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a b s t r a c t 

Topological phononic crystals have attracted intensive attention due to their peculiar topologically protected 
interface or edge states. Their operating frequency, however, is generally fixed once designed and fabricated. 
Here, we propose to overcome this limitation by utilizing soft topological phononic crystals. In particular, we 
design a simple one-dimensional periodic system of soft cylindrical waveguides to realize mechanically tunable 
topological interface states for longitudinal waves. To this end, we employ the nonlinear elasticity theory and its 
linearized incremental version to fully account for both geometric and material nonlinearities of the system. We 
derive the dispersion relation for small-amplitude longitudinal motions superimposed on the finitely deformed 
state. In addition, our analytical results provide information about the corresponding Bloch wave modes, dis- 
placement field distributions, and signal transmission coefficients for finite cylindrical waveguides with identical 
or various unit-cell topologies. Our numerical results illustrate the low-frequency topological interface state oc- 
curring at the interface between two topologically distinct soft phononic cylinders. Moreover, we show that the 
corresponding frequency in the overlapped band gap can be continuously adjusted by an external force. This 
analytical result is also validated by the finite element simulations. Finally, we provide the topological phase 
diagrams to demonstrate the tunable position and existence condition of the topological interface states when 
tuning the external loading. The low-frequency tunable topological interface states with remarkable field en- 
hancement may find a wide range of potential applications such as tunable energy harvesters, low-pass filters 
and high-sensitivity detectors for biomedical applications. 
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. Introduction 

Phononic crystals (PCs) have attracted intensive attention thanks
o their outstanding properties in the manipulation of acoustic/elastic
aves. The intrinsically artificial periodic composites can give rise to

he wave band gap (BG) – a special state, where acoustic/elastic waves
re prohibited within a certain frequency range. This prominent char-
cteristic of PCs can be attributed to the Bragg scattering [1] , local res-
nance [2] and inertial amplification [3] . The unique BG character and
trong dispersive properties in passbands may produce anomalous wave
ehaviors such as acoustic/elastic wave filtering, focusing, directional
ropagation, negative refraction and cloaking [4–8] . 

Recently, the topic of topological acoustic or mechanical PCs
as emerged to offer exciting opportunities for designing materials
ith broadband one-way transport properties. These peculiar ma-

erial systems can generate topologically protected unidirectional,
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ackscattering-immune interface or edge states [9,10] . The theoretical
evelopment has motivated some experimental efforts in realization of
he topological PCs [11–18] , indicating the feasibility of the concept for
otential applications in wave filters, energy harvesters, acoustic recti-
ers, vibration isolators, acoustic imaging, and bio-sensors. The topolog-

cal characteristics of PC band structures can be characterized by their
opological invariants such as the Berry phase [19] for two-dimensional
2D) systems or Zak phase [20] for one-dimensional (1D) media. Since
opological PCs possess the global properties of band structures, their
ontrivial topological states are extremely robust to the defects and
oundary effects [21,22] . 

Topological PCs can be categorized into the following three classes.
he first approach – an analogue of the quantum Hall effect – is to break
he time-reversal symmetry of the systems and realize the topologically
rotected edge states through introducing gyroscopic inertial effects
22] , external flow fields [23] or time-modulated materials [24] . This
ype of topological PCs – referred to as the acoustic/mechanical Chern
eptember 2020 
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nsulators – has been experimentally verified by Ding et al. [18] . This
ethod, however, is still challenging to be applied in real-life situations,
ue to the complicated implementation of external uniform motion in
he lattice and the inherent dynamic instabilities and noise in a moving
edium. The second strategy exploits the pseudospin-dependent edge

tates, and breaks the spatial-inversion symmetry of the time-reversal
nvariant topological PCs, also known as quantum spin Hall topological

nsulators [25–27] . These topological PCs are intrinsically based on the
pin-orbit coupling mechanism – an analogue to the quantum spin Hall
ffect. In principle, the quantum spin Hall topological insulators have a
ouble Dirac degeneracy in band structures and the topological phase
nversion appears at the double Dirac point, where the pseudospin state
orms the topological edge state [28] . Depending on the appropriate po-
arization excitation, the quantum spin Hall topological insulators sup-
ort robust forward or backward edge states due to their time-reversal
ymmetry [15,29] . The last method is based on the quantum valley
all effect, which provides a pair of valley vortex states with oppo-

ite chirality [14,30–32] . The quantum valley Hall PCs also possess the
opologically protected one-way edge states along the interface of two
omains with different valley vortex states. A systematic comparison
etween acoustic topological states based on valley Hall and quantum
pin Hall effects can be found in the recent work by Deng et al. [28] .
n the 1D phononic systems, a combination of PCs with different topo-
ogical properties may result in topological interface states within the
verlapped BGs; see, for example, the observations and predictions in
iscrete spring-mass [33] , water wave [34] , acoustic [12] and elastic
16] systems. For more detailed discussion of the recent progress in the
opological acoustic/mechanical systems, interested readers are referred
o the comprehensive review articles by Zhang et al. [9] and Ma et al.
10] . 

A major limitation of passive topological PCs is that their operat-
ng frequency range of topological states is fixed and extremely nar-
ow (usually corresponding to a single frequency of transmission peak
n the BG). To realize a wider operating frequency range of topologi-
ally protected states, several methods have been proposed to design
ctively tunable topological PCs. By adjusting the airflow velocity field
nd unit-cell geometric size, the time-reversal symmetry of a 2D PC was
roken to tune the BG topology and realize a tunable topological acous-
ic Chern insulator [23] . The intelligent magnetoelastic materials were
ntroduced by Feng et al. [35] into the topological system to realize mag-
etically tunable topological interface states for Lamb waves in 1D PC
labs. The periodic electric boundary conditions were exploited by Zhou
t al. [36] to generate actively tunable topologically protected interface
ode in a 1D piezoelectric rod system. Wang et al. [37] investigated the

opological interface mode in a 1D granular PC composed of two sub-
attices, which can be tuned by varying the pre-compression between
he spheres. Although all the above-mentioned works demonstrate the
unability of topologically protected edge/interface states, they operate
n the high-frequency scenarios. 

Soft PCs offer both the low-frequency operating ranges and high
unability by external stimuli such as pre-stretch [38–44] , electric [45–
1] or magnetic field [52] . These abilities motivate the exploration of
ow-frequency tunable topological states in soft PCs. By changing the fill-
ng ratio and tuning the mechanical load, the dynamically tunable topo-
ogical interface state was experimentally observed by Li et al. [17] in a
ircular-hole soft PC plate made of two domains with different topologi-
al properties. The design of a 2D quantum valley Hall PC was presented
y Liu and Semperlotti [53] , where the topological states at the domain
nterface are triggered by geometric nonlinear effects due to the applied
train. These two works, however, neglect changes in material stiffness
nduced by the pre-stretch. The influence of the essential material non-
inearity for soft matter was considered by Nguyen et al. [54] in the
ontext of soft topological PCs. They designed a 2D quantum valley Hall
C consisting of soft annular cylinders embedded in an elastic matrix,
nd utilized the pre-stretch and inflation to actively tune the frequen-
ies of topologically protected edge states. Zhou et al. [55] designed a
oft membrane-type PC for the voltage-controlled quantum valley Hall
ffect in a dielectric elastomeric membrane with sprayed metallic par-
icles. Recently, Huang et al. [56] examined a 1D soft periodic system
omposed of topologically different plates and realized tunable topolog-
cal interface states by applying deformation. Nevertheless, the geomet-
ic structures and loading ways in the aforementioned soft topological
Cs are relatively complex, and it is not easy to combine two differently
eformed domains while keeping a smooth interface. 

It is well known that the Bragg band gaps (BGs) are usually pro-
uced by the material periodicity, geometric periodicity, and periodic
oundary conditions [4] . With appropriate geometric and/or material
esign of metamaterials, their wave propagation and attenuation behav-
ors (such as transmission and reflection) could be optimized [57–60] .
nspired by previous works [12,16] , here we design a 1D soft phononic
rystal cylinder (PCC) composed of step-wise sub-cylinders to realize
ow-frequency tunable topological interface states under the applica-
ion of mechanical load. We fully account for both the geometric and
aterial nonlinearities in our theoretical and numerical analyses. The
roposed soft topological PCC is a single-phase material structure allow-
ng to induce different deformation states in its base elements while pre-
erving a smooth interface between the base elements. Due to the low
tiffness of soft materials, their operating frequency range is much lower
han that of hard materials with the same structure. We focus on (i) tun-
bility of the topological interface states (in the low-frequency range) by
n applied axial force, and (ii) influence of the strain-stiffening effect on
he tunability and existence of the topological interface states. To this
nd, we derive analytically the dispersion relations and acoustic char-
cteristics for small-amplitude longitudinal waves propagating in the
nitely deformed PCC. This information is complemented by our nu-
erical calculations including finite element (FE) simulations, elucidat-

ng the relations between the morphology, applied loading and material
onlinearity effects on the band structures, transmission characteristics
nd topological phase diagrams. 

This paper is organized as follows. The theoretical background on
onlinear elasticity theory and its associated incremental theory [61] is
ummarized in Section 2 . The nonlinear static response of the pro-
osed soft PCC with alternating cross-sections is analyzed in Section 3 .
ection 4 describes the derivations of the dispersion relation, trans-
ission coefficient and displacement field of a finite PCC waveguide
ith various periodic unit cells. Numerical calculations are described

n Section 5 . For a mixed finite neo-Hookean PCC waveguide, the fre-
uency of topological interface states is lowered monotonically by the
ncreasing axial force. However, for a Gent PCC waveguide, the ax-
al force affects the topological interface state frequency in a non-
onotonous way that an increase in the axial force leads to the con-

inuous decrease of frequency to a minimum value, and then the fre-
uency is increased reversely by a further increase of the axial force.
ection 6 concludes the work with a summary and discussion. Some
athematical derivations and FE simulation procedures are provided in
ppendix A –Appendix C . 

. Theoretical background 

.1. Nonlinear elasticity 

We consider a deformable continuous body that occupies the unde-

ormed reference configuration  𝑟 in the Euclidian space with the bound-
ry 𝜕  𝑟 and the outward unit normal N . An arbitrary material point
abelled as X in the undeformed configuration is identified by the posi-
ion vector X . Subjected to a mechanical loading, the body deforms and
oves to the deformed or current configuration  𝑡 with the boundary 𝜕  𝑡 

nd the outward unit normal n t , such that the point X occupies a new
osition 𝐱 = 𝝌( 𝐗 , 𝑡 ) at time t in  𝑡 , where an invertible vector function
is defined for all points in  𝑟 . The deformation gradient tensor is de-

ned as 𝐅 = 𝜕 𝐱∕ 𝜕 𝐗 = Grad 𝝌 , where ‘Grad’ is the gradient operator with
espect to  . The components of the deformation gradient tensor are
𝑟 
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 𝑖𝛼 = 𝜕 𝑥 𝑖 ∕ 𝜕 𝑋 𝛼, where Roman and Greek indices are associated with  𝑡 

nd  𝑟 , respectively. The local measure of the volume change is denoted
y 𝐽 = det 𝐅 > 0 . 

In the absence of body force, the equilibrium equations can be writ-
en in Eulerian and Lagrangian forms, respectively, as 

iv 𝝉 = 𝟎 and Div 𝐓 = 𝟎 , (1) 

here 𝝉 = 𝐽 −1 𝐅𝐓 is the Cauchy stress tensor and T is the nominal stress
ensor. Here ‘div’ and ‘Div’ denote the divergence operators relative to  𝑡 

nd  𝑟 , respectively. Note that the nominal stress tensor is the transpose
f the first Piola-Kirchhoff stress tensor and that both of them are non-
ymmetric two-point tensors like the deformation gradient tensor. In
ndex notation, the equilibrium Eq. (1) read 

𝑖𝑗,𝑖 = 0 and 𝑇 𝛼𝑖,𝛼 = 0 , (2)

here the Einstein summation convention is used. 
Consider a compressible hyperelastic material described in terms of

ts strain energy density function Ω( F ) (per unit reference volume) such
hat 

 = 

𝜕Ω
𝜕𝐅 

and 𝝉 = 𝐽 −1 𝐅 𝜕Ω
𝜕𝐅 
, (3)

r in index notation 

 𝛼𝑖 = 

𝜕Ω
𝜕 𝐹 𝑖𝛼

and 𝜏𝑖𝑗 = 𝐽 −1 𝐹 𝑗𝛼
𝜕Ω
𝜕 𝐹 𝑖𝛼

, (4)

ith the angular momentum conservation 𝜏𝑖𝑗 = 𝜏𝑗𝑖 . 
Alternatively, the strain energy density function Ω can be expressed

n terms of the principal stretches, i.e., Ω = Ω( 𝜆1 , 𝜆2 , 𝜆3 ) with 𝐽 = 𝜆1 𝜆2 𝜆3 
61] . Thus, referring to the principal axes of 𝝉, the corresponding prin-
ipal Cauchy stresses 𝜏 i ( 𝑖 = 1 , 2 , 3) are expressed as 

𝑖 = 𝐽 −1 𝜆𝑖 
𝜕Ω

(
𝜆1 , 𝜆2 , 𝜆3 

)
𝜕 𝜆𝑖 

, ( no summation over 𝑖 ) . (5)

The mechanical boundary conditions on 𝜕  𝑡 can be written in Eule-
ian form as 

𝐧 𝑡 = 𝐭 𝑎 , (6) 

here t a is the applied mechanical traction vector per unit area of 𝜕  𝑡 .

.2. Incremental motions superimposed on finitely deformed state 

A time-dependent infinitesimal incremental motion �̇� ( 𝐗 , 𝑡 ) is super-
mposed on a finitely deformed configuration  0 (with the boundary
  0 and the outward unit normal n ). Here, the incremental quantities
re represented by a superposed dot. The incremental equation of mo-
ion in the updated Lagrangian form is 

iv ̇𝐓 0 = 𝜌𝐮 ,𝑡𝑡 , (7)

here �̇� 0 = 𝐽 −1 𝐅 ̇𝐓 is the push-forward counterpart of the Lagrangian
ncremental stress tensor �̇� , 𝐮 = �̇� ( 𝐗 , 𝑡 ) is the incremental displacement
ector, and 𝜌 = 𝜌0 𝐽 

−1 is the current mass density in  𝑡 , with 𝜌0 denoting
he mass density in the reference configuration  𝑟 . The subscript 0 indi-
ates the resulting push-forward quantities and the subscript t following
 comma represents the material time derivative. 

The linearized incremental constitutive law for a compressible hy-
erelastic material is 

̇
 0 =  0 𝐇 , (8)

here 𝐇 = grad 𝐮 is the incremental displacement gradient tensor; ‘grad’
s the gradient operator with respect to  0 . The fourth-order instanta-

eous elasticity tensor  0 is represented in component form by 

 0 piqj = 𝐽 −1 𝐹 𝑝𝛼𝐹 𝑞𝛽 𝛼𝑖𝛽𝑗 =  0 qjpi , (9) 

n which  indicates the referential elasticity tensor with its components
iven by 

 𝛼𝑖𝛽𝑗 = 

𝜕 2 Ω
𝜕 𝐹 𝑖𝛼𝜕 𝐹 𝑗𝛽

, (10) 
ollowing [61] and referring to the principal axes of 𝝉, the non-zero
omponents of  0 for compressible isotropic hyperelastic materials can
e expressed, in terms of the three principal stretches 𝜆i , as 

 0 𝑖𝑖𝑗𝑗 =  0 𝑗 𝑗 𝑖𝑖 = 𝐽 −1 𝜆𝑖 𝜆𝑗 Ω𝑖𝑗 , 

 0 𝑖𝑗𝑖𝑗 = 𝐽 −1 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝜆𝑖 Ω𝑖 − 𝜆𝑗 Ω𝑗 
𝜆2 
𝑖 
− 𝜆2 
𝑗 

𝜆2 
𝑖 
, ( 𝑖 ≠ 𝑗, 𝜆𝑖 ≠ 𝜆𝑗 ) , 

1 
2 

(
𝐽  0 𝑖𝑖𝑖𝑖 − 𝐽  0 𝑖𝑖𝑗𝑗 + 𝜆𝑖 Ω𝑖 

)
, ( 𝑖 ≠ 𝑗, 𝜆𝑖 = 𝜆𝑗 ) , 

 0 𝑖𝑗 𝑗 𝑖 =  0 𝑗𝑖𝑖𝑗 =  0 𝑖𝑗𝑖𝑗 − 𝐽 −1 𝜆𝑖 Ω𝑖 =  0 𝑖𝑗𝑖𝑗 − 𝜏𝑖 , ( 𝑖 ≠ 𝑗) , 

(11) 

here Ω𝑖 = 𝜕 Ω∕ 𝜕 𝜆𝑖 and Ω𝑖𝑗 = 𝜕 2 Ω∕ 𝜕 𝜆𝑖 𝜕 𝜆𝑗 . 
In the updated Lagrangian form, the incremental mechanical bound-

ry conditions, which are to be satisfied on 𝜕  0 , are written as 

̇
 

T 
0 𝐧 = �̇� 𝐴 0 , (12)

here the superscript (·) T signifies the usual transpose of a tensor and ̇𝐭 𝐴 0 
s the updated Lagrangian incremental mechanical traction vector per
nit area of 𝜕  0 . 

. Nonlinear deformation of a soft PCC 

Consider a single phase hyperelastic PCC structure with periodically
arying cross-sectional areas as shown in Fig. 1 (a). Each unit cell has two
ider sub-cylinders 1 and 3 of length L (1) /2 and inner radius 𝑅 

( 1 ) 
0 , sand-

iching a narrower sub-cylinder 2 of length L (2) and inner radius 𝑅 

( 2 ) 
0 .

ere and thereafter, the superscript (·) ( p ) denotes the physical quanti-
ies of the sub-cylinder p ( 𝑝 = 1 , 2 , 3 ). The wider sub-cylinders 𝑝 = 1 and
 have identical geometric sizes (i.e., 𝑅 

( 1 ) 
0 = 𝑅 

( 3 ) 
0 and 𝐿 ( 1 ) = 𝐿 ( 3 ) ). In the

ndeformed configuration, the unit-cell length is 𝐿 = 𝐿 ( 1 ) + 𝐿 ( 2 ) along
he Z direction. Note that the 1D PCC with inversion symmetry has two
nversion centers and without loss of generality, we assign the origin to
e at the center of the wider sub-cylinder (see Fig. 1 ). By varying the
nitial length fraction of sub-cylinder 1 or 2, the Bragg BG could exhibit
he evolutionary process of open, close and reopen. The topological tran-
ition point where the BG closes is mechanically tunable, which is our
ain goal and is shown in Section 5 . 

As shown in Fig. 1 (b), under the application of tensile axial force, the
ength of the deformed PCC becomes longer and its lateral size becomes
maller, respectively, than those of the undeformed PCC. The length
raction of the deformed sub-cylinder is different from that of the unde-
ormed one. We note that, due to the geometric inhomogeneity, complex
ocal deformations can develop near the interfaces between the wider
nd narrower sub-cylinders when subjected to an axial force F N [43] .
hese local deformations, however, are only confined in small regions

n the vicinity of the interfaces and barely affect the response of topolog-
cal interface states in the low-frequency regime of interest here. There-
ore, the nonlinear deformation can be approximately assumed uniform
n the theoretical model. As we shall show, this assumption has been
alidated by the FE simulations (see Section 5.2 ). The deformed con-
gurations of the soft PCC and its unit cell are shown in Fig. 1 (b). The
niform axisymmetric deformations can be described in two cylindrical
oordinate systems ( R , Θ, Z ) and ( r, 𝜃, z ) as follows: 

 = 𝜆1 𝑅, 𝜃 = Θ, 𝑧 = 𝜆3 𝑍, (13)

here 𝜆1 and 𝜆3 are the principal stretches along the radial and axial
irections, respectively. Thus, the geometric sizes of each sub-cylinder
ecome 

 

( 𝑝 ) 
0 = 𝜆

( 𝑝 ) 
1 𝑅 

( 𝑝 ) 
0 , 𝑙 ( 𝑝 ) = 𝜆

( 𝑝 ) 
3 𝐿 

( 𝑝 ) , (14)

here 𝜆( 𝑝 ) 1 and 𝜆( 𝑝 ) 3 represent the principal stretches of sub-cylinder p ,

nd 𝑟 ( 𝑝 ) 0 , 𝑙 
( 1 ) ∕2 = 𝑙 ( 3 ) ∕2 and l (2) are the radius of sub-cylinder p and the

engths of the wider and narrower sub-cylinders in the deformed state,
espectively. In addition, 𝑙 = 𝑙 ( 1 ) + 𝑙 ( 2 ) is the length of the deformed unit
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Fig. 1. Schematic diagram of an infinite soft PCC composed of 
step-wise sub-cylinders and its unit cell along with related ge- 
ometric size and cylindrical coordinates: (a) undeformed con- 
figuration and (b) deformed configuration induced by an axial 
force F N . 
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ell. Therefore, the deformation gradient tensor of sub-cylinder p is ex-
ressed as 𝐅 ( 𝑝 ) = diag [ 𝜆( 𝑝 ) 1 , 𝜆

( 𝑝 ) 
1 , 𝜆

( 𝑝 ) 
3 ] , which will be determined by the

nitial boundary conditions on the lateral surface. 
In order to analyze the longitudinal wave propagation in the soft

CC, the compressible Gent material model [62] is adopted to charac-
erize the hyperelastic cylinder, which is described as 

( 𝑝 ) = − 

𝜇𝐽 𝑚 

2 
ln 

( 

1 − 

𝐼 
( 𝑝 ) 
1 − 3 
𝐽 𝑚 

) 

− 𝜇 ln 𝐽 ( 𝑝 ) + 

( 

Λ
2 
− 

𝜇

𝐽 𝑚 

) (
𝐽 ( 𝑝 ) − 1 

)2 , (15)

here 𝜇 and Λ are the shear modulus and the first Lam ́e ’s parame-

er in the undeformed configuration, 𝐼 ( 𝑝 ) 1 = 2 ( 𝜆( 𝑝 ) 1 ) 
2 
+ ( 𝜆( 𝑝 ) 3 ) 

2 
denotes the

rst strain invariant and 𝐽 ( 𝑝 ) = ( 𝜆( 𝑝 ) 1 ) 
2 
𝜆
( 𝑝 ) 
3 . The bulk modulus is then cal-

ulated as 𝐾 = Λ + 2 𝜇∕3 . The parameter J m 

is the dimensionless Gent
onstant used to characterize the strain-stiffening effect of the PCC.
ecall that the compressible neo-Hookean model is recovered from
q. (15) when J m 

→ ∞. It should be emphasized that the material prop-
rties (i.e., 𝜇, Λ, K and J m 

) are the same for the three sub-cylinders, but
 

( 𝑝 ) 
1 and J ( p ) are different because of various cross-sections. 

In virtue of Eqs. (5) and (15) , we obtain the principal Cauchy stress
omponents for sub-cylinder p as 

( 𝑝 ) 
1 = 𝜏

( 𝑝 ) 
2 = 

𝜇

𝐽 ( 𝑝 ) 

[ 

𝐽 𝑚 

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

(
𝜆
( 𝑝 ) 
1 

)2 
− 1 

] 

+ 

( 

Λ − 

2 𝜇
𝐽 𝑚 

) (
𝐽 ( 𝑝 ) − 1 

)
, 

( 𝑝 ) 
3 = 

𝜇

𝐽 ( 𝑝 ) 

[ 

𝐽 𝑚 

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

(
𝜆
( 𝑝 ) 
3 

)2 
− 1 

] 

+ 

( 

Λ − 

2 𝜇
𝐽 𝑚 

) (
𝐽 ( 𝑝 ) − 1 

)
, (16) 

onsidering the axial force F N applied along the z direction as well as
he traction-free boundary condition on the lateral surface 𝑟 = 𝑟 

( 𝑝 ) 
0 , we
ave 

( 𝑝 ) 
1 = 𝜏

( 𝑝 ) 
2 = 0 , 𝜏

( 𝑝 ) 
3 = 

𝐹 𝑁 

𝑠 ( 𝑝 ) 
, (17)

here 𝑠 ( 𝑝 ) = 𝜋( 𝑟 ( 𝑝 ) 0 ) 
2 

is the area of the deformed cross-section of sub-
ylinder p . Therefore, the nonlinear algebraic Eqs. (16) and (17) can be
tilized to completely determine the principal stretch ratios 𝜆( 𝑝 ) 1 and 𝜆( 𝑝 ) 3 
 𝜆
( 1 ) 
1 = 𝜆

( 3 ) 
1 and 𝜆( 1 ) 3 = 𝜆

( 3 ) 
3 ) once the axial force F N is prescribed. 

. Analysis of incremental longitudinal wave propagation 

After obtaining the nonlinear axisymmetric deformations in
ection 3 , the solutions of the superimposed incremental longitudinal
aves in an initially deformed PCC are derived in Section 4.1 . The trans-

er matrix method [63] in conjunction with the Bloch-Floquet theorem
64] is then employed in Section 4.2 to derive the dispersion relation of
ncremental wave motions in an infinite PCC, which in turn determines
he displacement mode shape of unit cell in Section 4.3 . Furthermore,
he transmission coefficient of a finite PCC with identical unit cells is
rovided in Section 4.4 . For a finite cylindrical waveguide consisting
f two types of PCCs with different unit cells, we derive its transmis-
ion coefficient and displacement distribution in Sections 4.5 and 4.6 ,
espectively. 

.1. Wave solutions of incremental motions 

For each sub-cylinder p , the incremental constitutive law (8) for the
uperimposed longitudinal waves can be expressed in component form
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𝐒  

T  

n  

s

𝑤

𝑤

𝑤

S  

𝑘  

c

[

⎡⎢⎢⎢⎣

⎡⎢⎢⎣
w  

m

𝐒  

w  

i  

a

𝑓

𝑓

𝑓

N

𝑓  
s 

�̇� 
( 𝑝 ) 
011 =  

( 𝑝 ) 
01111 𝐻 

( 𝑝 ) 
11 +  

( 𝑝 ) 
01122 𝐻 

( 𝑝 ) 
22 +  

( 𝑝 ) 
01133 𝐻 

( 𝑝 ) 
33 , 

�̇� 
( 𝑝 ) 
022 =  

( 𝑝 ) 
01122 𝐻 

( 𝑝 ) 
11 +  

( 𝑝 ) 
02222 𝐻 

( 𝑝 ) 
22 +  

( 𝑝 ) 
02233 𝐻 

( 𝑝 ) 
33 , 

�̇� 
( 𝑝 ) 
033 =  

( 𝑝 ) 
01133 𝐻 

( 𝑝 ) 
11 +  

( 𝑝 ) 
02233 𝐻 

( 𝑝 ) 
22 +  

( 𝑝 ) 
03333 𝐻 

( 𝑝 ) 
33 , 

(18) 

here the non-zero components of the instantaneous elasticity tensor
 0 for the compressible Gent model characterized by Eq. (15) may be

erived from Eq. (11) as 

 

( 𝑝 ) 
01111 =  

( 𝑝 ) 
02222 = 

𝜇𝐽 𝑚 

(
𝜆
( 𝑝 ) 
1 

)2 

𝐽 ( 𝑝 ) 
(
𝐽 𝑚 − 𝐼 

( 𝑝 ) 
1 + 3 

)⎛ ⎜ ⎜ ⎜ ⎝ 1 + 
2 
(
𝜆
( 𝑝 ) 
1 

)2 

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

⎞ ⎟ ⎟ ⎟ ⎠ + 
𝜇

𝐽 ( 𝑝 ) 
+ 𝐽 ( 𝑝 ) 

( 

Λ − 2 𝜇
𝐽 𝑚 

) 

, 

 

( 𝑝 ) 
01122 = 

2 𝜇𝐽 𝑚 
(
𝜆
( 𝑝 ) 
1 

)2 

𝜆
( 𝑝 ) 
3 

(
𝐽 𝑚 − 𝐼 

( 𝑝 ) 
1 + 3 

)2 + 
( 

Λ − 2 𝜇
𝐽 𝑚 

) (
2 𝐽 ( 𝑝 ) − 1 

)
, 

 

( 𝑝 ) 
01133 =  

( 𝑝 ) 
02233 = 

2 𝜇𝐽 𝑚 𝜆
( 𝑝 ) 
3 (

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

)2 + 
( 

Λ − 2 𝜇
𝐽 𝑚 

) (
2 𝐽 ( 𝑝 ) − 1 

)
, 

 

( 𝑝 ) 
03333 = 

1 
𝐽 ( 𝑝 ) 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜇𝐽 𝑚 

(
𝜆
( 𝑝 ) 
3 

)2 

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

⎛ ⎜ ⎜ ⎜ ⎝ 1 + 
2 
(
𝜆
( 𝑝 ) 
3 

)2 

𝐽 𝑚 − 𝐼 
( 𝑝 ) 
1 + 3 

⎞ ⎟ ⎟ ⎟ ⎠ + 𝜇 + 
(
𝐽 ( 𝑝 ) 

)2 ( 

Λ − 2 𝜇
𝐽 𝑚 

) 

⎤ ⎥ ⎥ ⎥ ⎦ . (19) 

As is well-accepted in the classical rod theory, the assumption of
D stress state [47] is made in the following derivation, which results
n �̇� ( 𝑝 ) 011 = �̇� 

( 𝑝 ) 
022 = 0 . As a result, utilizing Eq. (18) 1,2 , we derive 𝐻 

( 𝑝 ) 
11 and

 

( 𝑝 ) 
22 in terms of 𝐻 

( 𝑝 ) 
33 as 

 

𝐻 

( 𝑝 ) 
11 

𝐻 

( 𝑝 ) 
22 

] 

= − 

[  

( 𝑝 ) 
1  

( 𝑝 ) 
2 

] 

𝐻 

( 𝑝 ) 
33 , (20) 

here 

 

( 𝑝 ) 
1 = 

 

( 𝑝 ) 
02222  

( 𝑝 ) 
01133 −  

( 𝑝 ) 
01122  

( 𝑝 ) 
02233 

 

( 𝑝 ) 
01111  

( 𝑝 ) 
02222 − 

( 

( 𝑝 ) 
01122 

)2 , 

 

( 𝑝 ) 
2 = 

−  

( 𝑝 ) 
01122  

( 𝑝 ) 
01133 +  

( 𝑝 ) 
01111  

( 𝑝 ) 
02233 

 

( 𝑝 ) 
01111  

( 𝑝 ) 
02222 − 

( 

( 𝑝 ) 
01122 

)2 . (21) 

nserting Eq. (20) into Eq. (18) 3 yields 

̇
 

( 𝑝 ) 
033 =  

𝑒 ( 𝑝 ) 
0 𝐻 

( 𝑝 ) 
33 , (22) 

here  

𝑒 ( 𝑝 ) 
0 =  

( 𝑝 ) 
03333 −  

( 𝑝 ) 
01133  

( 𝑝 ) 
1 −  

( 𝑝 ) 
02233  

( 𝑝 ) 
2 is the effective elastic

tiffness. Thus, Eq. (22) is the reduced incremental constitutive relation
n the updated Lagrangian form. 

Here, by introducing the incremental axial displacement w , we can
ewrite 𝐻 

( 𝑝 ) 
33 as 𝐻 

( 𝑝 ) 
33 = d 𝑤 

( 𝑝 ) ∕d 𝑧 . Due to the postulation of 1D stress state
s well as the applied axial force, the incremental Eq. (7) of motion is
implified, if ignoring the lateral inertial effect, as 

̇
 

( 𝑝 ) 
033 ,𝑧 = 𝜌( 𝑝 ) 𝑤 

( 𝑝 ) 
,𝑡𝑡 
. (23)

ote that taking the lateral inertial effect into account will lead to the
ove rod theory [65] , which exceeds the scope of the present study.
ubstituting Eq. (22) into Eq. (23) and considering that  

𝑒 ( 𝑝 ) 
0 is constant

n each sub-cylinder p , we have 

 

𝑒 ( 𝑝 ) 
0 𝑤 

( 𝑝 ) 
, zz = 𝜌( 𝑝 ) 𝑤 

( 𝑝 ) 
, tt , (24) 

hich is the incremental wave equation for the superimposed longitu-
inal motions, where all physical fields depend on z and t only. 

Consequently, for the harmonic time-dependency e −i 𝜔𝑡 with 𝜔 be-
ng the angular frequency, the incremental axial displacement in sub-
ylinder p of the n th unit cell (see Fig. 1 (b)) can be written as 

 

( 𝑝 ) 
𝑛 
( 𝑧, 𝑡 ) = 𝑤 

( 𝑝 ) 
𝑛 
( 𝑧 ) e −i 𝜔𝑡 = 

(
𝑎 ( 𝑝 ) 
𝑛 

e i 𝑘 
( 𝑝 ) ( 𝑧 − 𝑛𝑙 ) + 𝑏 ( 𝑝 ) 

𝑛 
e −i 𝑘 

( 𝑝 ) ( 𝑧 − 𝑛𝑙 ) 
)

e −i 𝜔𝑡 , (25)
here 𝑤 

( 𝑝 ) 
𝑛 
( 𝑧 ) is the displacement amplitude, 𝑎 ( 𝑝 ) 𝑛 and 𝑏 ( 𝑝 ) 𝑛 are the unde-

ermined complex coefficients denoting the amplitudes of incident and

eflected waves, respectively, and 𝑘 ( 𝑝 ) = 𝜔 ∕ 𝑐 ( 𝑝 ) (with 𝑐 ( 𝑝 ) = 

√ 

 

𝑒 ( 𝑝 ) 
0 ∕ 𝜌( 𝑝 ) )

epresents the axial wave number in sub-cylinder p . 
Owing to the difference in cross-sections for various sub-cylinders,

t is appropriate to choose the incremental axial force 𝑄 

( 𝑝 ) 
𝑛 rather than

he incremental stress �̇� ( 𝑝 ) 033 𝑛 to be continuous at the interfaces delimiting
he sub-cylinders. Inserting Eq. (25) into Eq. (22) and multiplying the
esultant expression by the deformed cross-sectional area leads to the
ncremental axial force as 

 

( 𝑝 ) 
𝑛 
( 𝑧, 𝑡 ) = 𝑠 ( 𝑝 ) �̇� ( 𝑝 ) 033 𝑛 ( 𝑧 ) = 𝑄 

( 𝑝 ) 
𝑛 
( 𝑧 ) e −i 𝜔𝑡 , (26)

here 

 

( 𝑝 ) 
𝑛 
( 𝑧 ) = i 𝑠 ( 𝑝 ) 𝑘 ( 𝑝 )  

𝑒 ( 𝑝 ) 
0 

[
𝑎 ( 𝑝 ) 
𝑛 

e i 𝑘 
( 𝑝 ) ( 𝑧 − nl ) − 𝑏 ( 𝑝 ) 

𝑛 
e −i 𝑘 

( 𝑝 ) ( 𝑧 − nl ) 
]
, (27) 

s the axial force amplitude. 

.2. Dispersion relation for an infinite PCC 

For simplicity, the state vector in sub-cylinder p of the n th unit cell
see Fig. 1 (b)) is defined as 

 

( 𝑝 ) 
𝑛 

= 

[
𝑎 ( 𝑝 ) 
𝑛 
, 𝑏 ( 𝑝 ) 
𝑛 

]T . (28)

he state vectors are not independent of each other and can be con-
ected through the interfacial continuity conditions between different
ub-cylinders, which are expressed as 

 

( 3 ) 
𝑛 −1 = 𝑤 

( 1 ) 
𝑛 
, 𝑄 

( 3 ) 
𝑛 −1 = 𝑄 

( 1 ) 
𝑛 
, at 𝑧 = ( 𝑛 − 1 ) 𝑙, 

 

( 1 ) 
𝑛 

= 𝑤 

( 2 ) 
𝑛 
, 𝑄 

( 1 ) 
𝑛 

= 𝑄 

( 2 ) 
𝑛 
, at 𝑧 = ( 𝑛 − 1 ) 𝑙 + 𝑙 ( 1 ) ∕2 , 

 

( 2 ) 
𝑛 

= 𝑤 

( 3 ) 
𝑛 
, 𝑄 

( 2 ) 
𝑛 

= 𝑄 

( 3 ) 
𝑛 
, at 𝑧 = nl − 𝑙 ( 1 ) ∕2 . 

(29) 

ubstituting Eqs. (25) –(28) into Eq. (29) and noting 𝑠 ( 1 ) = 𝑠 ( 3 ) , 𝑘 ( 1 ) =
 

( 3 ) and  

𝑒 (1) 
0 =  

𝑒 (3) 
0 , we rewrite the displacement and force continuity

onditions (29) as 

 

1 1 
1 −1 

] 
𝐒 ( 3 ) 
𝑛 −1 = 

⎡ ⎢ ⎢ ⎣ 
e −i 𝑘 

( 1 ) 𝑙 e i 𝑘 
( 1 ) 𝑙 

e −i 𝑘 
( 1 ) 𝑙 − e i 𝑘 ( 1 ) 𝑙 

⎤ ⎥ ⎥ ⎦ 𝐒 ( 1 ) 𝑛 , 
 

 

 

 

 

e 
−i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
−i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
− e 

i 𝑘 ( 1 ) 
(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

) ⎤ ⎥ ⎥ ⎥ ⎦ 𝐒 
( 1 ) 
𝑛 

= 
⎡ ⎢ ⎢ ⎢ ⎣ 

e 
−i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
𝑍 ( 2 ) 

𝑍 ( 1 ) 
e 
−i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
− 𝑍 

( 2 ) 

𝑍 ( 1 ) 
e 
i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

) ⎤ ⎥ ⎥ ⎥ ⎦ 𝐒 
( 2 ) 
𝑛 , 

 

 

 

 

e −i 𝑘 
( 2 ) 𝑙 ( 1 ) ∕2 e i 𝑘 

( 2 ) 𝑙 ( 1 ) ∕2 

e −i 𝑘 
( 2 ) 𝑙 ( 1 ) ∕2 − e i 𝑘 ( 2 ) 𝑙 ( 1 ) ∕2 

⎤ ⎥ ⎥ ⎦ 𝐒 ( 2 ) 𝑛 = 
⎡ ⎢ ⎢ ⎣ 

e −i 𝑘 
( 1 ) 𝑙 ( 1 ) ∕2 e i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 

𝑍 ( 1 ) 

𝑍 ( 2 ) 
e −i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 − 𝑍 
( 1 ) 

𝑍 ( 2 ) 
e i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 

⎤ ⎥ ⎥ ⎦ 𝐒 ( 3 ) 𝑛 , 

(30) 

here 𝑍 

( 𝑝 ) = 𝑠 ( 𝑝 ) 𝑘 ( 𝑝 )  

𝑒 ( 𝑝 ) 
0 with 𝑍 

( 1 ) = 𝑍 

( 3 ) . Through some mathematical
anipulations, the transfer relation in Eq. (30) can be expressed as 

 

( 3 ) 
𝑛 −1 = 

[ 
𝑓 1 𝑓 2 
𝑓 3 𝑓 4 

] 
𝐒 ( 3 ) 
𝑛 

≡ 𝐌𝐒 ( 3 ) 
𝑛 
, (31)

here M is the 2 × 2 unit-cell transfer matrix that relates the state vector
n one sub-cylinder of a unit cell to that in the same sub-cylinder of the
djacent unit cell, and its components are 

 1 = e −i 𝑘 
( 1 ) 𝑙 ( 1 ) 

[ 
cos 𝑘 ( 2 ) 𝑙 ( 2 ) − 

1 
2 
i 
( 

𝑍 

( 2 ) 

𝑍 

( 1 ) 
+ 

𝑍 

( 1 ) 

𝑍 

( 2 ) 

) 

sin 𝑘 ( 2 ) 𝑙 ( 2 ) 
] 
, 

 2 = − 𝑓 3 = 

1 
2 
i 
( 

𝑍 

( 1 ) 

𝑍 

( 2 ) 
− 

𝑍 

( 2 ) 

𝑍 

( 1 ) 

) 

sin 𝑘 ( 2 ) 𝑙 ( 2 ) , 

 4 = e i 𝑘 
( 1 ) 𝑙 ( 1 ) 

[ 
cos 𝑘 ( 2 ) 𝑙 ( 2 ) + 

1 
2 
i 
( 

𝑍 

( 2 ) 

𝑍 

( 1 ) 
+ 

𝑍 

( 1 ) 

𝑍 

( 2 ) 

) 

sin 𝑘 ( 2 ) 𝑙 ( 2 ) 
] 
. (32) 

ote that M is a unimodular matrix [63] , and we have 

 1 𝑓 4 − 𝑓 2 𝑓 3 = 1 . (33)
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Fig. 2. Schematic diagrams of (a) a finite soft PCC con- 
sisting of N identical deformed unit cells and (b) a finite 
cylindrical waveguide made of two types of soft PCCs with 
different deformed unit cells. 
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The deformed PCC is still periodic along the axial direction. Based
n the Bloch-Floquet theorem [64] , the relation of state vectors of the
ame sub-cylinder in adjacent unit cells takes the form as follows: 

 

( 3 ) 
𝑛 

= e i 𝑞𝑙 𝐒 ( 3 ) 
𝑛 −1 , (34)

here q is the Bloch wave number. It follows from Eqs. (31) and
34) that the state vector of the Bloch wave satisfies the following eigen-
alue problem: 

𝐌 − e −i ql 𝐈 
)
𝐒 ( 3 ) 
𝑛 

= 𝟎 , (35) 

s a necessary condition for nontrivial solutions, the determinant of
he coefficient matrix of Eq. (35) vanishes, which yields the following
ispersion relation as 

os 
(
ql 

)
= cos 

(
𝑘 ( 1 ) 𝑙 ( 1 ) 

)
cos 

(
𝑘 ( 2 ) 𝑙 ( 2 ) 

)
− 

1 
2 

( 

𝑍 

( 1 ) 

𝑍 

( 2 ) 
+ 

𝑍 

( 2 ) 

𝑍 

( 1 ) 

) 

sin 
(
𝑘 ( 1 ) 𝑙 ( 1 ) 

)
sin 

(
𝑘 ( 2 ) 𝑙 ( 2 ) 

)
. (36) 

hus, Eq. (36) determines the relation between q and 𝜔 (i.e., the band
tructure) for incremental longitudinal waves. 

.3. Displacement mode shape of the deformed unit cell for Bloch waves 

To interpret the topological characteristics of band structures, it is
easible to examine the symmetry properties of mode shapes of pass-
and/BG edge states [21] . Thus, we will provide the derivation of dis-
lacement mode shapes in the deformed unit cell in this subsection. Cor-
esponding to the eigenvalue e −i 𝑞𝑙 , the eigenvector of the transfer matrix
or sub-cylinder 3 of the first unit cell is obtained from Eq. (35) as 

 

( 3 ) 
1 = 

[ 

𝑓 2 

e −i 𝑞𝑙 − 𝑓 1 

] 

, (37)

here 𝐒 ( 3 ) 1 = [ 𝑎 ( 3 ) 1 , 𝑏 
( 3 ) 
1 ] 

T denotes the state vector made of the coefficients
f incident and reflected waves in sub-cylinder 3. Making use of the
nterfacial continuity conditions (29) 2,3 for the displacement in the first
nit cell, we have 

⎡ ⎢ ⎢ ⎢ ⎣ 
e 
−i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
−i 𝑘 ( 1 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
− e 

i 𝑘 ( 1 ) 
(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

) ⎤ ⎥ ⎥ ⎥ ⎦ 𝐒 
( 1 ) 
1 

= 
⎡ ⎢ ⎢ ⎢ ⎣ 

e 
−i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
e 
i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
𝑍 ( 2 ) 

𝑍 ( 1 ) 
e 
−i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

)
− 𝑍 

( 2 ) 

𝑍 ( 1 ) 
e 
i 𝑘 ( 2 ) 

(
𝑙 ( 1 ) ∕2+ 𝑙 ( 2 ) 

) ⎤ ⎥ ⎥ ⎥ ⎦ 𝐒 
( 2 ) 
1 , 

⎡ ⎢ ⎢ ⎣ 
e −i 𝑘 

( 2 ) 𝑙 ( 1 ) ∕2 e i 𝑘 
( 2 ) 𝑙 ( 1 ) ∕2 

e −i 𝑘 
( 2 ) 𝑙 ( 1 ) ∕2 − e i 𝑘 ( 2 ) 𝑙 ( 1 ) ∕2 

⎤ ⎥ ⎥ ⎦ 𝐒 ( 2 ) 1 = 
⎡ ⎢ ⎢ ⎣ 

e −i 𝑘 
( 1 ) 𝑙 ( 1 ) ∕2 e i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 

𝑍 ( 1 ) 

𝑍 ( 2 ) 
e −i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 − 𝑍 
( 1 ) 

𝑍 ( 2 ) 
e i 𝑘 

( 1 ) 𝑙 ( 1 ) ∕2 

⎤ ⎥ ⎥ ⎦ 𝐒 ( 3 ) 1 . 

(38) 
here 𝐒 ( 1 ) 1 = [ 𝑎 ( 1 ) 1 , 𝑏 
( 1 ) 
1 ] 

T and 𝐒 ( 2 ) 1 = [ 𝑎 ( 2 ) 1 , 𝑏 
( 2 ) 
1 ] 

T are the state vectors in sub-
ylinders 1 and 2 of the first unit cell. 

Once the state vectors 𝐒 ( 𝑝 ) 1 are determined from Eqs. (37) and (38) ,
e obtain the displacement distributions in the deformed unit cell for

ncremental Bloch waves as 

 

( 1 ) 
1 ( 𝑧 ) = 𝑎 

( 1 ) 
1 e i 𝑘 

( 1 ) ( 𝑧 − 𝑙 ) + 𝑏 
( 1 ) 
1 e −i 𝑘 

( 1 ) ( 𝑧 − 𝑙 ) , 0 ≤ 𝑧 ≤ 𝑙 ( 1 ) ∕2 , 

 

( 2 ) 
1 ( 𝑧 ) = 𝑎 

( 2 ) 
1 e i 𝑘 

( 2 ) ( 𝑧 − 𝑙 ) + 𝑏 
( 2 ) 
1 e −i 𝑘 

( 2 ) ( 𝑧 − 𝑙 ) , 𝑙 ( 1 ) ∕2 ≤ 𝑧 ≤ 𝑙 ( 1 ) ∕2 + 𝑙 ( 2 ) , 

 

( 3 ) 
1 ( 𝑧 ) = 𝑎 

( 3 ) 
1 e i 𝑘 

( 1 ) ( 𝑧 − 𝑙 ) + 𝑏 
( 3 ) 
1 e −i 𝑘 

( 1 ) ( 𝑧 − 𝑙 ) , 𝑙 ( 1 ) ∕2 + 𝑙 ( 2 ) ≤ 𝑧 ≤ 𝑙. (39) 

.4. Transmission coefficient of a finite PCC with identical unit cells 

Now consider a finite PCC with N identical deformed unit cells ar-
anged in the axial direction (see Fig. 2 (a)). Inserting Eq. (28) into
q. (31) , using Eq. (33) and performing matrix transfer N times, we
ave 
 

𝑎 
( 3 ) 
𝑁 

𝑏 
( 3 ) 
𝑁 

] 

= 

[ 

𝑓 4 − 𝑓 2 

− 𝑓 3 𝑓 1 

] 

𝑁 

[ 

𝑎 
( 3 ) 
0 

𝑏 
( 3 ) 
0 

] 

≡ 𝐌 𝑡 

[ 

𝑎 
( 3 ) 
0 

𝑏 
( 3 ) 
0 

] 

, (40)

here 𝑎 ( 3 ) 0 and 𝑏 ( 3 ) 0 are the amplitude coefficients of incident and re-
ected waves at the incident side, respectively, and M t is the global
ransfer matrix. 

To calculate the transmission spectrum in the finite hyperelastic
CC, we set the reflection coefficient at the output side to be zero (i.e.,
 

( 3 ) 
𝑁 

= 0 ). As a result, the wave coefficient ratios 𝑏 ( 3 ) 0 ∕ 𝑎 
( 3 ) 
0 and 𝑎 ( 3 ) 

𝑁 
∕ 𝑎 ( 3 ) 0 are

etermined from Eq. (40) as 

𝑏 
( 3 ) 
0 ∕ 𝑎 

( 3 ) 
0 = − 

𝑀 𝑡 21 
𝑀 𝑡 22 

, 

𝑎 
( 3 ) 
𝑁 
∕ 𝑎 ( 3 ) 0 = 𝑀 𝑡 11 − 

𝑀 𝑡 12 𝑀 𝑡 21 
𝑀 𝑡 22 

, 
(41) 

here M tij are the components of the global transfer matrix. The trans-

ission coefficient t N defined as the absolute square of 𝑎 ( 3 ) 
𝑁 
∕ 𝑎 ( 3 ) 0 is then

alculated as 

 𝑁 = 

|||𝑎 ( 3 ) 𝑁 ∕ 𝑎 ( 3 ) 0 
|||2 = 

||||𝑀 𝑡 11 − 

𝑀 𝑡 12 𝑀 𝑡 21 
𝑀 𝑡 22 

||||2 . (42) 

.5. Transmission coefficient of a finite waveguide with two types of 

ifferent unit cells 

In order to investigate the existence of topological interface states,
he transmission behaviors of a finite cylindrical waveguide composed
f two types of different deformed unit cells (i.e., N unit cells of S1-type
nd M unit cells of S2-type arranged consecutively in the axial direction)
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re considered in this subsection, and its schematic diagram is shown
n Fig. 2 (b). Based on Eq. (40) , the transfer relation of N unit cells of
1-type is expressed as 

 

( 3 ) 
𝑁 

= 

[ 
𝑓 4 − 𝑓 2 
− 𝑓 3 𝑓 1 

] 
𝑁 𝐒 ( 3 ) 0 ≡ 𝐌 

( 1 ) 
𝑡 
𝐒 ( 3 ) 0 , (43)

here 𝐌 

( 1 ) 
𝑡 

is the transfer matrix of N unit cells of S1-type. 
Analogous to Eqs. (25) and (27) , the axial displacement and force

mplitudes in the m th unit cell for the S2-type PCC are 

 

′( 𝑝 ) 
𝑚 

( 𝑧 ) = 𝑎 ′( 𝑝 ) 
𝑚 

e i 𝑘 
′( 𝑝 ) ( 𝑧 ′− 𝑚𝑙 ′) + 𝑏 ′( 𝑝 ) 

𝑚 
e −i 𝑘 

′( 𝑝 ) ( 𝑧 ′− 𝑚𝑙 ′) , 

 

′( 𝑝 ) 
𝑚 

( 𝑧 ) = i 𝑍 

′( 𝑝 ) 
[
𝑎 ′( 𝑝 ) 
𝑚 

e i 𝑘 
′( 𝑝 ) ( 𝑧 ′− 𝑚𝑙 ′) − 𝑏 ′( 𝑝 ) 

𝑚 
e −i 𝑘 

′( 𝑝 ) ( 𝑧 ′− 𝑚𝑙 ′) 
]
, (44) 

here 𝑧 ′ = 𝑧 − 𝑁𝑙 − 𝑙 ′, (·) ′ stands for the related parameters and physical
uantities of the S2-type unit cell, and m is chosen to vary from 0 to 𝑀 −
 for the purpose of illustration (see Fig. 2 (b)). Referring to Eqs. (31) and
33) , we can obtain the transfer relation between the state vectors for
ub-cylinder 3 in two adjacent S2-type unit cells as 

 

′( 3 ) 
𝑚 

= 

[ 

𝑓 ′4 − 𝑓 ′2 
− 𝑓 ′3 𝑓 ′1 

] 

𝐒 ′( 3 ) 
𝑚 −1 . (45)

imilar to Eq. (43) , the transfer relation of the last 𝑀 − 1 unit cells of
2-type is 

 

′( 3 ) 
𝑀−1 = 

[ 

𝑓 ′4 − 𝑓 ′2 
− 𝑓 ′3 𝑓 ′1 

] 

𝑀−1 𝐒 ′( 3 ) 0 ≡ 𝐌 

( 2 ) 
𝑡 
𝐒 ′( 3 ) 0 , (46)

here 𝐌 

( 2 ) 
𝑡 

indicates the transfer matrix for the last 𝑀 − 1 S2-type unit
ells. 

Furthermore, the interfacial continuity condition between the two
ifferent PCCs and those in the first S2-type unit cell ( 𝑚 = 0 ) are written
s 

𝑤 

( 3 ) 
𝑁 

= 𝑤 

′( 1 ) 
0 , 𝑄 

( 3 ) 
𝑁 

= 𝑄 

′( 1 ) 
0 , at 𝑧 = Nl , 

 

′( 1 ) 
0 = 𝑤 

′( 2 ) 
0 , 𝑄 

′( 1 ) 
0 = 𝑄 

′( 2 ) 
0 , at 𝑧 = Nl + 𝑙 ′

( 1 ) ∕2 , 

 

′( 2 ) 
0 = 𝑤 

′( 3 ) 
0 , 𝑄 

′( 2 ) 
0 = 𝑄 

′( 3 ) 
0 , at 𝑧 = Nl + 𝑙 ′ − 𝑙 ′

( 1 ) ∕2 . (47) 

sing Eqs. (25) , (27) and (44) , Eq. (47) becomes [ 
1 1 
1 −1 

] 
𝐒 ( 3 ) 
𝑁 

= 

[ 
e −i 𝑘 

′ ( 1 ) 𝑙 ′ e i 𝑘 
′ ( 1 ) 𝑙 ′

𝑍 ′ ( 1 ) 

𝑍 ( 1 ) 
e −i 𝑘 

′ ( 1 ) 𝑙 ′ − 𝑍 
′ ( 1 ) 

𝑍 ( 1 ) 
e i 𝑘 

′ ( 1 ) 𝑙 ′

] 
𝐒 ′( 1 ) 0 , 

⎡ ⎢ ⎢ ⎣ 
e 
−i 𝑘 ′ ( 1 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)
e 
i 𝑘 ′ ( 1 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)

e 
−i 𝑘 ′ ( 1 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)
− e i 𝑘 

′ ( 1 ) 
(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

) ⎤ ⎥ ⎥ ⎦ 𝐒 ′( 1 ) 0 

= 
⎡ ⎢ ⎢ ⎣ 

e 
−i 𝑘 ′ ( 2 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)
e 
i 𝑘 ′ ( 2 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)
𝑍 ′ ( 2 ) 

𝑍 ′ ( 1 ) 
e 
−i 𝑘 ′ ( 2 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

)
− 𝑍 

′ ( 2 ) 

𝑍 ′ ( 1 ) 
e 
i 𝑘 ′ ( 2 ) 

(
𝑙 ′ ( 1 ) ∕2+ 𝑙 ′ ( 2 ) 

) ⎤ ⎥ ⎥ ⎦ 𝐒 ′( 2 ) 0 , 

[ 
e −i 𝑘 

′ ( 2 ) 𝑙 ′ ( 1 ) ∕2 e i 𝑘 
′ ( 2 ) 𝑙 ′ ( 1 ) ∕2 

e −i 𝑘 
′ ( 2 ) 𝑙 ′ ( 1 ) ∕2 − e i 𝑘 ′

( 2 ) 
𝑙 ′ ( 1 ) ∕2 

] 
𝐒 ′( 2 ) 0 = 

[ 
e −i 𝑘 

′ ( 1 ) 𝑙 ′ ( 1 ) ∕2 e i 𝑘 
′ ( 1 ) 𝑙 ′ ( 1 ) ∕2 

𝑍 ′ ( 1 ) 

𝑍 ′ ( 2 ) 
e −i 𝑘 

′ ( 1 ) 𝑙 ′ ( 1 ) ∕2 − 𝑍 
′ ( 1 ) 

𝑍 ′ ( 2 ) 
e i 𝑘 

′ ( 1 ) 𝑙 ′ ( 1 ) ∕2 

] 
𝐒 ′( 3 ) 0 . 

(48) 

Through some mathematical manipulations, Eq. (48) is rewritten as 

 

′( 3 ) 
0 = 𝐌 int 𝐒 

( 3 ) 
𝑁 
, (49)

here M int is the 2 × 2 interfacial transfer matrix between the two different PCCs and its components
re omitted here due to their redundancy. 

Combining Eqs. (43) , (46) and (49) , we obtain the final global trans-
er relation of the finite cylindrical waveguide as 

 

′( 3 ) 
𝑀−1 = 𝐊𝐒 ( 3 ) 0 . (50)

here 𝐊 = 𝐌 

( 2 ) 
𝑡 
𝐌 int 𝐌 

( 1 ) 
𝑡 

is the 2 × 2 global transfer matrix. Provided
hat the reflection coefficient at the output side is equal to zero (i.e.,
 

′( 3 ) 
𝑀−1 = 0 ), the transmission coefficient 𝑡 𝑁+ 𝑀 

is calculated as 

 𝑁+ 𝑀 

= 

|||𝑎 ′( 3 ) 𝑀−1 ∕ 𝑎 
( 3 ) 
0 

|||2 = 

||||𝐾 11 − 

𝐾 12 𝐾 21 
𝐾 22 

||||2 , (51) 

here K ij are the components of K . Note that Eq. (51) has the same form
s Eq. (42) . 
.6. Displacement field of a finite waveguide with two types of different 

nit cells 

In this subsection, we will derive the incremental displacement dis-
ribution of a finite deformed waveguide consisting of N unit cells of
1-type and M unit cells of S2-type. In view of the second formula of
q. (50) with 𝑏 ′( 3 ) 

𝑀−1 = 0 , we obtain the relation 𝑏 ( 3 ) 0 ∕ 𝑎 
( 3 ) 
0 = − 𝐾 21 ∕ 𝐾 22 .

ithout loss of generality, we set 𝑎 ( 3 ) 0 = 1 and thus the state vector
omposed of the complex amplitude coefficients at the input side (see
ig. 2 (b)) is 

 

( 3 ) 
0 = 

[
1 , − 𝐾 21 ∕ 𝐾 22 

]T , (52)

hich, combined with the transfer relation (31) between two adjacent
nit cells, yields the state vector of sub-cylinder 3 in the n th S1-type unit
ell as 

 

( 3 ) 
𝑛 

= 

[ 
𝑓 4 − 𝑓 2 
− 𝑓 3 𝑓 1 

] 
𝑛 𝐒 ( 3 ) 0 , ( 𝑛 = 1 , 2 , … , 𝑁 ) . (53)

tilizing the interfacial continuity conditions (29) 2,3 for the displace-

ent in the n th S1-type unit cell, we obtain the state vectors 𝐒 ( 1 ) 𝑛 and
 

( 2 ) 
𝑛 of sub-cylinders 1 and 2 in terms of 𝐒 ( 3 ) 𝑛 . 

Similarly, the state vector of sub-cylinder 3 in the m th S2-type unit
ell is written as 

 

′( 3 ) 
𝑚 

= 

[ 

𝑓 ′4 − 𝑓 ′2 
− 𝑓 ′3 𝑓 ′1 

] 

𝑚 𝐒 ′( 3 ) 0 , ( 𝑚 = 0 , 1 , … , 𝑀 − 1 ) , (54)

here 𝐒 ′( 3 ) 0 can be achieved from Eqs. (49) and (53) . Analogous to the

1-type unit cell, the state vectors 𝐒 ′( 1 ) 𝑚 and 𝐒 ′( 2 ) 𝑚 of sub-cylinders 1 and 2
an be expressed by 𝐒 ′( 3 ) 𝑚 when using the interfacial continuity conditions
or the S2-type unit cell. 

After the state vectors 𝐒 ( 𝑝 ) 𝑛 and 𝐒 ′( 𝑝 ) 𝑚 are determined, the incremental
xial displacements for the two different PCCs are calculated, respec-
ively, by Eqs. (25) and (44) 1 , which then determines the mode distri-
utions 𝑤 

( 𝑝 ) 
𝑛 
( 𝑧 ) and 𝑤 

′( 𝑝 ) 
𝑚 

( 𝑧 ) of the longitudinal waves propagating in the
nite waveguide consisting of two types of different deformed unit cells.

. Results and discussion 

This section will elucidate the tunable effects of mechanical load
n the topological interface state of longitudinal waves propagating in
he hyperelastic PCC characterized by the neo-Hookean and Gent mod-
ls, respectively. As described in Section 3 , the developed theoretical
odel assumes a uniform nonlinear deformation when subjected to an

xial force and neglects the locally nonuniform deformation near the
nterfaces of different sub-cylinders. Therefore, the effectiveness of this
ypothesis will be validated in Section 5.2.2 by performing the FE sim-
lations based on the commercial software package ABAQUS. 

In the following numerical calculations, the undeformed unit cell
hown in Fig. 1 (a) has the radius 𝑅 

( 1 ) 
0 = 0 . 5 cm and the length 𝐿 ( 1 ) =

0 𝐿 for sub-cylinder 1, along with the corresponding parameters 𝑅 

( 2 ) 
0 =

 . 4 cm and 𝐿 ( 2 ) = 

(
1 − 𝜙0 

)
𝐿 for sub-cylinder 2, where the total length

s 𝐿 = 10 cm and 𝜙0 is the initial length fraction of sub-cylinder 1. Note
hat the radii and the total lengths of the undeformed unit cells are the
ame for the two base elements of the PCC waveguide, which ensures
 smooth interface between the two PCC elements after deformation.
n addition, the hyperelastic PCC is characterized by the commercial
roduct Zhermarck Elite Double 32 made of silicon rubber [39] with
ts initial density, shear modulus and first Lam ́e ’s parameter given as

0 = 1040 kg/m 

3 , 𝜇 = 0 . 444 MPa and Λ = 22 . 2 MPa, respectively. The
imensionless axial force is defined as 𝐹 𝑁 = 𝐹 𝑁 ∕ 𝜇𝑆 ( 2 ) , where S (2) is the
nitial cross-sectional area of sub-cylinder 2. We define the normalized
loch wave number as 𝑞 = 𝑞𝑙 ∕ 2 𝜋 ranging from −0 . 5 to 0.5 within the
rst Brillouin zone [64] . The ordinary frequency f measured in Hz is
iven by 𝑓 = 𝜔 ∕(2 𝜋) . 
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Fig. 3. Stretch ratios 𝜆( 2 ) 1 and 𝜆( 2 ) 3 as functions of the normal- 

ized axial force 𝐹 𝑁 (a) and overall stretch ratio 𝜆eff versus the 
initial length fraction 𝜙0 for 𝐹 𝑁 = 1 , 2 and 4 (b) in the neo- 
Hookean and Gent ( 𝐽 𝑚 = 20 ) PCC with 𝑅 ( 1 ) 0 ∕ 𝑅 

( 2 ) 
0 = 1 . 25 and 

Λ∕ 𝜇 = 50 . 
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.1. Nonlinear static deformation 

First, we examine the nonlinear axisymmetric deformation of the soft
CC under the action of axial force. The analytical results are calculated
rom the nonlinear algebraic Eqs. (16) and (17) . Fig. 3 (a) shows the
ariations of axial ( 𝜆( 2 ) 3 ) and radial ( 𝜆( 2 ) 1 ) stretch ratios of sub-cylinder

 with the dimensionless axial force 𝐹 𝑁 for both the neo-Hookean and
ent ( 𝐽 𝑚 = 20 ) models. Indeed, the results for the neo-Hookean model
re also recovered by those for the Gent model with a large enough value
f J m 

(e.g., 𝐽 𝑚 = 2000 ). Clearly, when the axial tensile force is applied,
he length of sub-cylinder 2 increases and its radius shrinks owing to
he Poisson’s effect. The induced stretch variations of the two material
odels overlap for 𝐹 𝑁 ≤ 1 . 25 . Nevertheless, the difference between the

xial stretches of the neo-Hookean and Gent models becomes more ev-
dent with an increase in the axial force when 𝐹 𝑁 > 1 . 25 . Specifically,
t the same axial force level, the Gent PCC with the strain-stiffening ef-
ect experiences a smaller deformation as compared to the neo-Hookean
CC. Similar results can be obtained for sub-cylinder 1 in the unit cell. 

Intuitively, the sub-cylinder with a smaller cross-section will be elon-
ated more than the counterpart with a larger one in the unit cell. For
ompleteness, we plot in Fig. 3 (b) the dependence of the overall stretch
atio, defined as 

eff = 𝜙0 𝜆
( 1 ) 
3 + 

(
1 − 𝜙0 

)
𝜆
( 2 ) 
3 , (55)

n the initial length fraction 𝜙0 for sub-cylinder 1 with a larger cross-
ection. The results are shown for the neo-Hookean and Gent PCCs sub-
ected to different axial force levels, namely, 𝐹 𝑁 = 1 , 2 and 4. As ex-
ected, the PCC with a smaller 𝜙0 (i.e., a smaller length fraction of sub-
ylinder 1 with a larger radius) develops larger deformations when sub-
ected to an identical axial force. As the axial force level is increased, this
ariation trend strengthens irrespective of the material model. However,
his variation trend of the Gent PCC weakens for a large axial force acti-
ating the strain-stiffening effect, compared to that of the neo-Hookean
CC (such as 𝐹 𝑁 = 4 in Fig. 3 (b)). Note that we have selected the sub-
ylinders with a relatively small difference in their initial cross-sectional
reas to diminish the influence of the inhomogeneous deformation at the
nterface, especially for a larger axial force 𝐹 𝑁 . 

Next we will examine the tunable topological interface states prop-
gating in the neo-Hookean and Gent PCC waveguides separately, to
llustrate the effects of geometric and material nonlinearities. 

.2. Tunable topological interface states for the neo-Hookean model 

.2.1. Analysis of band structures and topological characteristics 

Fig. 4 illustrates the band structures, described by Eq. (36) , for lon-
itudinal waves in the neo-Hookean PCC for different axial forces 𝐹 𝑁 
nd geometric parameters 𝜙0 . The results corresponding to 𝐹 𝑁 = 0 are
hown in Fig. 4 (a)–(c) while those for 𝐹 𝑁 = 1 are displayed in Fig. 4 (d)–
f). The unit cells with various 𝜙0 represent different PCC configurations
nd have the same undeformed length L . By varying the initial length
raction 𝜙0 of sub-cylinder 1, the second BG for 𝐹 𝑁 = 0 closes at the
enter ( 𝑞 = 0 ) of the first Brillouin zone with a Dirac cone formed by
ccidental degeneracy (see Fig. 4 (b)). The Dirac cone (where the two
ulk bands have linear dispersion) occurs at 𝜙0 = 0 . 5 in the absence of
n axial force. The degeneracy is broken for any configuration such that

0 ≠ 0.5, and the Dirac cone will be opened to form the second BG. This
s illustrated, if we decrease 𝜙0 from 0.5 to 0.35 and increase 𝜙0 from 0.5
o 0.65, in Fig. 4 (a) and (c) for the unloaded case. Therefore, the second
G of the soft PCC without axial force exhibits the evolutionary process
f open, close and reopen when adjusting the geometric parameter 𝜙0 .
emarkably, as we shall show below, this transition corresponds to the
witching of topological characteristics. Similar BG inversion process is
bserved for the axially loaded PCC as demonstrated in Fig. 4 (d)–(f).
 topological transition point (i.e., the point for two bands to cross) is
lso obtained in Fig. 4 (e) for the case of 𝐹 𝑁 = 1 , where the Dirac cone
ppears at a different length fraction 𝜙0 ≃ 0.524 due to the nonlinear
eformation of unit cell. 

It should be pointed out that the topological characteristics of a BG
s completely determined by the summation of the Zak phases of all
he bulk bands below this gap [12,21,66] . Originating from electronic
ystems [19,67] , the so-called Zak phase is a special type of Berry phase,
hich is a topological invariant characterizing the topological property
f bulk bands in 1D periodic systems. The Zak phase for the j th isolated
and of the 1D PCC system is defined as [12,16] 

Zak 
𝑗 

= ∫
𝜋∕ 𝑙 

− 𝜋∕ 𝑙 

⎡ ⎢ ⎢ ⎣ i ∫
unit cell 

1 
2 𝜌𝑐 2 

d 𝐫 dz 𝑊 

∗ 
𝑗,𝑞 
( 𝑧, 𝐫 ) 𝜕 𝑞 𝑊 𝑗,𝑞 ( 𝑧, 𝐫 ) 

⎤ ⎥ ⎥ ⎦ d 𝑞, (56)

here z is the deformed axial coordinate, r denotes the position in the
ross-section plane, l is the length of the deformed unit cell, 𝜌 and c are
he current mass density and longitudinal wave velocity in the deformed
onfiguration, respectively, and 𝑊 𝑗,𝑞 ( 𝑧, 𝐫 ) = 𝑤 𝑗,𝑞 ( 𝑧, 𝐫 ) e − i 𝑞𝑧 represents the
eriodic in-cell part of the normalized Bloch displacement eigenfunction
 j, q ( z , r ) in the j th band with Bloch wave number q . The factor 1/(2 𝜌c 2 )

s the weight function for the elastic system. 
Thus, to distinguish the topological properties of different PCC con-

gurations, it is necessary to obtain the Zak phase value. Here, we
ake use of a discretized form (A.3) to numerically calculate the Zak
hase (the detailed derivation of the numerical procedure is presented
n Appendix A ). Given the inversion symmetry of the 1D PCC with re-
pect to its central cross-sectional plane, the calculated Zak phase value
s quantized at either 0 or 𝜋 [19] . This quantization also holds true for
he PCC under the action of an external mechanical load. The calculated
ak phase values are marked in magenta on the corresponding bands in
ig. 4 . Moreover, the BG topological property can be characterized by
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Fig. 4. The band structures of longitudinal 
waves in the neo-Hookean PCC for different ax- 
ial forces 𝐹 𝑁 and initial length fractions 𝜙0 of 
sub-cylinder 1: (a)–(c) Band inversion process 
in the absence of axial force ( 𝐹 𝑁 = 0 ) for three 
values of 𝜙0 = 0 . 35 , 0.5 and 0.65, respectively; 
(d)–(f) Band inversion process for 𝐹 𝑁 = 1 and 
three values of 𝜙0 = 0 . 35 , 0.524 and 0.65, re- 
spectively. The Zak phase is marked in magenta 
on the corresponding bulk band. The yellow and 
green stripes stand for the second BG signs with 
𝜍 > 0 and 𝜍 < 0, respectively. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.) 
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he BG sign 𝜍, which is related to the Zak phase and given by Xiao et al.
21] 

gn 
[
𝜍 ( 𝑗 ) 

]
= ( −1 ) 𝑗 ( −1 ) ℎ exp 

( 

i 
𝑗 ∑
𝛽=1 
𝜃Zak 
𝛽

) 

, (57)

here the integer h is the number of band crossing points below the
 th BG. The second BGs with 𝜍 > 0 and 𝜍 < 0 are represented by the
ellow and green stripes in Fig. 4 , respectively, to demonstrate different
G topological properties. For simplicity, the two PCC configurations
ith 𝜙0 = 0 . 35 and 𝜙0 = 0 . 65 will be referred to as S1-configuration and
2-configuration, respectively. 

While the Zak phase of the first band is the same for S1- and S2-
onfigurations in the absence of an axial force (see Figs. 4 (a) and (c)),
he Zak phase of the second bulk band varies from 0 to 𝜋, which exhibits
 topological phase transition. According to Eq. (57) , the topological
roperties of the second BG for S1- and S2-configurations are thus dif-
erent in spite of the overlapped BG frequencies (see Fig. 4 (a) and (c)).
his indicates the existence of a topological state in this BG at the in-
erface separating S1- and S2-configurations. This topological interface
tate will be discussed in the next Section 5.2.2 . The phenomenon is
lso observed in PCC subjected to an axial loading (see Fig. 4 (d)-(f) for
 𝑁 = 1 ). In this case, however, the BG frequencies for the loaded PCC
re lower than those for the unloaded PCC (compare Fig. 4 (d) and (f)
ith Fig. 4 (a) and (c)). For example, the second BG frequency range of
2-configuration is from 336 Hz to 376 Hz for 𝐹 𝑁 = 0 , while for 𝐹 𝑁 = 1
he corresponding BG frequency varies from 263 Hz to 297 Hz. Thus,
he applied axial force can tune the BG position and the frequency of
he topological transition point. 

In addition to the direct calculation of Zak phase and BG sign from
qs. (56) and (57) , the symmetry analysis method of the edge states at
he two Brillouin zone symmetry points can also be employed to ver-
fy the topological phase transition and to identify the BG topological
roperty [19,21,67] . To perform the symmetry analysis, we make use
f Eq. (39) and calculate the absolute value of the displacement field
 ( 𝑧 ) for the six band-edge states 𝐴 − 𝐹 (indicated with cross symbols in
ig. 4 (d) and (f)). Fig. 5 shows the dependence of |𝑤 ( 𝑧 ) | on the normal-
zed axial coordinate 𝑧 ∗ = 𝑧 ∕ 𝑙 in the deformed neo-Hookean unit cell
ith 𝐹 𝑁 = 1 . 

For a bulk band, the Zak phase is 𝜃Zak 
𝑗 

= 0 if the two edge states
t the Brillouin zone center and boundary possess the same symmetric
roperty. Otherwise, the Zak phase value should be 𝜃Zak 

𝑗 
= 𝜋. For S1-

onfiguration, the edge states A and B of the second band exhibit the
ymmetric distributions with respect to the unit-cell center (i.e., even
igenmodes associated with a nonzero displacement amplitude at the
nit-cell center) (see Fig. 5 (a) and (b)), and hence the corresponding
ak phase is 0. For S2-configuration, however, the edge states D and E
f the second band are symmetric and antisymmetric (odd eigenmode
elated to the zero displacement amplitude at the unit-cell center) (see
ig. 5 (d) and (e)), and its Zak phase is 𝜋. Therefore, the Zak phase of
he second band is altered after the band crossing, which is in full agree-
ent with the topological phase transition shown in Fig. 4 (d) and (f).

n addition, Fig. 5 (b) and (f) show the symmetric displacement fields
ith respect to the center of unit cell for edge states B and F , while

he displacement fields in Fig. 5 (c) and (e) are antisymmetric for edge
tates C and E . Thus, we can observe the eigenmode switching of the
wo edge states across the second BG, which characterizes the topolog-
cal band inversion. Furthermore, if two states at the lower or upper
dges of the overlapped BG possess different symmetries, the sign 𝜍 of
his BG is opposite and thus an interface state exists inside the BG [21] .
ere, the lower edge states B and E in Fig. 5 (b) and (e) for S1- and
2-configurations are symmetric and antisymmetric, respectively. This
ndicates the different signs 𝜍 of the second BG and various topological
roperties, as shown in Fig. 4 (d) and (f). 

.2.2. Transmission spectra and displacement distributions 

Here, we make use of Eq. (42) to calculate the transmission spectra
i.e., the transmission coefficient t N versus the frequency f ) of a finite-
ize neo-Hookean PCC. Fig. 6 (a) and (b) show the results for the finite
CC composed of 10 identical S2-type unit cells subjected to the axial
orces 𝐹 𝑁 = 0 and 1, respectively. The transmission spectra based on
ur theoretical analysis agree well with the corresponding band struc-
ures (compare Fig. 6 (a) and (b) with Fig. 4 (c) and (f)). The transmission
oefficient in the BG range approaches zero, indicating that the wave
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Fig. 5. The absolute value of the displace- 
ment field 𝑤 ( 𝑧 ) of the six band-edge states at 
the Brillouin zone center and boundary as a 
function of the normalized axial coordinate 
𝑧 ∗ = 𝑧 ∕ 𝑙 in the deformed neo-Hookean unit 
cell with 𝐹 𝑁 = 1 . The six band-edge states 𝐴 − 
𝐹 , indicated with cross symbols and marked 
by capital Roman letters in Fig. 4 (d) and (f), 
are displayed in Fig. 5 (a)–(f), respectively. 

Fig. 6. The transmission spectra of a finite neo-Hookean PCC consisting of 10 identical S2 unit cells ( 𝜙0 = 0 . 65 ) calculated by the theoretical solutions (a, b) and the 
FE method (c, d): (a, c) 𝐹 𝑁 = 0 ; (b, d) 𝐹 𝑁 = 1 . 
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ropagation is prohibited; but in the passing bands, the elastic wave is
llowed to propagate in the finite PCC as the transmission ratio almost
quals one. The spectrum does not show any peaks in the BGs for the
nite-size PCC with identical unit cells. 

In addition, the transmission spectra have been calculated indepen-
ently by means of the finite element (FE) simulations. The details about
he FE simulation procedures are described in Appendix B . Fig. 6 (c) and
d) shows the FE results for the finite-size PCC under the action of axial
orces 𝐹 𝑁 = 0 and 1, respectively. Here, the attenuation intensity T (dB)
s defined as 𝑇 = 20 log ( 𝐴 output ∕ 𝐴 input ) , where A input and A output are the
verage displacement amplitudes of the input and output signals. The
omparison of the theoretical and numerical results demonstrates a good
greement between these intendant methods. There are, however, slight
ifferences in the form of transmission spectra due to various calculation
xpressions. The FE calculations show that the transmission coefficient
eaches a dip within the BG range, which stands for a strong attenuation
f the wave propagation; however, the attenuation intensity is larger
han zero in the passing bands, implying that the output signal can be
bviously detected. Particularly, the frequency ranges of the second BG
or 𝐹 𝑁 = 0 are (316 Hz, 383 Hz) and (307 Hz, 385 Hz) for the theoretical
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Fig. 7. The transmission spectra of a mixed finite neo-Hookean waveguide consisting of 5 S1 unit cells and 5 S2 unit cells calculated by the theoretical solutions (a, 
b) and the FE method (c, d): (a, c) 𝐹 𝑁 = 0 ; (b, d) 𝐹 𝑁 = 1 . The transmission peak frequency in the second BG is labelled in the corresponding subfigure. 
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esults and FE simulations, respectively. For 𝐹 𝑁 = 1 , the corresponding
esults based on the theoretical model and FE simulation are (248 Hz,
02 Hz) and (240 Hz, 299 Hz), respectively. We note, however, that
he difference in the central frequencies between the theoretical and FE
redictions does not exceed 2%. 

Recall that the topological phase transition exists and the topological
roperties of the second BG are different for S1- and S2-configurations
see Section 5.2.1 ). Thus, a topological interface state should appear
n this overlapped BG at the interface delimiting the S1- and S2-
onfigurations. Motivated by this prediction, we design a mixed finite-
ize neo-Hookean waveguide consisting of 5 S1-type and 5 S2-type unit
ells. We utilize the theoretical formula (51) to calculate the correspond-
ng transmission spectra of the mixed-type PCC waveguide. Fig. 7 shows
he theoretical ((a) and (b)) and FE simulation ((c) and (d)) results for
he mixed soft PCC waveguide. The results are illustrated for the un-
oaded PCC ( Fig. 7 (a) and (c)), and for the PCC subjected to the axial
orce 𝐹 𝑁 = 1 ( Fig. 7 (b) and (d)). We observe from Fig. 7 that the sharp
ransmission peaks emerge in the overlapped BG frequency range for
oth unloaded and loaded cases. In the unloaded mixed PCC waveg-
ide, the peak frequencies of theoretical prediction and FE simulation
re 355 Hz and 352 Hz, respectively. In the loaded case with 𝐹 𝑁 = 1 , the
orresponding peak frequencies shift down to 276.5 Hz (theory) and 275
z (simulation). Thus, the application of axial force tunes the position
f the transmission peak. We note that the peak frequencies predicted
y the FE simulations and theoretical model are almost identical, which
urther validates the effectiveness of our theoretical assumption. 

Fig. 8 depicts the spatial distributions of the displacement modes
or the mixed finite-size neo-Hookean waveguide at the transmission
eak frequencies corresponding to the unloaded and loaded ( 𝐹 𝑁 = 1 )
tates. Fig. 8 (a) and (b) show theoretical results for the absolute value
𝑤 ( 𝑧 ) | of displacement distributions at the peak frequencies 355 Hz
 t  
 𝐹 𝑁 = 0 ) and 276.5 Hz ( 𝐹 𝑁 = 1 ). The normalized axial coordinate is
efined as 𝑧 ∗ = 𝑧 ∕ 𝑙 , where l is the length of the deformed unit cell of S1-
onfiguration. Through the FE simulations, Fig. 8 (c) and (d) display the
isplacement mode shapes at the FE peak frequencies 352 Hz ( 𝐹 𝑁 = 0 )
nd 275 Hz ( 𝐹 𝑁 = 1 ). We observe that the displacement field is localized
t the interface between the two PCC elements, and it decays dramati-
ally towards the ends of the mixed waveguide. This is an evident sign
f the interface state as a result of the topological conflict of the dis-
inct states. In particular, the displacement amplitude at the interface is
 times more than the input signal (see Fig. 8 (a) and (b)). 

It is worth noting that the topological interface state is different from
he concept of resonant mode [68,69] . The resonant mode is greatly af-
ected by the boundary conditions, local resonance and excitation lo-
ation, whereas the topological interface state method – based on the
opological property conflict – provides a robust mechanism against the
ave propagation direction or boundary conditions [16] . To validate

hat the occurrence of transmission peaks is ascribed to the topological
nterface state, we have reversed the input and output ends, and then
alculated the transmission spectra as well as the displacement distribu-
ions for the unloaded and loaded ( 𝐹 𝑁 = 1 ) cases. The results (omitted
ere) indicate that the topological interface state is still observed at the
ame transmission peak frequencies as those in Fig. 7 . 

.2.3. Topological phase diagram 

Next, to analyze the effect of axial force on topological interface
tates, we examine the topological phase diagram . Fig. 9 shows the two
dge-state frequencies of the second BG as functions of the geometric
arameter 𝜙0 of the neo-Hookean PCC for different levels of the applied
xial force. The variations of the second BG frequencies with 𝜙0 are cal-
ulated by setting 𝑞 = 0 in Eq. (36) . Fig. 9 illustrates that an increase in
he axial force results in a lower frequency of the topological transition
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Fig. 8. Theoretical calculations of the dis- 
placement field absolute value |𝑤 ( 𝑧 ) | of a 
mixed finite neo-Hookean waveguide (con- 
sisting of 5 S1 unit cells and 5 S2 unit cells) 
as a function of the normalized axial coor- 
dinate 𝑧 ∗ = 𝑧 ∕ 𝑙 at 355 Hz ( 𝐹 𝑁 = 0 ) (a) and 
276.5 Hz ( 𝐹 𝑁 = 1 ) (b). FE simulations of 
the displacement mode of the same mixed 

finite waveguide at 352 Hz ( 𝐹 𝑁 = 0 ) (c) 
and 275 Hz ( 𝐹 𝑁 = 1 ) (d). 

Fig. 9. Topological phase diagram of a neo-Hookean PCC. The four groups of 
solid curves represent the two edge-state frequencies of the second BG as func- 
tions of the initial length fraction 𝜙0 for four different axial forces. The topo- 
logical phase curve (dash-dotted line) connects the topological transition points 
corresponding to different axial forces, and the arrow denotes the direction in 
which the axial force increases. The yellow and green filled regions indicate the 
BG signs with 𝜍 > 0 and 𝜍 < 0 respectively, which are labelled at two sides of 
the topological phase curve. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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oint (or band crossing point). However, there is only a slight change
n 𝜙0 where the band crossing happens. In particular, for 𝐹 𝑁 = 0 , 0.5, 1
nd 1.5, four topological transition points occur at 𝜙0 = 0 . 5 , 0.514, 0.524
nd 0.527, with their topological transition frequencies being 355 Hz,
10.6 Hz, 275.9 Hz and 251.5 Hz, respectively. Note that for the neo-
ookean PCC subjected to a fixed positive tensile loading, the BG central

requency increases with an increase in 𝜙0 . For example, for PCC under
he action of 𝐹 𝑁 = 1 , the BG central frequency increases from 272.5 Hz
t 𝜙0 = 0 . 35 to 280.4 Hz at 𝜙0 = 0 . 65 . This is due to the fact that for a
maller 𝜙0 , the thinner sub-cylinder 2 occupies more in the unit cell. In
he neo-Hookean PCC with smaller 𝜙0 the unit cell elongates more, thus
ncreasing the overall geometric size of the structure (recall Fig. 3 (b)).
oreover, according to [70] , the natural frequency of cylindrical struc-
ure decreases with an increase in the slenderness or length-to-radius
atio. Therefore, the BG central frequency shifts down towards a lower
requency for PCC with a smaller 𝜙0 . We note, however, that this trend
s reversed if a compressive axial force is applied ( 𝐹 𝑁 < 0 ); namely, the
econd BG central frequency decreases with an increase in 𝜙0 . 

Following [21] , the topological transition point can be obtained ana-
ytically in Appendix C . The dash-dotted line shown in Fig. 9 is referred
o as the topological phase curve for different axial force levels ranging
rom −0 . 3 to 5, which is determined from the formulae in Appendix C .

e see from Fig. 9 that all the topological transition points formed by
he close of the second BG are connected by the topological phase curve,
hich provides the frequencies of transmission peaks in Fig. 7 (a) and (b)

or axial forces 𝐹 𝑁 = 0 and 1. Moreover, the topological phase curve
ivides the topological phase diagram into two regions with different
opological properties, the BG signs of which are indicated in Fig. 9 . Ac-
ording to the topological phase diagram, we can design conveniently
unable topological interface states in a soft PCC. For example, we can
onstruct a topological waveguide composed of two types of PCCs with

0 = 0 . 35 and 0.65. As the axial force 𝐹 𝑁 increases from 0 to 2, the fre-
uency of topological interface state is tuned from 355 Hz to 236.3 Hz. It
hould be emphasized that if the BG has no common frequency range for
he chosen geometric size and axial force, there will be no topological
nterface state. 

Thus, the band structure and topological interface state can be ac-
ively tuned towards a lower frequency by applying the axial force in
he neo-Hookean waveguide. Its PCC elements should be properly se-
ected to have different topological properties, so that the existence of
ow-frequency tunable topological interface states is guaranteed. 

.3. Influence of the strain-stiffening effect 

Here, we consider a PCC made out of nonlinear material with a
trong strain-stiffening behavior. In particular, we employ the Gent ma-
erial model and analyze the stiffening effect on the tunable topolog-
cal interface states. When the axial force is not large enough (e.g.,
 𝑁 ≤ 1 . 25 ), the band structure and transmission behavior of the Gent
odel resemble those of the neo-Hookean model (recall Figs. 4 and 6 )



Y. Chen, B. Wu, J. Li et al. International Journal of Mechanical Sciences 191 (2021) 106098 

Fig. 10. (a)–(c) The band structures of longitudinal waves in the Gent PCC ( 𝐽 𝑚 = 20 ) for the axial force 𝐹 𝑁 = 2 and three initial length fractions 𝜙0 . The Zak phase is 
marked in magenta on the corresponding bulk band. The yellow and green stripes denote the second BG signs with 𝜍 > 0 and 𝜍 < 0, respectively. (d) The transmission 
spectrum of a finite Gent PCC consisting of 10 identical S2 unit cells ( 𝜙0 = 0 . 65 ) for 𝐹 𝑁 = 2 . (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 11. (a) The transmssion spectrum of a mixed finite waveguide consisting of 5 S1 unit cells and 5 S2 unit cells at axial force 𝐹 𝑁 = 2 for the Gent model ( 𝐽 𝑚 = 20 ). 
(b) The absolute value |𝑤 ( 𝑧 ) | of displacement field of the mixed finite waveguide as a function of the normalized axial coordinate 𝑧 ∗ = 𝑧 ∕ 𝑙 at the peak frequency 
271.7 Hz. 
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ince the hyperelastic material has not reached the stiffening stage (see
ig. 3 ) for the given locking parameter 𝐽 𝑚 = 20 . Therefore, in Fig. 10 , we
isplay the topological transition of band structures and the transmis-
ion spectrum for a large axial force 𝐹 𝑁 = 2 . In Fig. 10 (a) and (c), the
alculated Zak phase 0 or 𝜋 is indicated on the related bulk band and the
econd BGs are marked by yellow ( 𝜍 > 0) and green ( 𝜍 < 0) stripes with
ifferent topological properties. Similar to the previous observations in
he neo-Hookean PCC (recall Fig. 4 ), the band inversion can be obtained
or the Gent PCC. Here, the second BG closes as 𝜙0 increases from 0.35
o 0.494, and it reopens with a further increase in 𝜙0 . Other illustra-
ions are not repeated for brevity. Nevertheless, in view of the triggered
train-stiffening effect, the position of the second BG for the Gent PCC
s higher than that of the neo-Hookean PCC for 𝐹 𝑁 > 1 . 25 . Particularly,
or the S1-configuration PCC subjected to the axial force 𝐹 𝑁 = 2 , the
requency limits of the second BG vary from (225 Hz, 254 Hz) for the
eo-Hookean model to (256 Hz, 286 Hz) for the Gent model. 

Next, we examine the wave characteristics of a mixed Gent PCC
aveguide subjected to the axial force 𝐹 𝑁 = 2 . Fig. 11 (a) demonstrates

he transmission spectrum of the waveguide consisting of 5 S1-type unit
ells ( 𝜙0 = 0 . 35 ) and 5 S2-type unit cells ( 𝜙0 = 0 . 65 ). The transmission
pectrum is calculated with the help of Eq. (51) . The transmission peak
merges in the second overlapped BG, with the peak frequency 271.7 Hz
or this case (see Fig. 11 (a)). The corresponding displacement field dis-
ribution at 271.7 Hz is shown in Fig. 11 (b). It is confirmed that the
isplacement is mainly confined in vicinity of the interface (with the
mplitude nearly 6 times over the input signal) and attenuates rapidly
owards the ends of the hyperelastic waveguide. 
To further explore the influence of strain-stiffening effect on the
opological interface state, we plot the corresponding topological phase
iagram in Fig. 12 . The results are depicted for the Gent PCC ( 𝐽 𝑚 = 20 )
ith four topological transition variations at 𝐹 𝑁 = 0 , 1, 2 and 4. The

opological phase curve calculated according to the theoretical formulae
see Appendix C ) is also included in Fig. 12 . The topological phase curve
nd the band inversion curves for the Gent PCC are almost the same as
hose for the corresponding neo-Hookean PCC (compare with Fig. 9 )
or the range of loadings not reaching the stiffening stage (i.e., when
 𝑁 ≤ 1 . 25 ). In particular, the frequency of the topological transition
oint continuously decreases with an increase in axial force level in the
ange of 𝐹 𝑁 ≤ 1 . 25 . However, a further increase in the axial force leads
o different variation trend in the topological transition point frequency:
fter decreasing to the lowest value 270.8 Hz at around 𝐹 𝑁 = 1 . 8 , the
requency starts to increase conversely and rapidly (see Fig. 12 ). This
s a unique feature of the nonlinear PCC with a strong strain-stiffening
ffect. 

Remarkably, the tensile force – if large enough – can cause a re-
erse trend in the second BG central frequency versus 𝜙0 in Gent PCC.
or example, in the Gent PCC subjected to 𝐹 𝑁 = 2 , the BG central fre-
uency decreases with an increase in 𝜙0 . This reverse trend is even more
rominent for the Gent PCC subjected to 𝐹 𝑁 = 4 (see the corresponding
urves in Fig. 12 ). Note that this BG central frequency trend reversion
s not observed in the neo-Hookean PCC (see Fig. 9 ). This is again an
mportant manifestation of the strain-stiffening effect that begins to pre-
ail over the deformation-induced geometric change upon achieving a
ertain level of the applied tensile force. 
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Fig. 12. Topological phase diagram of a Gent PCC ( 𝐽 𝑚 = 20 ). The four groups 
of solid curves represent the two edge-state frequencies of the second BG as 
functions of 𝜙0 for four different axial forces. The topological transition points 
are located on the topological phase curve (dash-dotted curve), and the arrow 

denotes the direction in which the axial force increases. The yellow and green 
filled regions indicate the BG signs with 𝜍 > 0 and 𝜍 < 0 respectively, which 
are labelled at two sides of the topological phase curve. The violet region marks 
the morphologies for which the topological property switches depending on the 
axial force. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Interestingly, we find from Fig. 12 that the length fraction 𝜙0 corre-
ponding to the topological transition point has a more obvious variation
ith the increasing axial force applied to the Gent PCC, compared with

he neo-Hookean case (see Fig. 9 ). This phenomenon combined with the
requency non-monotonous change results in a peculiar state for mor-
hologies enclosed by the topological phase curve. In this morphology
omain (denoted by the violet region in Fig. 12 ), the BG sign can switch
epending on the applied axial force. For example, for 𝐹 𝑁 = 1 , this spe-
ial area is on the left of the topological phase curve with 𝜍 > 0, while
or 𝐹 𝑁 = 4 , the violet area turns to be on the right of the topological
hase curve with 𝜍 < 0. Therefore, for 𝐹 𝑁 ≤ 1 . 8 , 𝜍 > 0; but 𝜍 < 0 for
 𝑁 > 1 . 8 . 

In addition, when the axial force exceeds 𝐹 𝑁 = 4 , the BG frequency
anges for PCC elements (whose unit-cell length fractions 𝜙0 take val-
es from different sides of the topological transition point) do not over-
ap (see Fig. 12 ), and hence the topological interface state does not ex-
st for any combination of the geometric parameters. For example, for
ent PCC subjected to the axial force 𝐹 𝑁 = 4 . 1 , the topological transi-

ion point is 𝜙0 = 0 . 444 and the corresponding frequency is 333.8 Hz. In
icinity of this topological transition point, the BG frequency limits for

0 = 0 . 44 are (333.8 Hz, 334.4 Hz), while those for 𝜙0 = 0 . 45 become
332.9 Hz, 333.8 Hz); thus, there is no overlapped BG frequency. 

Furthermore, for a mixed finite Gent PCC waveguide composed of 5
1-type unit cells ( 𝜙0 = 0 . 35 ) and 5 S2-type unit cells ( 𝜙0 = 0 . 65 ), the
opological interface state exists until the axial force reaches the level
 𝑁 ≈ 3 . 8 . When the applied axial force exceeds this level, the frequency

imits of the second BG have no overlapped part, and although the topo-
ogical properties of the two PCC elements are different, the topological
nterface state cannot be activated. 

. Conclusions 

We studied a class of 1D soft PCs possessing the topologically pro-
ected interface states. The large-deformation ability of soft waveguides
ombined with the material stiffening effect is exploited to tune the
opologically protected states. In particular, we illustrate this concept
ased on the example of the 1D waveguide composed of two types of
oft PCCs with different topological characteristics. Here, the topolog-
cal interface state for longitudinal waves is tunable by application of
n external axial force. First, we utilized the nonlinear elasticity theory
ombined with the assumption of uniform deformations to determine
he nonlinear static response of PCCs under the action of an axial force.
ext, the dispersion relation for small-amplitude longitudinal waves,

he unit-cell mode shape as well as the displacement field distribution
nd signal transmission coefficient of the finite-size cylindrical waveg-
ide were derived analytically. Finally, the theoretical predictions along
ith the numerical calculations were analyzed to elucidate how the ex-

ernal loading and the material stiffening affect the frequency tunability
nd the existence of topological interface states. Our main observations
re summarized below: 

1) The BG inversion process (i.e., the BG open, close and reopen pro-
cess) accompanied by the topological phase transition can be real-
ized by altering the initial PCC geometric parameter and be tuned
by adjusting the axial force. 

2) For the neo-Hookean waveguides, the axial tensile force lowers
monotonically the frequency of topological interface states owing
to the generated elongation in the whole system. 

3) For the Gent waveguides, the frequency of topological interface
states varies with the axial force in a non-monotonous way; this is
a result of the competition between the geometric change and the
material strain-stiffening effect. 

4) In reference to the topological phase diagram, the tunable position
and existence condition of topological interface states are clearly
demonstrated when changing the axial force in a properly pre-
designed system. 

Our results – based on the example of 1D soft PCC waveguides –
ndicate the possibility to realize on-demand tunability of the topolog-
cal interface states. The present study provides guidelines for further
esign of actively tunable topological wave devices operating at the
ow-frequency range. These systems may find a wide range of poten-
ial applications such as tunable energy harvesters, low-pass filters and
igh-sensitivity biomedical detectors. 

It should be emphasized that the tunable topological interface or
dge states in 2D metamaterial systems could be achieved by means
f the electromechanical biasing fields [17,55] , which is an interesting
opic to be addressed for further applications in the future. 
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ppendix A. Calculation of the Zak phase 

In this appendix, we will employ the method developed by Xiao
t al. [12] to calculate the Zak phase for the j th bulk band of the
hononic cylinder, which is defined in Eq. (56) . Specifically, we se-
ect P points to equally divide the first Brillouin zone from 𝑞 = − 𝜋∕ 𝑙
o 𝑞 = 𝜋∕ 𝑙. In the limit of P → ∞, we have Δ𝑞 = 𝑞 𝑖 +1 − 𝑞 𝑖 → 0 , which
eads to 𝜕 𝑞 𝑊 𝑗,𝑞 = ( 𝑊 𝑗,𝑞+Δ𝑞 − 𝑊 𝑗,𝑞 )∕Δ𝑞. Thus, Eq. (56) for the Zak phase
an be equivalently expressed as 

Zak 
𝑗 

= ∫
𝜋∕ 𝑙 

− 𝜋∕ 𝑙 

⎡ ⎢ ⎢ ⎣ i 
Δ𝑞 

⎛ ⎜ ⎜ ⎝ ∫
unit cell 

1 
2 𝜌𝑐 2 

d 𝐫 dz 𝑊 

∗ 
𝑗,𝑞 
𝑊 𝑗,𝑞+Δ𝑞 − 1 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ d 𝑞, (A.1)

here the physical meaning of the related quantities has been de-
ned in Eq. (56) and the periodic in-cell part W j,q of the Bloch dis-
lacement eigenfunction is normalized with the orthogonal relationship

unit cell d 𝐫 dz (1∕ 2 𝜌𝑐 
2 ) |||𝑊 𝑗,𝑞 ( 𝑧, 𝐫 ) 

|||2 = 1 . 
By discretizing q and noting the relation ln ( 𝑥 − 1 + 1 ) → 𝑥 − 1 in the

imit of x → 1, Eq. (A.1) with Δq → 0 can be rewritten in a discretized
orm as 

Zak 
𝑗 

= 

𝑃 ∑
𝑖 =1 

⎡ ⎢ ⎢ ⎣ i 
Δ𝑞 𝑖 

ln 
⎛ ⎜ ⎜ ⎝ ∫
unit cell 

1 
2 𝜌𝑐 2 

d 𝐫 dz 𝑊 

∗ 
𝑗,𝑞 𝑖 
𝑊 𝑗,𝑞 𝑖 +Δ𝑞 𝑖 

⎞ ⎟ ⎟ ⎠ 
(
𝑞 𝑖 +1 − 𝑞 𝑖 

)⎤ ⎥ ⎥ ⎦ , (A.2)

hich, after some simplifications, yields 

Zak 
𝑗 

= − Im 

𝑁 ∑
𝑖 =1 

ln 
⎡ ⎢ ⎢ ⎣ ∫
unit cell 

1 
2 𝜌𝑐 2 

d 𝐫 dz 𝑊 

∗ 
𝑗,𝑞 𝑖 
𝑊 𝑗,𝑞 𝑖 +1 

⎤ ⎥ ⎥ ⎦ . (A.3)

Consequently, after obtaining the Bloch displacement distribution
 j, q of the deformed unit cell in Section 4.3 , we can exploit the relation
 𝑗,𝑞 = 𝑤 𝑗,𝑞 𝑒 

− i 𝑞𝑧 and Eq. (A.3) to calculate the Zak phase numerically. 

ppendix B. FE simulations 

To validate our theoretical model, numerical simulations are con-
ucted by using Abaqus, an FE analysis and solver software. The sim-
lations to calculate the transmission spectra are implemented for the
nite PCC structure, including its geometric parameters and material
roperties of silicon rubber (Zhermarck Elite Double 32) [39] . Here, we
dopt the neo-Hookean hyperelastic model and establish an axisymmet-
ic structural model with a fine mesh of 8-node hybrid elements (i.e.,
lement type CAX8H in Abaqus). 

In order to understand the longitudinal wave propagation behaviors
n a pre-deformed structure, the static analysis (i.e., pre-stretching the
tructure) and frequency domain analysis (i.e., wave propagation in the
tructure) are performed consecutively in Abaqus: 

Step 1 (Static analysis) : The boundary conditions in accordance
ith the theoretical model are applied to both sides of the structure to

imulate its extension procedure. The resultant displacement and stress
elds in the deformed structure are recorded and saved. 

Step 2 (Frequency domain analysis) : The displacement and stress
elds calculated in the static analysis are imported to the structural
odel as the initial deformed state. For calculating the transmission

pectra, a sinusoidal axial-displacement excitation over a frequency
ange of interest is imposed to one input side of the finite-size PCC
tructure and its average displacement amplitude is calculated as the
nput signal A input . Additionally, the average displacement amplitude at
utput side is collected as the output signal A output . Thus, the attenua-
ion intensity T (dB) is defined as 𝑇 

(
dB 

)
= 20 log 

(
𝐴 output ∕ 𝐴 input 

)
, which

escribes the elastic wave transmission behavior. 

ppendix C. Conditions for the band crossing 

Following the argument of [21] for 1D photonic crystals, this ap-
endix will provide the conditions for two bands to cross for a soft PCC
ubjected to an axial force. 
The dispersion relation of incremental longitudinal waves in a de-
ormed soft PCC is given in Eq. (36) with 𝑘 ( 𝑝 ) = 𝜔 ∕ 𝑐 ( 𝑝 ) ( 𝑝 = 1 , 2) . If
in ( k (1) l (1) ) and sin ( k (2) l (2) ) in Eq. (36) vanish simultaneously, 𝑘 ( 1 ) 𝑙 ( 1 ) =
𝑚 1 𝜋 and 𝑘 ( 2 ) 𝑙 ( 2 ) = 𝛾𝑚 2 𝜋 hold with m 1 , m 2 and 𝛾 being positive integers,
hich results in the frequency at the band crossing point as 

 𝑐 = 𝛾𝑚 1 𝜋𝑐 
( 1 ) ∕ 𝑙 ( 1 ) = 𝛾𝑚 2 𝜋𝑐 

( 2 ) ∕ 𝑙 ( 2 ) . (C.1)

ow we define a dimensionless parameter 𝛼 as 

≡ 𝑙 ( 1 ) 𝑐 ( 2 ) 
𝑙 ( 2 ) 𝑐 ( 1 ) 

. (C.2) 

t can be proved [21] from Eqs. (C.1) and (C.2) that if 𝛼 = 𝑚 1 ∕ 𝑚 2 is a
ational number , the pass bands 𝛾( 𝑚 1 + 𝑚 2 ) and 𝛾( 𝑚 1 + 𝑚 2 ) + 1 cross each
ther at the frequency 𝜔 c given in Eq. (C.1) , which also yields 

 𝑐 = 

𝛾
(
𝑚 1 + 𝑚 2 

)
𝜋

𝑙 ( 1 ) ∕ 𝑐 ( 1 ) + 𝑙 ( 2 ) ∕ 𝑐 ( 2 ) 
. (C.3)

At 𝜔 c , we have cos 
(
𝑘 ( 1 ) 𝑙 ( 1 ) 

)
= (−1) 𝛾𝑚 1 and cos 

(
𝑘 ( 2 ) 𝑙 ( 2 ) 

)
= (−1) 𝛾𝑚 2 .

hus the dispersion relation (36) becomes 

os ( 𝑞𝑙 ) = ( −1 ) 𝛾( 𝑚 1 + 𝑚 2 ) . (C.4)

herefore, the 𝛾( 𝑚 1 + 𝑚 2 ) th BG will close either at 𝑞 = 0 when 𝛾( 𝑚 1 + 𝑚 2 )
s even, or at 𝑞 = ± 𝜋∕ 𝑙 for the odd 𝛾( 𝑚 1 + 𝑚 2 ) . It can be easily verified
21] that for those frequencies in vicinity of 𝜔 c at the crossing points,
he two bands have linear dispersion such that a Dirac cone is formed
see Fig. 4 (b) and (e) for example). 

In this work, we focus on the second BG. In order to make the second
G close, we have 𝛾 = 𝑚 1 = 𝑚 2 = 1 and hence 𝛼 = 1 is a rational number.
e can take two steps to obtain the position of the band crossing point

or topological transition point). First, for a given axial force F N , the
echanical biasing field state and the parameters c ( p ) are determined.

econd, using the relation 𝛼 = 1 and the condition that the length of the
ndeformed unit cell is kept fixed (i.e., 𝐿 = 𝐿 (1) + 𝐿 (2) ), we can obtain
he corresponding geometric sizes L (1) and L (2) (or initial length fraction

0 = 𝐿 (1) ∕ 𝐿 ) and then calculate the frequency 𝜔 c of topological transi-
ion points from Eq. (C.3) . 
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