force-displacement response of an elastic multistable structure consisting of tilted elastic beams, 
adapted from Ref. [14]. (b) Buckling map of 2D lattice structure with a square grid, adapted from Ref. [109]. Fault-tolerant lattice with varying thickness in un
deformed (c) and deformed (d) states, reproduced with permission from Ref. [106]. (e) Pictures of microlattice before and after applied deformation, and corre
sponding force–displacement measurements, adapted from Ref. [110]. (f) Shape-morphing metamaterials consisting of programmed building blocks with inward and 
outward buckling patterns, adapted from Ref. [111]. 
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contrasts, mismatch strains, and adhesion energy (Fig. 5(a)). 
The stiff film-soft substrate system produces a rather different 

pattern when subjected to biaxial compressive deformation. The stiff 
film can develop wavy mode, ridge, square checkerboard mode, hex
agonal mode, triangular mode, herringbone mode, and labyrinths pat
terns (Fig. 5b) [66,68,122,148–154]. It has been shown that the pattern 
selections and transitions significantly depend on the initial imperfec
tion, loading history, and applied deformation level [68,155–157]. For 
equibiaxial loading, the herringbone pattern usually has the minimum 
energy state [66,68,122,158]. Notably, the herringbone pattern has the 
minimum buckling strain at infinite large longitudinal wavelength [67], 
while experimental results showed that the longitudinal and transverse 
wavelengths of herringbone patterns are comparable [149,159]. Audoly 
and Boudaoud [155,156] discussed this discrepancy and indicated that 
this could be because the system is trapped in a local minimum energy 
state instead of developing the buckling mode for a global minimum one 
due to the loading history. Through a sequential loading, Lin and Yang 
[154] experimentally observed a well-ordered herringbone mode. The 
sequential loading induced a minimum energy configuration at a finite 
longitudinal wavelength [148]. It is worth noting that similar pattern 
transitions were also observed in the system of stiff films attached on a 
curved substrate. In these systems, the patterns are strongly regulated by 
the structure curvature; interested readers are referred to the recent 
review focusing on pattern formations in curved substrates [160]. The 
buckling of a stiff film partially bonded to a pre-stretched elastomer 
exhibits even more complex patterns [161,162]. Through the pre- 
designed bonding point and pre-designed shape of the stiff film, com
plex 3D patterns can be achieved in the out-of-plane deformation of the 

film (Fig. 5c) [163–166]. For more details of the underlying mecha
nisms, the readers are referred to the relvant reviews [167,168]. Note 
that the buckling of the partially bonded stiff-film-soft-substrate system 
has been widely utilized to fabricate complex 3D mesostructures for 
potential applications in flexible electronics [161,169]. 

4. Soft layer confined by a stiff substrate 

When a soft material confined by a stiff substrate is compressed 
beyond a critical level, the flat surface develops the so-called creases – 
the patterns with highly localized self-contact folds (Fig. 6a). The creases 
have been observed in experiments involving compressive deformation 
of an elastomer or hydrogel [4,170–175], volumetric expansion or 
shrinkage of swollen hydrogel or gel [176–179], mass addition of tissue 
growth [180–182], even dielectric elastomer subjected to external 
electric field [183,184]. Gent and Cho [170] experimentally observed 
the creasing in a bent rubber block surface at a compressive strain of 
around 0.35; this value is much smaller than Biot’s [120] theoretical 
prediction of the critical strain 0.457 for the wrinkling of a semi-infinite 
neo-Hookean material under compressive plain-strain conditions. 

To explain this discrepancy and to provide the understanding of the 
creasing mechanisms, finite element simulations have been utilized. The 
numerical results – for neo-Hookean material under plane-strain con
ditions – predict that the free flat surface undergoes a discontinuous 
transition from a smooth surface to a localized crease pattern at critical 
strain about 0.35 [171,185]; this result is an excellent agreement with 
Gent and Cho’s [170] experiments. Further numerical investigations 
showed that the crease sets a lower energy state than the homogeneous 

Fig. 5. Pattern selections of stiff films on a complaint soft substrate. (a) Under uniaxial deformation, adapted from Ref. [145]. (b) Under biaxial deformation, adapted 
from Ref. [68]. (c) Buckling of partially bonded stiff films on a complaint soft substrate, adapted from Ref. [163]. 
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state [171,186]. Cao and Hutchinson [121] showed that the wrinkling in 
homogeneous neo-Hookean materials is extremely unstable and 
dynamically collapse to creases. Hohlfeld and Mahadevan [187] pointed 
out that the crease is a new instability mode different from the wrinkling 
of a stiff film on a compliant soft substrate. While a linear perturbation 
analysis can accurately predict wrinkling, the identification of creasing 
requires the full finite deformation solutions. Tang et al. [188] observed 
the dependence of creasing length on the specimen geometry in exper
iments. Moreover, the crease instability in the systems with graded or 
pre-deformed bilayers can be supercritical and subcritical [189,190]; 
this depends on the mismatch deformation [175] or modulus/thickness 
ratio [144]. The crease formation is also significantly affected by ma
terial properties. For example, the material strain-stiffening [191], 
plasticity [192], or inelasticity [193] can delay or even eliminate the 
onset of creasing. By applying a singular perturbation analysis, Ciarletta 
[174,194] derived an asymptotic approximation of the creasing strain, 
which was also validated by numerical simulations. 

In addition to the crease instabilities in the confined soft layer sub
jected to compressive deformation, the tensile deformation can also 
induce various instability modes. For example, cavitation, fingering 
(Fig. 6b), and fringe instabilities (Fig. 6c) are observed in soft layers with 
perfect adhesion to a stiff substrate under a tensile deformation 
[195,196]. The cavitation instability refers to a sudden growth of voids 
in soft elastomer that occurs at microscopic length-scales under a large 
hydrostatic tensile stress [198,199]. This crucial mechanism for fracture 
failure of soft materials has been extensively investigated – interested 
readers are referred to the focused reviews on cavitation [200–202]. 
Differently, fingering and fringe are usually observed at macroscopic 

length-scales and exhibit periodic fingers of air that invade the elastic 
layers due to the material incompressibility and applied boundary 
constraints [196,203,204]. In particular, the fingering instability is 
associated with a monotonic load–displacement curve, while the 
load–displacement curve of the soft layer with fringe instability is non- 
monotonic [196,205]. The selection of these instability modes depends 
on the shape and geometrical parameter material property of the soft 
layer [196,206]. Upon onset of instability, localized large deformations 
develop, and the material strain-stiffening can delay the emergence of 
fringe and fingering instabilities [207]. This mechanism is similar to the 
crease smoothing by material strain-stiffening [191]. 

Finally, consider the possible scenario of the interfacial fracture of 
the adhesion between the soft layer and the stiff substrate (see Fig. 6d). 
In this case, the delaminated surface of the soft layer can develop peri
odic undulations, giving rise to the fingering instabilities [208–213]. 
This fingering instability is an analog of the Saffman–Taylor instability 
observed in the fluid injected into another fluid with higher viscosity. 
Although both instabilities share similar fingering patterns, however, 
the characteristics of the formation of these patterns are fundamentally 
different. The fingering instability in soft solids is reversible and 
subcritical, and the undulation wavelength depends on the soft layer 
thickness [197,204,214]. In contrast, the Saffman–Taylor instability is 
irreversible and supercritical, and the wavelength of the fingering 
pattern depends on the viscosity and surface tension [215]. 

5. Concluding remarks 

The review summarizes the development of the theoretical 

Fig. 6. Bucking of a soft layer confined by a stiff substrate. (a) Creasing instability, adapted from Ref. [174], (b) Fingering instability, adapted from Ref. [195], (c) 
Fringe instability, adapted from Ref. [196], (c) Interfacial instability, adapted from Ref. [197]. Note that the fingering instability undulates in the middle of the soft 
layer, while the fringe instability undulates at the edge of the soft layer. 
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prediction, numerical modeling, and experimental observation of the 
elastic instability phenomenon and subsequent post-buckling behavior. 
We note that the elastic instability phenomenon is rather sensitive to the 
structure geometry and material imperfections. These imperfections can 
significantly affect the initiation of buckling modes and their develop
ment into post-buckling pattern transformations. For example, from a 
numerical modeling perspective – where the finite element method is 
frequently used – the imperfections are introduced into the idealized 
system in a pre-defined manner. In experiments, the imperfections can 
stem from a variety of factors ranging from boundary effects of finite size 
samples, breakage in the microstructure periodicity, loading alignments 
and frication, to defects and geometrical imperfections, and variations in 
local material properties. Moreover, soft materials exhibit their essential 
inelastic behavior. The current theoretical and numerical modeling of 
instabilities in soft materials mostly focused on the elastic systems, and 
significant efforts are required to generalize the framework for inelastic 
systems. Furthermore, the application of the instability mechanisms for 
elucidating the morphogenesis of tissues and organs require the 
consideration of so-called coupled multiphysics problems, and the 
development of constitutive models capable of capturing the high 
complexity of living biological materials frequently developing residual 
stresses [216,217]. In particular, the coupling of chemical, biological, 
and mechanical factors with complex interactions between different 
fields across length-scales in living materials presents a challenge for the 
classical continuum mechanics approaches [218,219]. This is even more 
so for the development of buckling and post-buckling analysis and 
modeling. The process may be facilitated by incorporating the promising 
approaches of machine learning. 
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growth and form of cortical convolutions, Nat. Phys. 12 (2016) 588–593, https:// 
doi.org/10.1038/nphys3632. 

[183] Q. Wang, M. Tahir, J. Zang, X. Zhao, Dynamic electrostatic lithography: 
Multiscale on-demand patterning on large-area curved surfaces, Adv. Mater. 24 
(2012) 1947–1951, https://doi.org/10.1002/adma.201200272. 

[184] Q. Wang, L. Zhang, X. Zhao, Creasing to cratering instability in polymers under 
ultrahigh electric fields, Phys. Rev. Lett. 106 (2011) 118301, https://doi.org/ 
10.1103/PhysRevLett.106.118301. 

[185] E. Hohlfeld, Creasing, Post-bifurcations and the Spontaneous Breakdown of Scale 
Invariance, Harvard University, 2008. 

[186] T. Tallinen, J.S. Biggins, L. Mahadevan, Surface sulci in squeezed soft solids, Phys. 
Rev. Lett. 110 (2013) 024302, https://doi.org/10.1103/ 
PhysRevLett.110.024302. 

[187] E. Hohlfeld, L. Mahadevan, Unfolding the sulcus, Phys. Rev. Lett. 106 (2011) 
105702, https://doi.org/10.1103/PhysRevLett.106.105702. 

[188] S. Tang, B. Gao, Z. Zhou, Q. Gu, T. Guo, Dimension-controlled formation of crease 
patterns on soft solids, Soft Matter 13 (2017) 619–626, https://doi.org/10.1039/ 
c6sm02013e. 

[189] E. Hohlfeld, L. Mahadevan, Scale and nature of sulcification patterns, Phys. Rev. 
Lett. 109 (2012) 025701, https://doi.org/10.1103/PhysRevLett.109.025701. 

[190] H. Alawiye, P.E. Farrell, A. Goriely, Revisiting the wrinkling of elastic bilayers II: 
Post-bifurcation analysis, J. Mech. Phys. Solids 143 (2020) 104053, https://doi. 
org/10.1016/j.jmps.2020.104053. 

[191] L. Jin, Z. Suo, Smoothening creases on surfaces of strain-stiffening materials, 
J. Mech. Phys. Solids 74 (2015) 68–79, https://doi.org/10.1016/j. 
jmps.2014.10.004. 

[192] J. Yang, L. Jin, J.W. Hutchinson, Z. Suo, Plasticity retards the formation of 
creases, J. Mech. Phys. Solids 123 (2019) 305–314, https://doi.org/10.1016/j. 
jmps.2018.08.016. 

[193] J. Yang, W. Illeperuma, Z. Suo, Inelasticity increases the critical strain for the 
onset of creases on hydrogels, Extrem. Mech. Lett. 40 (2020) 100966, https://doi. 
org/10.1016/j.eml.2020.100966. 

[194] P. Ciarletta, L. Truskinovsky, Soft nucleation of an elastic crease, Phys. Rev. Lett. 
122 (2019) 248001, https://doi.org/10.1103/PhysRevLett.122.248001. 

[195] K.R. Shull, C.M. Flanigan, A.J. Crosby, Fingering instabilities of confined elastic 
layers in tension, Phys. Rev. Lett. 84 (2000) 3057–3060, https://doi.org/ 
10.1103/PhysRevLett.84.3057. 

[196] S. Lin, T. Cohen, T. Zhang, H. Yuk, R. Abeyaratne, X. Zhao, Fringe instability in 
constrained soft elastic layers, Soft Matter 12 (2016) 8899–8906, https://doi.org/ 
10.1039/c6sm01672c. 

[197] A. Sharma, A. Ghatak, M. Chaudhury, V. Shenoy, Meniscus instability in a thin 
elastic film, Phys. Rev. Lett. 85 (2000) 4329–4332. http://www.ncbi.nlm.nih. 
gov/pubmed/11060630. 

[198] A.N. Gent, P.B. Lindley, Internal rupture of bonded rubber cylinders in tension, 
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 249 (1959) 195–205, https://doi.org/ 
10.1098/rspa.1959.0016. 

[199] A.N. Gent, B. Park, Failure processes in elastomers at or near a rigid spherical 
inclusion, J. Mater. Sci. 19 (1984) 1947–1956. 

[200] C. Fond, Cavitation criterion for rubber materials: A review of void-growth 
models, J. Polym. Sci. Part B Polym. Phys. 39 (2001) 2081–2096, https://doi.org/ 
10.1002/polb.1183. 

[201] C. Creton, M. Ciccotti, Fracture and adhesion of soft materials: A review, Rep. 
Prog. Phys. 79 (2016) 46601, https://doi.org/10.1088/0034-4885/79/4/ 
046601. 

[202] C.W. Barney, C.E. Dougan, K.R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, 
S. Tiwari, I. Sacligil, R.A. Riggleman, S. Cai, J.H. Lee, S.R. Peyton, G.N. Tew, A. 
J. Crosby, Cavitation in soft matter, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 
9157–9165, https://doi.org/10.1073/pnas.1920168117. 

[203] J.S. Biggins, L. Mahadevan, Meniscus instabilities in thin elastic layers, Soft 
Matter 14 (2018) 7680–7689, https://doi.org/10.1039/c8sm01033a. 

[204] J.S. Biggins, B. Saintyves, Z. Wei, E. Bouchaud, L. Mahadevan, Digital instability 
of a confined elastic meniscus, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 
12545–12548, https://doi.org/10.1073/pnas.1302269110. 
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[208] T. Vilmin, F. Ziebert, E. Raphaël, Simple view on fingering instability of 
debonding soft elastic adhesives, Langmuir 26 (2010) 3257–3260, https://doi. 
org/10.1021/la903013z. 

[209] B. Saintyves, O. Dauchot, E. Bouchaud, Bulk elastic fingering instability in Hele- 
Shaw cells, Phys. Rev. Lett. 111 (2013) 047801, https://doi.org/10.1103/ 
PhysRevLett.111.047801. 

[210] A. Ghatak, L. Mahadevan, J.Y. Chung, M.K. Chaudhury, V. Shenoy, Peeling from a 
biomimetically patterned thin elastic film, Proc. R. Soc. Lond. Ser. A Math. Phys. 
Eng. Sci. 460 (2004) 2725–2735, https://doi.org/10.1098/rspa.2004.1313. 

[211] J.Y. Chung, K.H. Kim, M.K. Chaudhury, J. Sarkar, A. Sharma, Confinement- 
induced instability and adhesive failure between dissimilar thin elastic films, Eur. 
Phys. J. E. 20 (2006) 47–53, https://doi.org/10.1140/epje/i2005-10080-0. 

[212] M. Ben Amar, D. Bonn, Fingering instabilities in adhesive failure, Phys. D 
Nonlinear Phenom. 209 (2005) 1–16, https://doi.org/10.1016/j. 
physd.2005.07.002. 

[213] J.Y. Chung, M.K. Chaudhury, Roles of discontinuities in bio-inspired adhesive 
pads, J. R. Soc. Interface. 2 (2005) 55–61, https://doi.org/10.1098/ 
rsif.2004.0020. 

[214] A. Ghatak, M.K. Chaudhury, Adhesion-induced instability patterns in thin 
confined elastic film, Langmuir 19 (2003) 2621–2631, https://doi.org/10.1021/ 
la026932t. 

[215] P.G. Saffman, G.I. Taylor, The penetration of a fluid into a porous medium or 
Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. Ser. A. Math. 
Phys. Sci. 245 (1958) 312–329, https://doi.org/10.1098/rspa.1958.0085. 

[216] M.H.B.M. Shariff, R. Bustamante, J. Merodio, A nonlinear constitutive model for a 
two preferred direction electro-elastic body with residual stresses, Int. J. Non. 
Linear. Mech. 119 (2020) 103352, https://doi.org/10.1016/j. 
ijnonlinmec.2019.103352. 

[217] M.H.B.M. Shariff, J. Merodio, Residually stressed two fibre solids: A spectral 
approach, Int. J. Eng. Sci. 148 (2020) 103205, https://doi.org/10.1016/j. 
ijengsci.2019.103205. 
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