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Topological phononic crystals have attracted intensive attention due to their peculiar topologically protected
interface or edge states. Their operating frequency, however, is generally fixed once designed and fabricated.
Here, we propose to overcome this limitation by utilizing soft topological phononic crystals. In particular, we
design a simple one-dimensional periodic system of soft cylindrical waveguides to realize mechanically tunable
topological interface states for longitudinal waves. To this end, we employ the nonlinear elasticity theory and its
linearized incremental version to fully account for both geometric and material nonlinearities of the system. We
derive the dispersion relation for small-amplitude longitudinal motions superimposed on the finitely deformed
state. In addition, our analytical results provide information about the corresponding Bloch wave modes, dis-
placement field distributions, and signal transmission coefficients for finite cylindrical waveguides with identical
or various unit-cell topologies. Our numerical results illustrate the low-frequency topological interface state oc-
curring at the interface between two topologically distinct soft phononic cylinders. Moreover, we show that the
corresponding frequency in the overlapped band gap can be continuously adjusted by an external force. This
analytical result is also validated by the finite element simulations. Finally, we provide the topological phase
diagrams to demonstrate the tunable position and existence condition of the topological interface states when
tuning the external loading. The low-frequency tunable topological interface states with remarkable field en-
hancement may find a wide range of potential applications such as tunable energy harvesters, low-pass filters
and high-sensitivity detectors for biomedical applications.

1. Introduction

Phononic crystals (PCs) have attracted intensive attention thanks
to their outstanding properties in the manipulation of acoustic/elastic
waves. The intrinsically artificial periodic composites can give rise to
the wave band gap (BG) - a special state, where acoustic/elastic waves
are prohibited within a certain frequency range. This prominent char-
acteristic of PCs can be attributed to the Bragg scattering [1], local res-
onance [2] and inertial amplification [3]. The unique BG character and
strong dispersive properties in passbands may produce anomalous wave
behaviors such as acoustic/elastic wave filtering, focusing, directional
propagation, negative refraction and cloaking [4-8].

Recently, the topic of topological acoustic or mechanical PCs
has emerged to offer exciting opportunities for designing materials
with broadband one-way transport properties. These peculiar ma-
terial systems can generate topologically protected unidirectional,
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backscattering-immune interface or edge states [9,10]. The theoretical
development has motivated some experimental efforts in realization of
the topological PCs [11-18], indicating the feasibility of the concept for
potential applications in wave filters, energy harvesters, acoustic recti-
fiers, vibration isolators, acoustic imaging, and bio-sensors. The topolog-
ical characteristics of PC band structures can be characterized by their
topological invariants such as the Berry phase [19] for two-dimensional
(2D) systems or Zak phase [20] for one-dimensional (1D) media. Since
topological PCs possess the global properties of band structures, their
nontrivial topological states are extremely robust to the defects and
boundary effects [21,22].

Topological PCs can be categorized into the following three classes.
The first approach — an analogue of the quantum Hall effect — is to break
the time-reversal symmetry of the systems and realize the topologically
protected edge states through introducing gyroscopic inertial effects
[22], external flow fields [23] or time-modulated materials [24]. This
type of topological PCs — referred to as the acoustic/mechanical Chern
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insulators — has been experimentally verified by Ding et al. [18]. This
method, however, is still challenging to be applied in real-life situations,
due to the complicated implementation of external uniform motion in
the lattice and the inherent dynamic instabilities and noise in a moving
medium. The second strategy exploits the pseudospin-dependent edge
states, and breaks the spatial-inversion symmetry of the time-reversal
invariant topological PCs, also known as quantum spin Hall topological
insulators [25-27]. These topological PCs are intrinsically based on the
spin-orbit coupling mechanism — an analogue to the quantum spin Hall
effect. In principle, the quantum spin Hall topological insulators have a
double Dirac degeneracy in band structures and the topological phase
inversion appears at the double Dirac point, where the pseudospin state
forms the topological edge state [28]. Depending on the appropriate po-
larization excitation, the quantum spin Hall topological insulators sup-
port robust forward or backward edge states due to their time-reversal
symmetry [15,29]. The last method is based on the quantum valley
Hall effect, which provides a pair of valley vortex states with oppo-
site chirality [14,30-32]. The quantum valley Hall PCs also possess the
topologically protected one-way edge states along the interface of two
domains with different valley vortex states. A systematic comparison
between acoustic topological states based on valley Hall and quantum
spin Hall effects can be found in the recent work by Deng et al. [28].
In the 1D phononic systems, a combination of PCs with different topo-
logical properties may result in topological interface states within the
overlapped BGs; see, for example, the observations and predictions in
discrete spring-mass [33], water wave [34], acoustic [12] and elastic
[16] systems. For more detailed discussion of the recent progress in the
topological acoustic/mechanical systems, interested readers are referred
to the comprehensive review articles by Zhang et al. [9] and Ma et al.
[10].

A major limitation of passive topological PCs is that their operat-
ing frequency range of topological states is fixed and extremely nar-
row (usually corresponding to a single frequency of transmission peak
in the BG). To realize a wider operating frequency range of topologi-
cally protected states, several methods have been proposed to design
actively tunable topological PCs. By adjusting the airflow velocity field
and unit-cell geometric size, the time-reversal symmetry of a 2D PC was
broken to tune the BG topology and realize a tunable topological acous-
tic Chern insulator [23]. The intelligent magnetoelastic materials were
introduced by Feng et al. [35] into the topological system to realize mag-
netically tunable topological interface states for Lamb waves in 1D PC
slabs. The periodic electric boundary conditions were exploited by Zhou
et al. [36] to generate actively tunable topologically protected interface
mode in a 1D piezoelectric rod system. Wang et al. [37] investigated the
topological interface mode in a 1D granular PC composed of two sub-
lattices, which can be tuned by varying the pre-compression between
the spheres. Although all the above-mentioned works demonstrate the
tunability of topologically protected edge/interface states, they operate
in the high-frequency scenarios.

Soft PCs offer both the low-frequency operating ranges and high
tunability by external stimuli such as pre-stretch [38-44], electric [45-
51] or magnetic field [52]. These abilities motivate the exploration of
low-frequency tunable topological states in soft PCs. By changing the fill-
ing ratio and tuning the mechanical load, the dynamically tunable topo-
logical interface state was experimentally observed by Li et al. [17] ina
circular-hole soft PC plate made of two domains with different topologi-
cal properties. The design of a 2D quantum valley Hall PC was presented
by Liu and Semperlotti [53], where the topological states at the domain
interface are triggered by geometric nonlinear effects due to the applied
strain. These two works, however, neglect changes in material stiffness
induced by the pre-stretch. The influence of the essential material non-
linearity for soft matter was considered by Nguyen et al. [54] in the
context of soft topological PCs. They designed a 2D quantum valley Hall
PC consisting of soft annular cylinders embedded in an elastic matrix,
and utilized the pre-stretch and inflation to actively tune the frequen-
cies of topologically protected edge states. Zhou et al. [55] designed a
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soft membrane-type PC for the voltage-controlled quantum valley Hall
effect in a dielectric elastomeric membrane with sprayed metallic par-
ticles. Recently, Huang et al. [56] examined a 1D soft periodic system
composed of topologically different plates and realized tunable topolog-
ical interface states by applying deformation. Nevertheless, the geomet-
ric structures and loading ways in the aforementioned soft topological
PCs are relatively complex, and it is not easy to combine two differently
deformed domains while keeping a smooth interface.

It is well known that the Bragg band gaps (BGs) are usually pro-
duced by the material periodicity, geometric periodicity, and periodic
boundary conditions [4]. With appropriate geometric and/or material
design of metamaterials, their wave propagation and attenuation behav-
iors (such as transmission and reflection) could be optimized [57-60].
Inspired by previous works [12,16], here we design a 1D soft phononic
crystal cylinder (PCC) composed of step-wise sub-cylinders to realize
low-frequency tunable topological interface states under the applica-
tion of mechanical load. We fully account for both the geometric and
material nonlinearities in our theoretical and numerical analyses. The
proposed soft topological PCC is a single-phase material structure allow-
ing to induce different deformation states in its base elements while pre-
serving a smooth interface between the base elements. Due to the low
stiffness of soft materials, their operating frequency range is much lower
than that of hard materials with the same structure. We focus on (i) tun-
ability of the topological interface states (in the low-frequency range) by
an applied axial force, and (ii) influence of the strain-stiffening effect on
the tunability and existence of the topological interface states. To this
end, we derive analytically the dispersion relations and acoustic char-
acteristics for small-amplitude longitudinal waves propagating in the
finitely deformed PCC. This information is complemented by our nu-
merical calculations including finite element (FE) simulations, elucidat-
ing the relations between the morphology, applied loading and material
nonlinearity effects on the band structures, transmission characteristics
and topological phase diagrams.

This paper is organized as follows. The theoretical background on
nonlinear elasticity theory and its associated incremental theory [61] is
summarized in Section 2. The nonlinear static response of the pro-
posed soft PCC with alternating cross-sections is analyzed in Section 3.
Section 4 describes the derivations of the dispersion relation, trans-
mission coefficient and displacement field of a finite PCC waveguide
with various periodic unit cells. Numerical calculations are described
in Section 5. For a mixed finite neo-Hookean PCC waveguide, the fre-
quency of topological interface states is lowered monotonically by the
increasing axial force. However, for a Gent PCC waveguide, the ax-
ial force affects the topological interface state frequency in a non-
monotonous way that an increase in the axial force leads to the con-
tinuous decrease of frequency to a minimum value, and then the fre-
quency is increased reversely by a further increase of the axial force.
Section 6 concludes the work with a summary and discussion. Some
mathematical derivations and FE simulation procedures are provided in
Appendix A-Appendix C.

2. Theoretical background
2.1. Nonlinear elasticity

We consider a deformable continuous body that occupies the unde-
formed reference configuration 5, in the Euclidian space with the bound-
ary 0B, and the outward unit normal N. An arbitrary material point
labelled as X in the undeformed configuration is identified by the posi-
tion vector X. Subjected to a mechanical loading, the body deforms and
moves to the deformed or current configuration /3, with the boundary 03,
and the outward unit normal n,, such that the point X occupies a new
position x = y(X, 1) at time t in /3,, where an invertible vector function
x is defined for all points in B,. The deformation gradient tensor is de-
fined as F = dx/0X = Grady, where ‘Grad’ is the gradient operator with
respect to B,. The components of the deformation gradient tensor are
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F,, = 0x;/0X,, where Roman and Greek indices are associated with B,
and B,, respectively. The local measure of the volume change is denoted
by J =detF > 0.

In the absence of body force, the equilibrium equations can be writ-
ten in Eulerian and Lagrangian forms, respectively, as

divtc =0 and DivT =0, (1

where t = J~!FT is the Cauchy stress tensor and T is the nominal stress
tensor. Here ‘div’ and ‘Div’ denote the divergence operators relative to 3,
and B,, respectively. Note that the nominal stress tensor is the transpose
of the first Piola-Kirchhoff stress tensor and that both of them are non-
symmetric two-point tensors like the deformation gradient tensor. In
index notation, the equilibrium Eq. (1) read

7;,=0 and T,,=0, 2)

where the Einstein summation convention is used.

Consider a compressible hyperelastic material described in terms of
its strain energy density function Q(F) (per unit reference volume) such
that

0Q 0Q

T=— and =J'FEE 3
oF ’ oF @
or in index notation
0Q 4 0Q
T, = and 7, =J'F,, —, 4
ai 0F,-,1 le Jja aFia ( )

with the angular momentum conservation 7;; = 7;;.

Alternatively, the strain energy density function Q can be expressed
in terms of the principal stretches, i.e., Q = Q(4,, 4, 43) with J = 4, 4,45
[61]. Thus, referring to the principal axes of z, the corresponding prin-

cipal Cauchy stresses 7; (i = 1,2, 3) are expressed as
0Q(A1, 4y, 43)
i o, ’
The mechanical boundary conditions on 053, can be written in Eule-
rian form as

-1 . .
i A (no summation over i). (@)

n, = t°, 6)

where t? is the applied mechanical traction vector per unit area of d/5,.
2.2. Incremental motions superimposed on finitely deformed state

A time-dependent infinitesimal incremental motion x(X, ) is super-
imposed on a finitely deformed configuration B, (with the boundary
053, and the outward unit normal n). Here, the incremental quantities
are represented by a superposed dot. The incremental equation of mo-
tion in the updated Lagrangian form is

divl, = pu,,, (7

where T, = J~'FT is the push-forward counterpart of the Lagrangian
incremental stress tensor T, u = x(X, #) is the incremental displacement
vector, and p = p,J ! is the current mass density in /3,, with p, denoting
the mass density in the reference configuration 5,. The subscript 0 indi-
cates the resulting push-forward quantities and the subscript t following
a comma represents the material time derivative.

The linearized incremental constitutive law for a compressible hy-
perelastic material is

T, = A H, )

where H = gradu is the incremental displacement gradient tensor; ‘grad’
is the gradient operator with respect to /3,. The fourth-order instanta-
neous elasticity tensor .4 is represented in component form by

Aopigi = 7" FpaFyp Auipj = Aogipi ®

in which A indicates the referential elasticity tensor with its components
given by

92Q

Ayigi = ———,
WP OF,0F,

(10)
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Following [61] and referring to the principal axes of z, the non-zero
components of A, for compressible isotropic hyperelastic materials can
be expressed, in terms of the three principal stretches 4;, as

Agiij; = Aojjii = Jﬁl}”i}”jgij’

7iQi=A,Q;

T AL G # G A # A,
i 7

AO[j[jZJ_l (11)

1 S
E(JAOiiii_JAOiijj-")”iQi)’ (G#J, 4 =4,
AOijji = AOjiij = AOijij - Jﬁl/ligi = AOijij -7, (#))

where Q; = 9Q/04; and Q;; = 0°Q/04,04,;.
In the updated Lagrangian form, the incremental mechanical bound-
ary conditions, which are to be satisfied on 053, are written as

Tn =i, (12)

where the superscript ()T signifies the usual transpose of a tensor and f(’)‘
is the updated Lagrangian incremental mechanical traction vector per
unit area of 0/,

3. Nonlinear deformation of a soft PCC

Consider a single phase hyperelastic PCC structure with periodically
varying cross-sectional areas as shown in Fig. 1(a). Each unit cell has two
wider sub-cylinders 1 and 3 of length L1)/2 and inner radius R\, sand-

wiching a narrower sub-cylinder 2 of length L(® and inner radius Rgz).
Here and thereafter, the superscript ()® denotes the physical quanti-
ties of the sub-cylinder p (p = 1,2, 3). The wider sub-cylinders p = 1 and
3 have identical geometric sizes (i.e., Rgl) = RE)S) and LD = L®). In the
undeformed configuration, the unit-cell length is L = L™V + L® along
the Z direction. Note that the 1D PCC with inversion symmetry has two
inversion centers and without loss of generality, we assign the origin to
be at the center of the wider sub-cylinder (see Fig. 1). By varying the
initial length fraction of sub-cylinder 1 or 2, the Bragg BG could exhibit
the evolutionary process of open, close and reopen. The topological tran-
sition point where the BG closes is mechanically tunable, which is our
main goal and is shown in Section 5.

As shown in Fig. 1(b), under the application of tensile axial force, the
length of the deformed PCC becomes longer and its lateral size becomes
smaller, respectively, than those of the undeformed PCC. The length
fraction of the deformed sub-cylinder is different from that of the unde-
formed one. We note that, due to the geometric inhomogeneity, complex
local deformations can develop near the interfaces between the wider
and narrower sub-cylinders when subjected to an axial force Fy [43].
These local deformations, however, are only confined in small regions
in the vicinity of the interfaces and barely affect the response of topolog-
ical interface states in the low-frequency regime of interest here. There-
fore, the nonlinear deformation can be approximately assumed uniform
in the theoretical model. As we shall show, this assumption has been
validated by the FE simulations (see Section 5.2). The deformed con-
figurations of the soft PCC and its unit cell are shown in Fig. 1(b). The
uniform axisymmetric deformations can be described in two cylindrical
coordinate systems (R, ©, Z) and (r, 6, 2) as follows:

r=AR, 0=0, z=.1Z, (13)

where 4; and A5 are the principal stretches along the radial and axial
directions, respectively. Thus, the geometric sizes of each sub-cylinder
become

) _ 3 pp) ®» — ;@7 p
I —Al RO’ l”—A3 L'P, (14)
where /1(1” ) and Ag” ) represent the principal stretches of sub-cylinder p,

and rg’ ), 1M /2 =132 and I@ are the radius of sub-cylinder p and the
lengths of the wider and narrower sub-cylinders in the deformed state,
respectively. In addition, / = [V 4 [® is the length of the deformed unit
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(a) RA | o o Fig. 1. Schematic diagram of an infinite soft PCC composed of
Lz 1P L2 step-wise sub-cylinders and its unit cell along with related ge-
ometric size and cylindrical coordinates: (a) undeformed con-
7 figuration and (b) deformed configuration induced by an axial
- > force Fy.
L e 1
(n72)L (n—l)L nlL (n+1)L
¢ X A v z
Y Y Y
(n-1)th nth (n+1)th
unit cell unit cell  unit cell
A
(®) o e o
z
->
F’V F’V
R I B O
(n-2)! (n :1_)_1 ________ nl (n+1)1
N X X 7 z
Y Y Y
(n-1)th nth (nt+1)th
unit cell  unit cell unit cell
cell. Therefore, the deformation gradient tensor of sub-cylinder p is ex- have
pressed as F?) = diag[A(l”),ﬂ(lp),/lgp)], which will be determined by the F
initial boundary conditions on the lateral surface. ri”) = ré” ) = 0, rg” ) = 7]\; 17)
N

In order to analyze the longitudinal wave propagation in the soft
PCC, the compressible Gent material model [62] is adopted to charac-
terize the hyperelastic cylinder, which is described as

)
ud, Il -3 A H 2
Q(P)=_T’"1n<1— 5 —ulnJ® + 27T (J(p)—l) , (15)

m m

where y and A are the shear modulus and the first Lamé’s parame-
2 2
ter in the undeformed configuration, I f") = 2(/1(1")) + (/lgp )) denotes the

first strain invariant and J® = (/1(1"))2 Agp). The bulk modulus is then cal-
culated as K = A +2u/3. The parameter J,, is the dimensionless Gent
constant used to characterize the strain-stiffening effect of the PCC.
Recall that the compressible neo-Hookean model is recovered from
Eq. (15) when J,;; > oo. It should be emphasized that the material prop-
erties (i.e., u, A, K and J,,)) are the same for the three sub-cylinders, but
1 1(”) and J® are different because of various cross-sections.

In virtue of Egs. (5) and (15), we obtain the principal Cauchy stress
components for sub-cylinder p as

RO In (,1(1:))2 -1
1 2 J® Jm _ pr) +3 1

®»_ M [ I ((p) 2 LAY
W= L (AP) |+ (A= E (12 -1), (16)

+ <A— i-")(ﬂ’) -1),

m

m

Considering the axial force Fy applied along the z direction as well as
the traction-free boundary condition on the lateral surface r = rg’ ), we

where s® = z(r is the area of the deformed cross-section of sub-
cylinder p. Therefore, the nonlinear algebraic Egs. (16) and (17) can be
utilized to completely determine the principal stretch ratios /1(1") and Agp)

O
0 )
(A(ll) = /1(13) and /1(31) = A? )) once the axial force Fy is prescribed.

4. Analysis of incremental longitudinal wave propagation

After obtaining the nonlinear axisymmetric deformations in
Section 3, the solutions of the superimposed incremental longitudinal
waves in an initially deformed PCC are derived in Section 4.1. The trans-
fer matrix method [63] in conjunction with the Bloch-Floquet theorem
[64] is then employed in Section 4.2 to derive the dispersion relation of
incremental wave motions in an infinite PCC, which in turn determines
the displacement mode shape of unit cell in Section 4.3. Furthermore,
the transmission coefficient of a finite PCC with identical unit cells is
provided in Section 4.4. For a finite cylindrical waveguide consisting
of two types of PCCs with different unit cells, we derive its transmis-
sion coefficient and displacement distribution in Sections 4.5 and 4.6,
respectively.

4.1. Wave solutions of incremental motions

For each sub-cylinder p, the incremental constitutive law (8) for the
superimposed longitudinal waves can be expressed in component form
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as
) _ 4P ) ) ) ) »)
T011 - A01111H11 + A01122H22 + A01133H33 >
) _ 4P () () (P) [(2) (p)
T022 - A01122H11 + A02222 H22 + A02233 H33 > (18)
P _ 4@ (2] (2] () () ®)
T033 - A01133H11 + A02233H22 + 'A03333H33 >

where the non-zero components of the instantaneous elasticity tensor
A, for the compressible Gent model characterized by Eq. (15) may be
derived from Eq. (11) as

2 2
» » ”J'”(l(‘p)> 2(/1(“,)> H » 2u
A = = +—+J7 <A— —>
01111 02222 J(P)(J,,, _ I;") + 3) J, - Il(p) +3 Jw I
2
» ZMJ'"(AY)) 2u
- 0]
Afln = — 5t <A— T)(ZJ »-1),
,1“”(1 _1<p>+3) m
3 \Im T H
2ud /1(:’) 2
®» _ 4 _ m”3 H )
Aoz = Agzs = 2+<A__>(2Jp - 1).
(=17 +3) "
2 2
] (]
win(8) |2
1 m\”3 3 2 2u
g L +u+(JP) (A——) A (19)
03333 ) ) )
IOV g, —1P +3| g, -1V +3 In

As is well-accepted in the classical rod theory, the assumption of
1D stress state [47] is made in the following derivation, which results
in 77 = T%) = 0. As a result, utilizing Eq. (18), 5, we derive Hl(’f) and

011 022
Hé‘;) in terms of Hg‘? as
() (p)
[H%,h] =- [Pém] HY. 20)
Hy, P ’
where
) ®  _ 4 (»)
» _ 02222A01133 A01122A02233
=
) () )
AoriiAo ~ (Aonzz)
_ A([’) A(P) + A(P) A(P)
P _ 011227101133 011117702233 @
(0] ) )
A01111A02222 - (Aouzz)

Inserting Eq. (20) into Eq. (18)5 yields

F(p) _  qe) ()
Ty = Ay Hyg 22)
where AP = AP AP PP _ 4P pl) s the effective elastic

. 0 03333 77011337 1 022337 2 e >
stiffness. Thus, Eq. (22) is the reduced incremental constitutive relation

in the updated Lagrangian form.

Here, by introducing the incremental axial displacement w, we can
rewrite H ;‘3’) as H;g’) = dw”) /dz. Due to the postulation of 1D stress state
as well as the applied axial force, the incremental Eq. (7) of motion is
simplified, if ignoring the lateral inertial effect, as

@ _ (P,
T033,z =pPw,/ . 23)

Note that taking the lateral inertial effect into account will lead to the
Love rod theory [65], which exceeds the scope of the present study.
Substituting Eq. (22) into Eq. (23) and considering that Ag(” ) is constant
in each sub-cylinder p, we have
AW = P, 4
which is the incremental wave equation for the superimposed longitu-
dinal motions, where all physical fields depend on z and t only.
Consequently, for the harmonic time-dependency e™'*’ with » be-
ing the angular frequency, the incremental axial displacement in sub-
cylinder p of the nth unit cell (see Fig. 1(b)) can be written as

w?(z,1) = Eﬁlp )(z)e7! = (af,”)eik(p)(z"”) + bﬁlp)e‘ik(p)(z"”)>e‘i"”, (25)
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where Efl" )(z) is the displacement amplitude, 4 and b are the unde-
termined complex coefficients denoting the amplitudes of incident and

reflected waves, respectively, and k7 = w/c® (with ¢?) = \/Ag(” )/ p#))
represents the axial wave number in sub-cylinder p.

Owing to the difference in cross-sections for various sub-cylinders,
it is appropriate to choose the incremental axial force QE,” ) rather than
the incremental stress Tég;n to be continuous at the interfaces delimiting
the sub-cylinders. Inserting Eq. (25) into Eq. (22) and multiplying the
resultant expression by the deformed cross-sectional area leads to the
incremental axial force as

. —(p) i
0P (z.1) = sV (2)=0, (297, (26)
where
0V 2= isP kP AL [agmeik‘”(z—nl) — pPe kP | @7

is the axial force amplitude.

4.2. Dispersion relation for an infinite PCC

For simplicity, the state vector in sub-cylinder p of the nth unit cell
(see Fig. 1(b)) is defined as

S = [a@), pP]T. (28)

The state vectors are not independent of each other and can be con-
nected through the interfacial continuity conditions between different
sub-cylinders, which are expressed as

—(3) —(I)

—3) _— B ~
wil) = w?), 0, =0,, atz=(n- DI+ 102, 29)
—@ _—3) 5O _7® ~ |

w,=w,’, 0, =0, , atz=nl-ID/2.

Substituting Eqs. (25)-(28) into Eq. (29) and noting sV = s®, k(M =
k® and Ag(l) = ABG ), we rewrite the displacement and force continuity
conditions (29) as

1 1 & e—ikD1 kD1 o
[ -l ]S"’]= kM1 ik S

_ah(,a 2 o 2

ok (1024120 K (10 /241) o
_a ([0 2 (1 1) 2) n

. ik( (1( ) j2+1¢ )) _elk( )(K 72+ )

30
—ik(z)(/(l)/2+l(2)> ik(z)(l(])/2+1(2)) ( )
e e o

S,
2@ ik(2>(r(1)/2+1(2)) n

2@ —ik(2>(1(”/2+z<2))

0N 70 €
[ e,ik(z),(l)/z eik(Z),(l)/z X e,ik(l)lu)/z eik(l)[(l)/z o
S
k@D n G P zW Oy zD gy P
e 7o / 7@¢ 7@¢

where Z® = s(”)k(”)Ag(” ) with Z® = z®, Through some mathematical
manipulations, the transfer relation in Eq. (30) can be expressed as

@ _| N S |g® = ms®
sn_l_[ "o ]s;)=Ms§,>, G

where M is the 2 x 2 unit-cell transfer matrix that relates the state vector
in one sub-cylinder of a unit cell to that in the same sub-cylinder of the
adjacent unit cell, and its components are

. 2) eV
fi= ik [cos kD@ _ l1< Z + Z—) sin k(2)1(2>]’

2Nz T Zzo
1./ zL ZzON |
_ e _ 1L LT 2);2
fo= f3—21<Z(2) 70 sin k21,
_ @  ZO0
fy = ek [cos K21@ 4 %1(% + %) sin k(z)l@)]. (32)

Note that M is a unimodular matrix [63], and we have

Nifa—fafs=1 (33)
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Fig. 2. Schematic diagrams of (a) a finite soft PCC con-

a(i) sisting of N identical deformed unit cells and (b) a finite

‘ cylindrical waveguide made of two types of soft PCCs with
different deformed unit cells.
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The deformed PCC is still periodic along the axial direction. Based
on the Bloch-Floquet theorem [64], the relation of state vectors of the
same sub-cylinder in adjacent unit cells takes the form as follows:

SO = eitls? | (34)
where q is the Bloch wave number. It follows from Egs. (31) and

(34) that the state vector of the Bloch wave satisfies the following eigen-
value problem:

(M- e)s® =0, (35)

As a necessary condition for nontrivial solutions, the determinant of
the coefficient matrix of Eq. (35) vanishes, which yields the following
dispersion relation as

cos (gl) = cos (k(l)l(l)) cos (k(z)l(z))

L(ZD  ZON 0 i (k2@
_§<%+% sin (kKW1MY sin (k®1@). (36)
Thus, Eq. (36) determines the relation between q and w (i.e., the band
structure) for incremental longitudinal waves.

4.3. Displacement mode shape of the deformed unit cell for Bloch waves

To interpret the topological characteristics of band structures, it is
feasible to examine the symmetry properties of mode shapes of pass-
band/BG edge states [21]. Thus, we will provide the derivation of dis-
placement mode shapes in the deformed unit cell in this subsection. Cor-
responding to the eigenvalue e~'¢/, the eigenvector of the transfer matrix
for sub-cylinder 3 of the first unit cell is obtained from Eq. (35) as

2
§® = _ . 37
1 |: e—lql _ fl ] ( )

where S(13) = [a<13 ), b(13) 1T denotes the state vector made of the coefficients

of incident and reflected waves in sub-cylinder 3. Making use of the
interfacial continuity conditions (29),3 for the displacement in the first

unit cell, we have
ik (1D (2) ik (1D (2)
ik (1024 ) o (/ /241 ) o

ik (1D (2) ik (D (2) 1

ik (1 /241 ) i (1 /241 )
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e
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e-ik®@1D 2

ik 12
¢ 3)
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zM ik(l)l(l)/z
—-Z e
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(3%)

where S(ll) = [a(ll), b(ll)]T and S(lz) = [a(lz), b(lz)]T are the state vectors in sub-
cylinders 1 and 2 of the first unit cell.

Once the state vectors S(l” ) are determined from Egs. (37) and (38),
we obtain the displacement distributions in the deformed unit cell for
incremental Bloch waves as

— (1 (1

w(2) = aVek VD 4 Ve kD g < 2 < D2,

— (2 (2

B (2) = a@ ek VD 4 pDe kI Dy < 2 <12 41O,

W (2) = oD 4 pVe ik VED 0 41D < 2 <, (39)
4.4. Transmission coefficient of a finite PCC with identical unit cells

Now consider a finite PCC with N identical deformed unit cells ar-
ranged in the axial direction (see Fig. 2(a)). Inserting Eq. (28) into
Eq. (31), using Eq. (33) and performing matrix transfer N times, we
have

[ ag') ]=[ f4 _f2 :|N|: 05)3) :|EM|: 05)3) ] (40)
b(;) —-f3 f bg) ! bs) '

where ag3) and bg) are the amplitude coefficients of incident and re-
flected waves at the incident side, respectively, and M, is the global
transfer matrix.

To calculate the transmission spectrum in the finite hyperelastic
PCC, we set the reflection coefficient at the output side to be zero (i.e.,
bf,) = 0). As a result, the wave coefficient ratios bg) / ag ) and a(:[) / aéf) are
determined from Eq. (40) as

(), (3 _ _ My
by /4, T T My
41)
3), 3) Mo My
ay/a’ = M, — —2—2L
N/ 0 11 M)

where My; are the components of the global transfer matrix. The trans-

mission coefficient ty defined as the absolute square of a(f,) /aff) is then
calculated as

2
M3 My,

“42)
M,

2
3),,3)
Iy = |aN/aO | = |M111 -
4.5. Transmission coefficient of a finite waveguide with two types of
different unit cells

In order to investigate the existence of topological interface states,
the transmission behaviors of a finite cylindrical waveguide composed
of two types of different deformed unit cells (i.e., N unit cells of S1-type
and M unit cells of S2-type arranged consecutively in the axial direction)
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are considered in this subsection, and its schematic diagram is shown
in Fig. 2(b). Based on Eq. (40), the transfer relation of N unit cells of
S1-type is expressed as

o_| foa 2 NGB (gD
sv=| 5. } s =mVst, 43)
where MEI) is the transfer matrix of N unit cells of S1-type.

Analogous to Egs. (25) and (27), the axial displacement and force
amplitudes in the mth unit cell for the S2-type PCC are

wiil’)(z) — a;r(lp)eik/(”)(z’—ml’) + b:ﬁﬂ)efik’(”)(z’—m[’)’

a;im( 2) = izZ/® a:'(lp)eik’(")(z’—ml’) _ b;(lp)e—ik’(")(z’—ml’)]’ (44)

where z/ = z — NI —I’, (-)’ stands for the related parameters and physical
quantities of the S2-type unit cell, and m is chosen to vary from 0 to M —
1 for the purpose of illustration (see Fig. 2(b)). Referring to Egs. (31) and
(33), we can obtain the transfer relation between the state vectors for
sub-cylinder 3 in two adjacent S2-type unit cells as

S£§”=[ f]‘i/ _fj? ]Siﬁ)l- 45)
3 1

Similar to Eq. (43), the transfer relation of the last M — 1 unit cells of
S2-type is

3) o =1 Mg - g@e®
s = ) s\ =M®s/?, (46)
h _f3 f 1,

where Miz) indicates the transfer matrix for the last M — 1 S2-type unit
cells.

Furthermore, the interfacial continuity condition between the two
different PCCs and those in the first S2-type unit cell (m = 0) are written
as

—@) _ —() 7 _ =D _
wy =wy’, Oy =0, , at z = NI,

—r —12 —I(1) =12 1

wy) =w, 9, =0, . atz=Nl+1""/2,

—2 —(3 —I(2)  —=I3) 1

w =w, 0, =0, . atz=Nl+1'-1"V)2. @7

Using Egs. (25), (27) and (44), Eq. (47) becomes
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Through some mathematical manipulations, Eq. (48) is rewritten as
Sy 49)

where M;,, is the 2 x 2 interfacial transfer matrix between the two different PCCs and its components
are omitted here due to their redundancy.

Combining Egs. (43), (46) and (49), we obtain the final global trans-
fer relation of the finite cylindrical waveguide as

/G _
s =M,

3 _ (3)
Sp—1 = KSg. (50)

where K = M§2)M- M;l) is the 2 x 2 global transfer matrix. Provided

nt
that the reflection coefficient at the output side is equal to zero (i.e.,

3) . .. .
by~ = 0), the transmission coefficient ¢, 5, is calculated as
2 KKy |?
—|,/® (€)) 12821
Inem = |ay /4, | = 'Kn T Tky | (51)

where Kij are the components of K. Note that Eq. (51) has the same form
as Eq. (42).
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4.6. Displacement field of a finite waveguide with two types of different
unit cells

In this subsection, we will derive the incremental displacement dis-
tribution of a finite deformed waveguide consisting of N unit cells of
S1-type and M unit cells of S2-type. In view of the second formula of
Eq. (50) with b;Sll =0, we obtain the relation b(()3) /ag) = —K,,/Ky.
Without loss of generality, we set as) =1 and thus the state vector
composed of the complex amplitude coefficients at the input side (see
Fig. 2(b)) is

S = [1.—Ky, /Kp]". (52)

which, combined with the transfer relation (31) between two adjacent
unit cells, yields the state vector of sub-cylinder 3 in the nth S1-type unit
cell as

| fo N :|ns(3)’
" [ —f3 N 0

Utilizing the interfacial continuity conditions (29), 5 for the displace-

(n=1,2,...,N). (53)

ment in the nth S1-type unit cell, we obtain the state vectors Sff) and
S(,lz) of sub-cylinders 1 and 2 in terms of Sff).

Similarly, the state vector of sub-cylinder 3 in the mth S2-type unit
cell is written as

’ et
sif)z[ f}/ ff/z ]MSBG)’ m=0,1,...,M—1), (54)
—J3 1

where S;)G) can be achieved from Egs. (49) and (53). Analogous to the

S1-type unit cell, the state vectors S:,(,” and S:,Sz) of sub-cylinders 1 and 2
can be expressed by S:f ) when using the interfacial continuity conditions
for the S2-type unit cell.

After the state vectors S and S/ are determined, the incremental
axial displacements for the two different PCCs are calculated, respec-
tively, by Egs. (25) and (44),, which then determines the mode distri-

—

. ) () o1k o
butions w,”(z) and w, P(z) of the longitudinal waves propagating in the

finite waveguide consisting of two types of different deformed unit cells.

5. Results and discussion

This section will elucidate the tunable effects of mechanical load
on the topological interface state of longitudinal waves propagating in
the hyperelastic PCC characterized by the neo-Hookean and Gent mod-
els, respectively. As described in Section 3, the developed theoretical
model assumes a uniform nonlinear deformation when subjected to an
axial force and neglects the locally nonuniform deformation near the
interfaces of different sub-cylinders. Therefore, the effectiveness of this
hypothesis will be validated in Section 5.2.2 by performing the FE sim-
ulations based on the commercial software package ABAQUS.

In the following numerical calculations, the undeformed unit cell
shown in Fig. 1(a) has the radius Rg) =0.5 cm and the length L) =

¢y L for sub-cylinder 1, along with the corresponding parameters Rg) =
0.4 cm and L@ = (1 - ¢,)L for sub-cylinder 2, where the total length
is L = 10 cm and ¢, is the initial length fraction of sub-cylinder 1. Note
that the radii and the total lengths of the undeformed unit cells are the
same for the two base elements of the PCC waveguide, which ensures
a smooth interface between the two PCC elements after deformation.
In addition, the hyperelastic PCC is characterized by the commercial
product Zhermarck Elite Double 32 made of silicon rubber [39] with
its initial density, shear modulus and first Lamé’s parameter given as
po = 1040 kg/m3, u = 0.444 MPa and A = 22.2 MPa, respectively. The
dimensionless axial force is defined as F y, = Fy/uS®, where $@ is the
initial cross-sectional area of sub-cylinder 2. We define the normalized
Bloch wave number as g = g//2x ranging from —0.5 to 0.5 within the
first Brillouin zone [64]. The ordinary frequency f measured in Hz is
given by f = w/(2x).
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Fig. 3. Stretch ratios /1<]2) and /122) as functions of the normal-

4 4 ized axial force F  (a) and overall stretch ratio A versus the
neo-Hookean neo-Hookean initial length fraction ¢, for F =1, 2 and 4 (b) in the neo-
= = -Gent _ - - -Gent Hookean and Gent (J,, = 20) PCC with R(()]) / Rf)z’ =1.25 and
3t 20 - Fy=4 A/p = 50.
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5.1. Nonlinear static deformation

First, we examine the nonlinear axisymmetric deformation of the soft
PCC under the action of axial force. The analytical results are calculated
from the nonlinear algebraic Eqs. (16) and (17). Fig. 3(a) shows the
variations of axial (/1;2)) and radial (1(12)) stretch ratios of sub-cylinder

2 with the dimensionless axial force F  for both the neo-Hookean and
Gent (J,, = 20) models. Indeed, the results for the neo-Hookean model
are also recovered by those for the Gent model with a large enough value
of J,, (e.g., J,, = 2000). Clearly, when the axial tensile force is applied,
the length of sub-cylinder 2 increases and its radius shrinks owing to
the Poisson’s effect. The induced stretch variations of the two material
models overlap for fN < 1.25. Nevertheless, the difference between the
axial stretches of the neo-Hookean and Gent models becomes more ev-
ident with an increase in the axial force when F > 1.25. Specifically,
at the same axial force level, the Gent PCC with the strain-stiffening ef-
fect experiences a smaller deformation as compared to the neo-Hookean
PCC. Similar results can be obtained for sub-cylinder 1 in the unit cell.

Intuitively, the sub-cylinder with a smaller cross-section will be elon-
gated more than the counterpart with a larger one in the unit cell. For
completeness, we plot in Fig. 3(b) the dependence of the overall stretch
ratio, defined as

1 2
Aett = ¢oﬂ§ 4 (1- 4’0)’12 \

on the initial length fraction ¢, for sub-cylinder 1 with a larger cross-
section. The results are shown for the neo-Hookean and Gent PCCs sub-
jected to different axial force levels, namely, Fy = 1, 2 and 4. As ex-
pected, the PCC with a smaller ¢, (i.e., a smaller length fraction of sub-
cylinder 1 with a larger radius) develops larger deformations when sub-
jected to an identical axial force. As the axial force level is increased, this
variation trend strengthens irrespective of the material model. However,
this variation trend of the Gent PCC weakens for a large axial force acti-
vating the strain-stiffening effect, compared to that of the neo-Hookean
PCC (such as FN =4 in Fig. 3(b)). Note that we have selected the sub-
cylinders with a relatively small difference in their initial cross-sectional
areas to diminish the influence of the inhomogeneous deformation at the
interface, especially for a larger axial force F .

Next we will examine the tunable topological interface states prop-
agating in the neo-Hookean and Gent PCC waveguides separately, to
illustrate the effects of geometric and material nonlinearities.

(55)

5.2. Tunable topological interface states for the neo-Hookean model

5.2.1. Analysis of band structures and topological characteristics

Fig. 4 illustrates the band structures, described by Eq. (36), for lon-
gitudinal waves in the neo-Hookean PCC for different axial forces F y
and geometric parameters ¢. The results corresponding to Fy = 0 are
shown in Fig. 4(a)-(c) while those for F ~ = | are displayed in Fig. 4(d)-
(0. The unit cells with various ¢, represent different PCC configurations

and have the same undeformed length L. By varying the initial length
fraction ¢, of sub-cylinder 1, the second BG for Fy =0 closes at the
center (g = 0) of the first Brillouin zone with a Dirac cone formed by
accidental degeneracy (see Fig. 4(b)). The Dirac cone (where the two
bulk bands have linear dispersion) occurs at ¢, = 0.5 in the absence of
an axial force. The degeneracy is broken for any configuration such that
¢ # 0.5, and the Dirac cone will be opened to form the second BG. This
isillustrated, if we decrease ¢ from 0.5 to 0.35 and increase ¢, from 0.5
to 0.65, in Fig. 4(a) and (c) for the unloaded case. Therefore, the second
BG of the soft PCC without axial force exhibits the evolutionary process
of open, close and reopen when adjusting the geometric parameter ¢,.
Remarkably, as we shall show below, this transition corresponds to the
switching of topological characteristics. Similar BG inversion process is
observed for the axially loaded PCC as demonstrated in Fig. 4(d)-(f).
A topological transition point (i.e., the point for two bands to cross) is
also obtained in Fig. 4(e) for the case of fN = 1, where the Dirac cone
appears at a different length fraction ¢, ~ 0.524 due to the nonlinear
deformation of unit cell.

It should be pointed out that the topological characteristics of a BG
is completely determined by the summation of the Zak phases of all
the bulk bands below this gap [12,21,66]. Originating from electronic
systems [19,671, the so-called Zak phase is a special type of Berry phase,
which is a topological invariant characterizing the topological property
of bulk bands in 1D periodic systems. The Zak phase for the jth isolated
band of the 1D PCC system is defined as [12,16]

/1

dr dz I/Vj’fq(z, r)9,W; ,(z.r) |dg, (56)

022*:/ i /
J -

unit cell

/1 2pC2

where z is the deformed axial coordinate, r denotes the position in the
cross-section plane, [ is the length of the deformed unit cell, p and ¢ are
the current mass density and longitudinal wave velocity in the deformed
configuration, respectively, and W, ,(z.r) = w; ,(z, r)e 9% represents the
periodic in-cell part of the normalized Bloch displacement eigenfunction
w; q(z, r) in the jth band with Bloch wave number q. The factor 1/(2pc2)
is the weight function for the elastic system.

Thus, to distinguish the topological properties of different PCC con-
figurations, it is necessary to obtain the Zak phase value. Here, we
make use of a discretized form (A.3) to numerically calculate the Zak
phase (the detailed derivation of the numerical procedure is presented
in Appendix A). Given the inversion symmetry of the 1D PCC with re-
spect to its central cross-sectional plane, the calculated Zak phase value
is quantized at either 0 or = [19]. This quantization also holds true for
the PCC under the action of an external mechanical load. The calculated
Zak phase values are marked in magenta on the corresponding bands in
Fig. 4. Moreover, the BG topological property can be characterized by
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the BG sign ¢, which is related to the Zak phase and given by Xiao et al.
[21]

J
sgn[¢¥)] = (—l)j(—l)hexp<i > 0531‘), 67

p=1

where the integer h is the number of band crossing points below the
jth BG. The second BGs with ¢ > 0 and ¢ < O are represented by the
yellow and green stripes in Fig. 4, respectively, to demonstrate different
BG topological properties. For simplicity, the two PCC configurations
with ¢, = 0.35 and ¢, = 0.65 will be referred to as S1-configuration and
S2-configuration, respectively.

While the Zak phase of the first band is the same for S1- and S2-
configurations in the absence of an axial force (see Figs. 4(a) and (c)),
the Zak phase of the second bulk band varies from 0 to =, which exhibits
a topological phase transition. According to Eq. (57), the topological
properties of the second BG for S1- and S2-configurations are thus dif-
ferent in spite of the overlapped BG frequencies (see Fig. 4(a) and (c)).
This indicates the existence of a topological state in this BG at the in-
terface separating S1- and S2-configurations. This topological interface
state will be discussed in the next Section 5.2.2. The phenomenon is
also observed in PCC subjected to an axial loading (see Fig. 4(d)-(f) for
fN = 1). In this case, however, the BG frequencies for the loaded PCC
are lower than those for the unloaded PCC (compare Fig. 4(d) and (f)
with Fig. 4(a) and (c)). For example, the second BG frequency range of
S2-configuration is from 336 Hz to 376 Hz for F y = 0, while for F = 1
the corresponding BG frequency varies from 263 Hz to 297 Hz. Thus,
the applied axial force can tune the BG position and the frequency of
the topological transition point.

In addition to the direct calculation of Zak phase and BG sign from
Egs. (56) and (57), the symmetry analysis method of the edge states at
the two Brillouin zone symmetry points can also be employed to ver-
ify the topological phase transition and to identify the BG topological
property [19,21,67]. To perform the symmetry analysis, we make use
of Eq. (39) and calculate the absolute value of the displacement field
w(z) for the six band-edge states A — F (indicated with cross symbols in
Fig. 4(d) and (f)). Fig. 5 shows the dependence of [w(z)| on the normal-
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Fig. 4. The band structures of longitudinal

500 (C) waves in the neo-Hookean PCC for different ax-
ial forces F, and initial length fractions ¢, of
400+ sub-cylinder 1: (a)-(c) Band inversion process
in the absence of axial force (fN = () for three
300 values of ¢, =0.35, 0.5 and 0.65, rEspectively;
(d)—(f) Band inversion process for Fy =1 and
200 three values of ¢, = 0.35, 0.524 and 0.65, re-
F = spectively. The Zak phase is marked in magenta
1001 4 " 0.65 on the corresponding bulk band. The yellow and
0 green stripes stand for the second BG signs with
‘ ¢ > 0and ¢ < 0, respectively. (For interpretation
0.5 0.0 0.5  of the references to colour in this figure legend,
— the reader is referred to the web version of this
q article.)
500 (D
400 F
F
300+ x
X
E
200 D
Ev =1
100 @, =0.65
-0.5 0.0 0.5
q

ized axial coordinate z* = z/I in the deformed neo-Hookean unit cell
with Fy = 1.

For a bulk band, the Zak phase is 0}22“‘ =0 if the two edge states
at the Brillouin zone center and boundary possess the same symmetric
property. Otherwise, the Zak phase value should be 9/.2“ = z. For S1-
configuration, the edge states A and B of the second band exhibit the
symmetric distributions with respect to the unit-cell center (i.e., even
eigenmodes associated with a nonzero displacement amplitude at the
unit-cell center) (see Fig. 5(a) and (b)), and hence the corresponding
Zak phase is 0. For S2-configuration, however, the edge states D and E
of the second band are symmetric and antisymmetric (odd eigenmode
related to the zero displacement amplitude at the unit-cell center) (see
Fig. 5(d) and (e)), and its Zak phase is z. Therefore, the Zak phase of
the second band is altered after the band crossing, which is in full agree-
ment with the topological phase transition shown in Fig. 4(d) and (f).
In addition, Fig. 5(b) and (f) show the symmetric displacement fields
with respect to the center of unit cell for edge states B and F, while
the displacement fields in Fig. 5(c) and (e) are antisymmetric for edge
states C and E. Thus, we can observe the eigenmode switching of the
two edge states across the second BG, which characterizes the topolog-
ical band inversion. Furthermore, if two states at the lower or upper
edges of the overlapped BG possess different symmetries, the sign ¢ of
this BG is opposite and thus an interface state exists inside the BG [21].
Here, the lower edge states B and E in Fig. 5(b) and (e) for S1- and
S2-configurations are symmetric and antisymmetric, respectively. This
indicates the different signs ¢ of the second BG and various topological
properties, as shown in Fig. 4(d) and (f).

5.2.2. Transmission spectra and displacement distributions

Here, we make use of Eq. (42) to calculate the transmission spectra
(i.e., the transmission coefficient ty versus the frequency f) of a finite-
size neo-Hookean PCC. Fig. 6(a) and (b) show the results for the finite
PCC composed of 10 identical S2-type unit cells subjected to the axial
forces F =0 and 1, respectively. The transmission spectra based on
our theoretical analysis agree well with the corresponding band struc-
tures (compare Fig. 6(a) and (b) with Fig. 4(c) and (f)). The transmission
coefficient in the BG range approaches zero, indicating that the wave
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( C) Fig. 5. The absolute value of the displace-
1.6 ment field w(z) of the six band-edge states at
State C the Brillouin zone center and boundary as a

1.2 function of the normalized axial coordinate
z* = z/I in the deformed neo-Hookean unit

0.8 cell with Fy = 1. The six band-edge states A —
0.4 F, indicated with cross symbols and marked

by capital Roman letters in Fig. 4(d) and (f),
are displayed in Fig. 5(a)-(f), respectively.
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Fig. 6. The transmission spectra of a finite neo-Hookean PCC consisting of 10 identical S2 unit cells (¢, = 0.65) calculated by the theoretical solutions (a, b) and the

FE method (c, d): (a, c) fN =0; (b, d) fN =1.

propagation is prohibited; but in the passing bands, the elastic wave is
allowed to propagate in the finite PCC as the transmission ratio almost
equals one. The spectrum does not show any peaks in the BGs for the
finite-size PCC with identical unit cells.

In addition, the transmission spectra have been calculated indepen-
dently by means of the finite element (FE) simulations. The details about
the FE simulation procedures are described in Appendix B. Fig. 6(c) and
(d) shows the FE results for the finite-size PCC under the action of axial
forces F y = 0 and 1, respectively. Here, the attenuation intensity T(dB)
is defined as T' = 20 10g(Agyput/ Ainput)s Where Ay and Ay are the

average displacement amplitudes of the input and output signals. The
comparison of the theoretical and numerical results demonstrates a good
agreement between these intendant methods. There are, however, slight
differences in the form of transmission spectra due to various calculation
expressions. The FE calculations show that the transmission coefficient
reaches a dip within the BG range, which stands for a strong attenuation
of the wave propagation; however, the attenuation intensity is larger
than zero in the passing bands, implying that the output signal can be
obviously detected. Particularly, the frequency ranges of the second BG
for F ~ = Oare (316 Hz, 383 Hz) and (307 Hz, 385 Hz) for the theoretical
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b) and the FE method (c, d): (a, ¢) Fy =0; (b, d) F = 1. The transmission peak frequency in the second BG is labelled in the corresponding subfigure.

results and FE simulations, respectively. For F 5 = 1, the corresponding
results based on the theoretical model and FE simulation are (248 Hz,
302 Hz) and (240 Hz, 299 Hz), respectively. We note, however, that
the difference in the central frequencies between the theoretical and FE
predictions does not exceed 2%.

Recall that the topological phase transition exists and the topological
properties of the second BG are different for S1- and S2-configurations
(see Section 5.2.1). Thus, a topological interface state should appear
in this overlapped BG at the interface delimiting the S1- and S2-
configurations. Motivated by this prediction, we design a mixed finite-
size neo-Hookean waveguide consisting of 5 S1-type and 5 S2-type unit
cells. We utilize the theoretical formula (51) to calculate the correspond-
ing transmission spectra of the mixed-type PCC waveguide. Fig. 7 shows
the theoretical ((a) and (b)) and FE simulation ((c) and (d)) results for
the mixed soft PCC waveguide. The results are illustrated for the un-
loaded PCC (Fig. 7(a) and (c)), and for the PCC subjected to the axial
force fN =1 (Fig. 7(b) and (d)). We observe from Fig. 7 that the sharp
transmission peaks emerge in the overlapped BG frequency range for
both unloaded and loaded cases. In the unloaded mixed PCC waveg-
uide, the peak frequencies of theoretical prediction and FE simulation
are 355 Hz and 352 Hz, respectively. In the loaded case with F y = 1, the
corresponding peak frequencies shift down to 276.5 Hz (theory) and 275
Hz (simulation). Thus, the application of axial force tunes the position
of the transmission peak. We note that the peak frequencies predicted
by the FE simulations and theoretical model are almost identical, which
further validates the effectiveness of our theoretical assumption.

Fig. 8 depicts the spatial distributions of the displacement modes
for the mixed finite-size neo-Hookean waveguide at the transmission
peak frequencies corresponding to the unloaded and loaded (F, = 1)
states. Fig. 8(a) and (b) show theoretical results for the absolute value
|w(z)| of displacement distributions at the peak frequencies 355 Hz

(fN =0) and 276.5 Hz (FN = 1). The normalized axial coordinate is
defined as z* = z/I, where [ is the length of the deformed unit cell of S1-
configuration. Through the FE simulations, Fig. 8(c) and (d) display the
displacement mode shapes at the FE peak frequencies 352 Hz (fN =0)
and 275 Hz (F ~ = 1). We observe that the displacement field is localized
at the interface between the two PCC elements, and it decays dramati-
cally towards the ends of the mixed waveguide. This is an evident sign
of the interface state as a result of the topological conflict of the dis-
tinct states. In particular, the displacement amplitude at the interface is
6 times more than the input signal (see Fig. 8(a) and (b)).

It is worth noting that the topological interface state is different from
the concept of resonant mode [68,69]. The resonant mode is greatly af-
fected by the boundary conditions, local resonance and excitation lo-
cation, whereas the topological interface state method — based on the
topological property conflict — provides a robust mechanism against the
wave propagation direction or boundary conditions [16]. To validate
that the occurrence of transmission peaks is ascribed to the topological
interface state, we have reversed the input and output ends, and then
calculated the transmission spectra as well as the displacement distribu-
tions for the unloaded and loaded (FN = 1) cases. The results (omitted
here) indicate that the topological interface state is still observed at the
same transmission peak frequencies as those in Fig. 7.

5.2.3. Topological phase diagram

Next, to analyze the effect of axial force on topological interface
states, we examine the topological phase diagram. Fig. 9 shows the two
edge-state frequencies of the second BG as functions of the geometric
parameter ¢ of the neo-Hookean PCC for different levels of the applied
axial force. The variations of the second BG frequencies with ¢, are cal-
culated by setting g = 0 in Eq. (36). Fig. 9 illustrates that an increase in
the axial force results in a lower frequency of the topological transition
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Fig. 8. Theoretical calculations of the dis-
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Fig. 9. Topological phase diagram of a neo-Hookean PCC. The four groups of
solid curves represent the two edge-state frequencies of the second BG as func-
tions of the initial length fraction ¢, for four different axial forces. The topo-
logical phase curve (dash-dotted line) connects the topological transition points
corresponding to different axial forces, and the arrow denotes the direction in
which the axial force increases. The yellow and green filled regions indicate the
BG signs with ¢ > 0 and ¢ < 0 respectively, which are labelled at two sides of
the topological phase curve. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

point (or band crossing point). However, there is only a slight change
in ¢, where the band crossing happens. In particular, for Fy = 0, 0.5, 1
and 1.5, four topological transition points occur at ¢, = 0.5, 0.514, 0.524
and 0.527, with their topological transition frequencies being 355 Hz,
310.6 Hz, 275.9 Hz and 251.5 Hz, respectively. Note that for the neo-
Hookean PCC subjected to a fixed positive tensile loading, the BG central
frequency increases with an increase in ¢,. For example, for PCC under
the action of F, = 1, the BG central frequency increases from 272.5 Hz
at ¢y = 0.35 to 280.4 Hz at ¢, = 0.65. This is due to the fact that for a
smaller ¢, the thinner sub-cylinder 2 occupies more in the unit cell. In
the neo-Hookean PCC with smaller ¢, the unit cell elongates more, thus
increasing the overall geometric size of the structure (recall Fig. 3(b)).

Min. Max.

Moreover, according to [70], the natural frequency of cylindrical struc-
ture decreases with an increase in the slenderness or length-to-radius
ratio. Therefore, the BG central frequency shifts down towards a lower
frequency for PCC with a smaller ¢,. We note, however, that this trend
is reversed if a compressive axial force is applied (F 5 < 0); namely, the
second BG central frequency decreases with an increase in ¢;.

Following [21], the topological transition point can be obtained ana-
lytically in Appendix C. The dash-dotted line shown in Fig. 9 is referred
to as the topological phase curve for different axial force levels ranging
from —0.3 to 5, which is determined from the formulae in Appendix C.
We see from Fig. 9 that all the topological transition points formed by
the close of the second BG are connected by the topological phase curve,
which provides the frequencies of transmission peaks in Fig. 7(a) and (b)
for axial forces Fy =0 and 1. Moreover, the topological phase curve
divides the topological phase diagram into two regions with different
topological properties, the BG signs of which are indicated in Fig. 9. Ac-
cording to the topological phase diagram, we can design conveniently
tunable topological interface states in a soft PCC. For example, we can
construct a topological waveguide composed of two types of PCCs with
¢o = 0.35 and 0.65. As the axial force F y increases from 0 to 2, the fre-
quency of topological interface state is tuned from 355 Hz to 236.3 Hz. It
should be emphasized that if the BG has no common frequency range for
the chosen geometric size and axial force, there will be no topological
interface state.

Thus, the band structure and topological interface state can be ac-
tively tuned towards a lower frequency by applying the axial force in
the neo-Hookean waveguide. Its PCC elements should be properly se-
lected to have different topological properties, so that the existence of
low-frequency tunable topological interface states is guaranteed.

5.3. Influence of the strain-stiffening effect

Here, we consider a PCC made out of nonlinear material with a
strong strain-stiffening behavior. In particular, we employ the Gent ma-
terial model and analyze the stiffening effect on the tunable topolog-
ical interface states. When the axial force is not large enough (e.g.,
FN < 1.25), the band structure and transmission behavior of the Gent
model resemble those of the neo-Hookean model (recall Figs. 4 and 6)
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since the hyperelastic material has not reached the stiffening stage (see
Fig. 3) for the given locking parameter J,, = 20. Therefore, in Fig. 10, we
display the topological transition of band structures and the transmis-
sion spectrum for a large axial force FN =2. In Fig. 10(a) and (c), the
calculated Zak phase 0 or 7 is indicated on the related bulk band and the
second BGs are marked by yellow (¢ > 0) and green (¢ < 0) stripes with
different topological properties. Similar to the previous observations in
the neo-Hookean PCC (recall Fig. 4), the band inversion can be obtained
for the Gent PCC. Here, the second BG closes as ¢, increases from 0.35
to 0.494, and it reopens with a further increase in ¢,. Other illustra-
tions are not repeated for brevity. Nevertheless, in view of the triggered
strain-stiffening effect, the position of the second BG for the Gent PCC
is higher than that of the neo-Hookean PCC for F > 1.25. Particularly,
for the S1-configuration PCC subjected to the axial force Fy =2, the
frequency limits of the second BG vary from (225 Hz, 254 Hz) for the
neo-Hookean model to (256 Hz, 286 Hz) for the Gent model.

Next, we examine the wave characteristics of a mixed Gent PCC
waveguide subjected to the axial force F 5 = 2. Fig. 11(a) demonstrates
the transmission spectrum of the waveguide consisting of 5 S1-type unit
cells (¢, = 0.35) and 5 S2-type unit cells (¢, = 0.65). The transmission
spectrum is calculated with the help of Eq. (51). The transmission peak
emerges in the second overlapped BG, with the peak frequency 271.7 Hz
for this case (see Fig. 11(a)). The corresponding displacement field dis-
tribution at 271.7 Hz is shown in Fig. 11(b). It is confirmed that the
displacement is mainly confined in vicinity of the interface (with the
amplitude nearly 6 times over the input signal) and attenuates rapidly
towards the ends of the hyperelastic waveguide.

To further explore the influence of strain-stiffening effect on the
topological interface state, we plot the corresponding topological phase
diagram in Fig. 12. The results are depicted for the Gent PCC (J,, = 20)
with four topological transition variations at F =0, 1, 2 and 4. The
topological phase curve calculated according to the theoretical formulae
(see Appendix C) is also included in Fig. 12. The topological phase curve
and the band inversion curves for the Gent PCC are almost the same as
those for the corresponding neo-Hookean PCC (compare with Fig. 9)
for the range of loadings not reaching the stiffening stage (i.e., when
Fy <1.25). In particular, the frequency of the topological transition
point continuously decreases with an increase in axial force level in the
range of Fy < 1.25. However, a further increase in the axial force leads
to different variation trend in the topological transition point frequency:
after decreasing to the lowest value 270.8 Hz at around FN = 1.8, the
frequency starts to increase conversely and rapidly (see Fig. 12). This
is a unique feature of the nonlinear PCC with a strong strain-stiffening
effect.

Remarkably, the tensile force - if large enough - can cause a re-
verse trend in the second BG central frequency versus ¢, in Gent PCC.
For example, in the Gent PCC subjected to F = 2, the BG central fre-
quency decreases with an increase in ¢. This reverse trend is even more
prominent for the Gent PCC subjected to F 5 = 4 (see the corresponding
curves in Fig. 12). Note that this BG central frequency trend reversion
is not observed in the neo-Hookean PCC (see Fig. 9). This is again an
important manifestation of the strain-stiffening effect that begins to pre-
vail over the deformation-induced geometric change upon achieving a
certain level of the applied tensile force.
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axial force. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Interestingly, we find from Fig. 12 that the length fraction ¢ corre-
sponding to the topological transition point has a more obvious variation
with the increasing axial force applied to the Gent PCC, compared with
the neo-Hookean case (see Fig. 9). This phenomenon combined with the
frequency non-monotonous change results in a peculiar state for mor-
phologies enclosed by the topological phase curve. In this morphology
domain (denoted by the violet region in Fig. 12), the BG sign can switch
depending on the applied axial force. For example, for Fy = 1, this spe-
cial area is on the left of the topological phase curve with ¢ > 0, while
for Fy = 4, the violet area turns to be on the right of the topological
phase curve with ¢ < 0. Therefore, for fN <1.8,¢ > 0; but ¢ < 0 for
Fpy>18.

In addition, when the axial force exceeds fN =4, the BG frequency
ranges for PCC elements (whose unit-cell length fractions ¢, take val-
ues from different sides of the topological transition point) do not over-
lap (see Fig. 12), and hence the topological interface state does not ex-
ist for any combination of the geometric parameters. For example, for
Gent PCC subjected to the axial force F y = 4.1, the topological transi-
tion point is ¢, = 0.444 and the corresponding frequency is 333.8 Hz. In
vicinity of this topological transition point, the BG frequency limits for
¢y = 0.44 are (333.8 Hz, 334.4 Hz), while those for ¢, = 0.45 become
(332.9 Hz, 333.8 Hz); thus, there is no overlapped BG frequency.

Furthermore, for a mixed finite Gent PCC waveguide composed of 5
S1-type unit cells (¢ = 0.35) and 5 S2-type unit cells (¢, = 0.65), the
topological interface state exists until the axial force reaches the level
Fy ~ 3.8. When the applied axial force exceeds this level, the frequency
limits of the second BG have no overlapped part, and although the topo-
logical properties of the two PCC elements are different, the topological
interface state cannot be activated.

6. Conclusions

We studied a class of 1D soft PCs possessing the topologically pro-
tected interface states. The large-deformation ability of soft waveguides
combined with the material stiffening effect is exploited to tune the
topologically protected states. In particular, we illustrate this concept
based on the example of the 1D waveguide composed of two types of
soft PCCs with different topological characteristics. Here, the topolog-
ical interface state for longitudinal waves is tunable by application of
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an external axial force. First, we utilized the nonlinear elasticity theory
combined with the assumption of uniform deformations to determine
the nonlinear static response of PCCs under the action of an axial force.
Next, the dispersion relation for small-amplitude longitudinal waves,
the unit-cell mode shape as well as the displacement field distribution
and signal transmission coefficient of the finite-size cylindrical waveg-
uide were derived analytically. Finally, the theoretical predictions along
with the numerical calculations were analyzed to elucidate how the ex-
ternal loading and the material stiffening affect the frequency tunability
and the existence of topological interface states. Our main observations
are summarized below:

(1) The BG inversion process (i.e., the BG open, close and reopen pro-
cess) accompanied by the topological phase transition can be real-
ized by altering the initial PCC geometric parameter and be tuned
by adjusting the axial force.

(2) For the neo-Hookean waveguides, the axial tensile force lowers
monotonically the frequency of topological interface states owing
to the generated elongation in the whole system.

(3) For the Gent waveguides, the frequency of topological interface
states varies with the axial force in a non-monotonous way; this is
a result of the competition between the geometric change and the
material strain-stiffening effect.

(4) In reference to the topological phase diagram, the tunable position
and existence condition of topological interface states are clearly
demonstrated when changing the axial force in a properly pre-
designed system.

Our results — based on the example of 1D soft PCC waveguides —
indicate the possibility to realize on-demand tunability of the topolog-
ical interface states. The present study provides guidelines for further
design of actively tunable topological wave devices operating at the
low-frequency range. These systems may find a wide range of poten-
tial applications such as tunable energy harvesters, low-pass filters and
high-sensitivity biomedical detectors.

It should be emphasized that the tunable topological interface or
edge states in 2D metamaterial systems could be achieved by means
of the electromechanical biasing fields [17,55], which is an interesting
topic to be addressed for further applications in the future.
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Appendix A. Calculation of the Zak phase

In this appendix, we will employ the method developed by Xiao
et al. [12] to calculate the Zak phase for the jth bulk band of the
phononic cylinder, which is defined in Eq. (56). Specifically, we se-
lect P points to equally divide the first Brillouin zone from ¢ = —xz/I
to ¢ = z/l. In the limit of P — o, we have Aq = g;, | — ¢; » 0, which
leads to o,W; , = (W, y4a, — W ,)/Aq. Thus, Eq. (56) for the Zak phase
can be equivalently expressed as

/1 .

’ 1

oZk = = / drdzW> W, a, —1|]da, Al

i ./—Ir// Agq 2pc2 " eV iaraa 1 A-D
unit cell

where the physical meaning of the related quantities has been de-

fined in Eq. (56) and the periodic in-cell part W, of the Bloch dis-

placement eigenfunction is normalized with the orthogonal relationship

/unit cell dr dz(l/2pc2)|VVjvq(z, l‘)|2 =L

By discretizing q and noting the relation In(x — 1 + 1) - x — 1 in the
limit of x — 1, Eq. (A.1) with Aq — 0 can be rewritten in a discretized
form as

P
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unit cell

which, after some simplifications, yields

N
Zak _ _
o7k = Ilen

i=1

1 s
/ 2p7dr dz VI/j,q, I/Vj’qm . (A3)
unit cell
Consequently, after obtaining the Bloch displacement distribution
w; 4 of the deformed unit cell in Section 4.3, we can exploit the relation

W, =w; e and Eq. (A.3) to calculate the Zak phase numerically.

Appendix B. FE simulations

To validate our theoretical model, numerical simulations are con-
ducted by using Abaqus, an FE analysis and solver software. The sim-
ulations to calculate the transmission spectra are implemented for the
finite PCC structure, including its geometric parameters and material
properties of silicon rubber (Zhermarck Elite Double 32) [39]. Here, we
adopt the neo-Hookean hyperelastic model and establish an axisymmet-
ric structural model with a fine mesh of 8-node hybrid elements (i.e.,
element type CAX8H in Abaqus).

In order to understand the longitudinal wave propagation behaviors
in a pre-deformed structure, the static analysis (i.e., pre-stretching the
structure) and frequency domain analysis (i.e., wave propagation in the
structure) are performed consecutively in Abaqus:

Step 1 (Static analysis): The boundary conditions in accordance
with the theoretical model are applied to both sides of the structure to
simulate its extension procedure. The resultant displacement and stress
fields in the deformed structure are recorded and saved.

Step 2 (Frequency domain analysis): The displacement and stress
fields calculated in the static analysis are imported to the structural
model as the initial deformed state. For calculating the transmission
spectra, a sinusoidal axial-displacement excitation over a frequency
range of interest is imposed to one input side of the finite-size PCC
structure and its average displacement amplitude is calculated as the
input signal Ay, Additionally, the average displacement amplitude at
output side is collected as the output signal Agpye- Thus, the attenua-
tion intensity T(dB) is defined as T'(dB) = 201og ( Aquepyt/ Ainput)» Which
describes the elastic wave transmission behavior.

Appendix C. Conditions for the band crossing
Following the argument of [21] for 1D photonic crystals, this ap-

pendix will provide the conditions for two bands to cross for a soft PCC
subjected to an axial force.
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The dispersion relation of incremental longitudinal waves in a de-
formed soft PCC is given in Eq. (36) with k® = w/c® (p=1,2). If
sin (KP1M) and sin (k@1?) in Eq. (36) vanish simultaneously, k1) =
ym;z and k®1® = ym,z hold with m;, m, and y being positive integers,
which results in the frequency at the band crossing point as
W, = ;/mlzrc(l)/l(l> = ymzlrc(z)/l(z). (C.1)
Now we define a dimensionless parameter a as

W@
RETEIN
It can be proved [21] from Egs. (C.1) and (C.2) that if « = m/m, is a
rational number, the pass bands y(m; + m,) and y(m; + m,) + 1 cross each
other at the frequency w, given in Eq. (C.1), which also yields

(C2)

yim +my)r
W, = M (C.3)
1D /e +1D /c@

At w,, we have cos (kDIV) = (=1)™ and cos (kPIP) = (-1)r™2.
Thus the dispersion relation (36) becomes

cos (ql) = (=1)7(mi+tm) (C.4)

Therefore, the y(m; + m,)th BG will close either at ¢ = 0 when y(m| + m,)
is even, or at ¢ = +x /I for the odd y(m; + m,). It can be easily verified
[21] that for those frequencies in vicinity of w, at the crossing points,
the two bands have linear dispersion such that a Dirac cone is formed
(see Fig. 4(b) and (e) for example).

In this work, we focus on the second BG. In order to make the second
BG close, we have y = m; = m, = 1 and hence a = 1 is a rational number.
We can take two steps to obtain the position of the band crossing point
(or topological transition point). First, for a given axial force Fy, the
mechanical biasing field state and the parameters c® are determined.
Second, using the relation « = 1 and the condition that the length of the
undeformed unit cell is kept fixed (i.e., L = LV + L?), we can obtain
the corresponding geometric sizes L and L® (or initial length fraction
¢o = LY /L) and then calculate the frequency w, of topological transi-
tion points from Eq. (C.3).
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