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A Review of Physically Based
and Thermodynamically Based
Constitutive Models for Soft
Materials

In this paper, we review constitutive models for soft materials. We specifically focus on
physically based models accounting for hyperelasticity, visco-hyperelasticity, and
damage phenomena. For completeness, we include the thermodynamically based viscohy-
perelastic and damage models as well as the so-called mixed models. The models are put in
the frame of statistical mechanics and thermodynamics. Based on the available experimen-
tal data, we provide a quantitative comparison of the hyperelastic models. This information
can be used as guidance in the selection of suitable constitutive models. Next, we consider
visco-hyperelasticity in the frame of the thermodynamic theory and molecular chain dynam-
ics. We provide a concise summary of the viscohyperelastic models including specific strain
energy density function, the evolution laws of internal variables, and applicable conditions.
Finally, we review the models accounting for damage phenomenon in soft materials.
Various proposed damage criteria are summarized and discussed in connection with the
physical interpretations that can be drawn from physically based damage models. The dis-
cussed mechanisms include the breakage of polymer chains, debonding between polymer
chains and fillers, disentanglement, and so on. [DOI: 10.1115/1.4047776]
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1 Introduction

Soft actuators [1-5], robotics [6—11], sensors [12,13], and flexible
electronics [14,15] are rapidly developing fields that require accurate
constitutive models to predict the mechanical behavior of soft mate-
rials. A variety of constitutive models have been proposed to model
soft material behaviors. These models can be categorized as phenom-
enological, physically based, and mixed models. The physically
based models are referred to as those derived from the structure
and deformation mechanisms at the microscopic length scale.
Thus, the macroscopic material constants are directly related to the
material physical parameters at the microscopic scale. This is an
attractive feature of the physically based models as compared to
their phenomenological counterparts. Figure 1 illustrates schemati-
cally some physically relevant mechanisms at the microscopic
length scale. The deformation of molecular chains and the associated
entanglements can be linked to the hyperelasticity of soft materials
[16-20]. The viscosity of soft materials is known to be related to
the free chains [21-25], while their damage is attributed to the break-
ing of chains and cross-linkers with applied deformation [26-30].

There are several excellent reviews of constitutive models that
aim at different mechanical behaviors. Boyce and Arruda [31]
and Marckmann and Verron [32] have reviewed phenomenological
and physically based hyperelastic models. Drapaca et al. [33]
reviewed the nonlinear viscoelastic models based on the fading
memory assumption. Wineman [34] reviewed linear and nonlinear
viscoelastic phenomenological models for elastomer and soft bio-
logical tissues. Banks and Kenz [35] reviewed viscoelastic
models based on spring-dash models and Boltzmann superposition
laws. Diani et al. [36] summarized the comprehensive experimental
observations of Mullins effect caused by damage of elastomeric
materials, and the corresponding phenomenological and physically
based models were reviewed.

In this paper, we aim to provide a detailed summary and illustra-
tions for the constitutive modeling of soft materials with a specific
focus on the physically based models. In particular, we systemati-
cally review constitutive models that can capture the essential
mechanical behaviors of soft materials such as hyperelasticity, visco-
hyperelasticity, and damage. While we focus on the physically based
models, for completeness, we also discuss the mixed models, and
thermodynamically based viscohyperelastic and damage models.

The remainder of the paper is organized as follows. In Sec. 2, we
review the existing hyperelastic models in the context of the defor-
mation mechanisms at the microscopic scales. The viscohyperelas-
tic models and the underlying thermodynamics are discussed in
Sec. 3. The damage models are summarized in Sec. 4. The paper
is concluded with some remarks and discussion.

The terminology used in this paper follows the work [37],
and it is summarized in Table 1 below for the convenience of the
reader.

2 Hyperelasticity

2.1 Theoretical Background for Hyperelasticity. In this
section, we review the basic theory of thermodynamics and statis-
tics for hyperelastic models.
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2.1.1 Thermodynamics for Molecular Chains. In the context
of hyperelastic theory [37], the Clausius—Duhem inequality is
given by

s:%C—W:o D

where S is the second Piola—Kirchhoff stress tensor (PK2 stress), C
is the right Cauchy—Green deformation tensor (the related deforma-
tion tensors are briefly recalled in the Appendix), W is the elastic
strain energy density function (SEDF). Consequently, PK2 stress
can be determined hyper-elastically by

w
S=2-5-1C )

where p is an unknown Lagrange multiplayer due to the incompres-
sibility constraint (note that we assume that the soft materials are
incompressible®). The choice of a suitable SEDF W—which fully
defines the behavior of the soft material—is the key to the accurate
modeling of soft materials. As described in the sequel, such SEDFs
can be derived by the consideration of statistical mechanics for
molecular chains.

2.1.2  Statistical Mechanics for Molecular Chains. In soft
materials, the molecular chains are constrained by their neighboring
chains. This confinement decreases the allowed configurational
numbers of molecular chains, thus increasing their strain energy.
The constraint effects can be modeled by the tube model [38], as
shown in Fig. 1(d). The ends of the molecular chain in the tube
are fixed at R and R'. The lateral motion of the molecular chain is
confined in the tube, and the situation is identical to the movement
of the chain under an external potential V[r(s)], which is infinite
outside of the tube and zero inside of the tube, i.e.,

0  inside the tube
oo outside the tube

Vir(s)] = { 3)

where r(s) are the actual configurations of a chain. In this case, the
Hamiltonian function can be expressed as

3 Lo for(s)\
H=2—bzk3TJ0ds< 8s> + VIr(s)] )

where kg is the Boltzmann constant, 7 is the Kelvin temperature,
and b is the length of Kuhn monomer (Fig. 2).

3Soft materials are typically modeled as incompressible; this assumption signifi-
cantly simplifies the analysis, however, it also implies that the media cannot support
longitudinal elastic waves.
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Fig. 1 The schematic diagram of the molecular chain network with applied deformation: (a) the molec-
ular chain network in the undeformed state, (b) the molecular chain network in the deformed state, (c) the
molecular chain network after removing external loading, and (d) the tube model capturing the constraint
effects of a single chain caused by its neighboring chains

Table 1 A summary of the terminology

Elastic strain energy density function (SEDF)

The right Cauchy—Green deformation tensor

The second Piola—Kirchhoff stress tensor (PK2 stress)
Cauchy stress

The left Cauchy—Green deformation tensor

The Boltzmann constant

The Kelvin temperature

The length of Kuhn monomer

The magnitude of the end-to-end vector R

The number density of molecular chains

The number of Kuhn monomers of a single chain
The first invariant of the right Cauchy—Green deformation
tensor

A (i=1,2,3) The principal stretches of deformation gradient tensor
¥ Langevin distribution function

L Langevin function

B Inverse Langevin function

Amax Maximum stretch

SZSxmNFEMRAOE

The partition function for the molecular chain is given by

r(L)=R
Z= j sr(s)e” /T
r(0)=R'
I 3 (5 [(or))* 1
= j,(@):R’ or(s) exp |:— (ﬁ Lds (( 2 ) + kB—T Vir(s)]
(5)

The partition function Z has the same expression form as the Green
function G(R, R";N)(N is the number of Kuhn monomers of a single
chain as shown in Fig. 2), which satisfies the diffusion equation [39]

8 & ' '
[@ ks V(R)] GR,R,N)=56(R—-R)S(N)  (6)
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Fig. 2 A single chain formed by N Kuhn monomers with the
length b
with the boundary condition

G(R,R,N)=0 @
Equation (6) has been solved by Edwards and Freed [40] as

GR,R;N)= [] ga(Res Roi N) ®)

a=x,y,x

2 R, R,
(R, R o3 N) = gsin(%) sin(”d )

where

72 Nb?
€XP<— oz >; a=x,y (C)]
3\ 3R =R’
- _ T 1
8 <2an2) xp 2ND? (19)
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in which, d is the effective diameter of the tube.
The boundary conditions (the schematics depicted in Fig. 1(d))

are
d d o (d d
R=(4.5.0) r=(3.9.0)

where L is the length of the tube. Substituting this equation into
Egs. (8)—(10), we obtain

1/2

302\ (2\° 72N
P\ T onp2 J\a) TP\ T 322

Since the Eq. (12) is derived based on the assumption that the
cross section of the tube is rectangular, the general expression can
be expressed as

3 1/2
GR,R;N)= (W)

ool ~ 350\ (2 zex L
PU a2 )\a) P\ 2
where « is a parameter that depends on the shape of the cross-
section of the tube. The SEDF is formulated by Cho [41] as

an

(12)

13)

W=—kgTInZ (14)
Thus, we have
3 \"? 312
=—kgT1 — -0
W=k “((2an2) eXp( 2Nb2>
2\’ Nb?
_kBT1n<<g> exp(—a()?)) (15)

where the first and the second terms of the SEDF correspond to the
deformation of molecular chains in the cross-linked network
(Fig. 3(a)) and entanglement constraints (EC) induced by the neigh-
boring chains (Fig. 3(b)), respectively. Considering the limiting

chain extensibility, the first term of the Eq. (15) can be replaced
by the Langevin probability function as

R (R
W=—ksTIn| Cexp —Eﬁ<ﬁ>—NblnLR
sinh [ —
Nb

2\? N
- kBT In g_l eEXpl| —xo 7

where R is the magnitude of the end-to-end vector R (Fig. 2). To
obtain specific strain energy from Eq. (16), one needs to connect
the macroscopic deformation to the deformation of end-to-end
vector R and the effective diameter of the tube d. This connection
is a key issue in formulating a physically based hyperelastic consti-
tutive model. From Eq. (16), we know that the SEDF can be decou-
pled into two parts in an additive form as

(16)

W=Ww.+W, (17)
where W, and W, correspond to the deformation of molecular chains
in the cross-linked network and entanglement constraints induced
by the neighboring chains, respectively. Equation (17) gives us
the basis to decompose manually the hyperelastic network into
two parts: cross-linked network and entanglement network, as
shown in Fig. 3.

2.2 Physically Based Models. Physically based models are
derived based on the microscopic deformation of molecular
chains in the network of soft materials. From Eq. (16), we know
that these models differ from each other depending on how the evo-
lution of end-to-end vector R and the effective diameter of the tube
d are connected to the macroscopic deformation. We classify phys-
ically based models into two types:

(1) Models neglecting the entanglement constraints, i.e.,
W=W..

(2) Models incorporating the entanglement constraints, i.e., W=
W.+W..

Hyperelastic network

(a)

!

c

8 f

(b)

-
— —4
-
“ s A
o=
a4 A

W

e

Fig.3 The hyperelastic network for soft materials consists of (a) cross-linked network and
(b) entanglement network [19] (Reprinted with permission from Elsevier © 2018)
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2.2.1 Models Without Entanglement Constraints. Neo-
Hookean model: Neo-Hookean model is of the most widely used
models with a compact and simple form of SEDF. Based on the
Gaussian distribution function, Treloar [42] derived the neo-
Hookean model in the following form:

W:%G(11—3) (18)

with a single parameter G = nkgT referred to as the initial modulus,
where 7 is the density of molecular chains, /; is the first invariant of
the right Cauchy—Green deformation tensor. Neo-Hookean model
provides fairly accurate results in the range of moderate deforma-
tion level under tensile, simple shear and biaxial test conditions
(not exceeding 50% deformation [32]).

Three-chain model: Based on the assumption of even distribution
of the molecular chains along with three principal directions, James
and Guth [43] proposed the SEDF by using the Langevin distribu-
tion function

19)

—GG g: In[ ¥, (wm,)])

where 4; (i=1,2,3) are the principal stretches of deformation gradi-
ent tensor, and ¥, is the Langevin distribution function with spe-
cific form as

‘PL<b\/ﬁ/1,> = CLexp[—gﬂ—Nln .ﬂ ]

sinh 8
—_7-1 A
p=t (W)

L(x) =coth(x) — 1/x

(20)

@n

where C; is a normalized parameter.
Arruda—Boyce model: Arruda and Boyce [44] proposed a widely
used model as

W=—Gln [‘I‘L (bJﬁA)] (22)
N R o

Here, three-chain and Arruda—Boyce models have two parame-
ters G and N that should be determined by experiment.

2.2.2  Models With Entanglement Constraints. Slip-link model:
Ball et al. [45] proposed a model taking into account the entangle-
ment constraints in the following form

1 S, 1 (L+ma? )
W_EGC;/II-+§ Z[ S+l 24

where G.=nkgT and G,=n.kpT are the moduli of the cross-
linked network and entanglement network, respectively, n. is
the density of molecular chains in the cross-linked network, n,
is the density of molecular chains in the entanglement network,
and 5 is a material parameter. Based on this work, Edwards
and Vilgis [16] considered the limiting chain extensibility and
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proposed the following SEDF

(1—a)i/12

7“{1 _azzd
1—a?) 2
i=1

W=-G,

2+ —a?)
=L+ nﬂf)(l —a? iz?)

i=1
3
+ln|:1 —aZZ/Iiz:H
i=1

where a new parameter « is introduced to characterize the inho-
mogeneous deformation and the limiting chain extensibility.

Extended tube model: Utilizing the tube model [46], Kaliske and
Heinrich [17] proposed a physically based model which considers
the entanglement constraints as

L la —62)@1%—3) 3
W==G. = +1n[1—52<2/1$—3>}

2°°¢ 3
1—52<21,.2—3>

i=1

+1In|1 + 22|

(25)

(26)

<

pr

where G, and G, are the parameters with physical meaning as men-
tioned earlier. 6 and y are introduced to characterize finite extensi-
bility and release of topological constraints respectively.

ABGI model: Meissner and Matéjka [18] proposed a physically
based model by combining the Arruda-Boyce model and Extended
tube model. This model can characterize the limiting chain extensi-
bility and the entanglement constraints simultaneously. The stress—
stretch relationship is given as

2/12 _
O_ABGI GABGIJ.IZ 1 ZG?BGIA’I' !
33 y

le

+p 27)

where G?BGI R G?BGI , and N are the parameters which could be
related to microscopic quantities, y is the parameter with physical
meaning, and p is an unknown scalar resulting from the incompres-
sibility, which can be obtained from the macroscopic boundary
conditions.

Micro-sphere model: Miehe et al. [25] proposed a model by
assuming that the molecular chains are distributed evenly on the
surfaces of a sphere and considered the inhomogeneous deforma-
tion of molecular chains. The SEDF is

M 1 X\ N\
=G| ¥ (— () dA
W=-G"In|Y¥Y, 22 \%,) d.

1
+G¥Nu e jf»"(Xo)dA (28)

where Gﬁ” , U, p, g, and N are material constants. The symbol u
stands for the tube geometry parameter, while p and ¢ do not
have any physical meanings. X, and X are the end-to-end vectors
in the initial and current configurations, respectively.

Non-affine network model: Davidson and Goulbourne [20] devel-
oped a model to describe the constitutive behavior of the rubber-like

materials under large deformation. This model also considers the

NOVEMBER 2020, Vol. 87 / 110801-5



Table 2 Physically based hyperelastic models

Without EC (Treloar, 1943); (James and Guth, 1943); (Arruda and Boyce,
1993)

(Ball et al., 1981); (Edwards and Vilgis, 1986); (Kaliske and
Heinrich, 1999); (Meissner and Matéjka, 2003);(Miehe et al.,
2004); (Davidson and Goulbourne, 2013); (Xiang et al., 2018)

With EC

limiting chain extensibility and entanglement constraints simulta-
neously. They derived the SEDF as

1 3 1
W==G.I -G _In(GB2 _ —1)+G, Ai—— 29
g Gelt = Gedi In G — 1) + ;( M) 29)

where G. and G, are the moduli of the cross-linked network and
entanglement network, respectively; the symbol A, denotes the
maximum stretch of soft materials.

Xiang et al. model: By accounting the limiting chain extensibility
and the entanglement constraints, Xiang et al. [19] developed a
general hyperelastic model by utilizing the tube model [46], incor-
porating the deformation of the tube diameter in the model. The
SEDF is given as

1
+G. Y — (30)

where G, and G, are the moduli of the cross-linked network and
entanglement network, respectively.

2.3 Summary 1. We summarize the considered hyperelastic
models in Table 2.

2.3.1 The Fitting Procedure. The experimental data used for
the fitting of the models (Table 2) are based on (i) wuniaxial
tension, (ii) pure shear, and (iii) equibiaxial deformation tests
reported by Treloar [47]. It is preferable to be able to obtain all
the material constants from a single experimental setting, for
example, from relatively simple uniaxial tensile tests. Unfortu-
nately, the obtained material constants (from the single experimen-
tal setting) may not produce accurate predictions for other
experimental settings (pure shear, or equibiaxial deformation) of

—_
Y]
~

8t 0 Uniaxial aata
— A Pure shear data
S ] Equibiaxial data
= 6 Uniaxial O |
;; == == == Pyre shear
2SN EETETETELE Equibiaxial 8
o
»
o4
£
—
()]
2
= 2t
c
L
0
2 4 6 8
A

the identical materials. To illustrate these different capabilities of
the constitutive models, two different data sets are used to obtain
the material parameters of these constitutive models

(1) The parameters are obtained only by fitting the uniaxial
data of Treloar [47]. Then, we plot the stress—stretch
curves for pure shear and equibiaxial deformation based
on the uniaxial data fitting constants. The corresponding
stress—stretch curves are shown in figures labeled with (a)
from Figs. 4-12 [47].

(2) The parameters are obtained by using the combination of the
uniaxial, pure shear and equibiaxial data of Treloar [47]
simultaneously. The corresponding stress—stretch curves
are shown in figures labeled by (b) in Figs. 4-12.

We use the least square method to extract the material parame-
ters. We depict the predictions of these models with the data of
Treloar [47], as shown in Figs. 4—12. The results indicate that the
models without the entanglement constraints cannot accurately
predict pure shear, and equibiaxial results based only on uniaxial
data. We note that the Arruda—Boyce model shows the best perfor-
mance among the non-EC-models (models without the entangle-
ment constraints).

The fitting results also show that the EC-models predict the beha-
vior more accurately as compared with the non-EC-models if the
parameters are obtained only by fitting the uniaxial data; the only
exception is the micro-sphere model.

2.3.2 Comparison Among These Constitutive Models. To
provide a quantitative comparison between these models, the coef-
ficient (R?) is introduced and calculated for each model as

2O -’
R=1-L1—— 31
Y=y’ Gh
1
where y; are a set experiment data, which are associated with the
predicted value of models f;. The quantity y represents the mean
of the experimental data. Here, the material parameters extracted
from uniaxial data and only the pure shear and equibiaxial data
are used to calculate the coefficient of determination (R?).

Figure 13 summarizes the performance of the models in terms of
the coefficient (R?). The coefficients (R?) for different models are
summarized in Table 3. (The other four widely used models [48—
52] are also concluded in Table 3 for completeness.)

G

8t O Uniaxial data
—_ A Pure shear data
6_“ a Equibiaxial data
= Uniaxial o
~— 6 i 4
» = == == Pyre shear
a EETTIELTED Equibiaxial 8
o
»
o4 g
£
—
()]
g
= 2t
c
L
0
2 4 6 8
A

Fig. 4 Comparison of the engineering stress—stretch between the neo-Hookean model and the
data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uniaxial,

pure shear, and equibiaxial data simultaneously
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Fig. 5 Comparison of the engineering stress—stretch between the three-chain model and
the data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uni-
axial, pure shear, and equibiaxial data simultaneously
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Fig.6 Comparison of the engineering stress—stretch between the Arruda—Boyce model and
the data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uni-
axial, pure shear, and equibiaxial data simultaneously
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Fig. 7 Comparison of the engineering stress—stretch between the slip-link model and
the data of Treloar [47]: (a) material parameters are extracted by uniaxial data and
(b) by uniaxial, pure shear, and equibiaxial data simultaneously
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Fig. 8 Comparison of the engineering stress—stretch between the extended tube model and the
data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uniaxial,

pure shear and equibiaxial data simultaneously
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Fig. 9 Comparison of the engineering stress—stretch between the ABGI model and the data of
Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uniaxial, pure
shear, and equibiaxial data simultaneously
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Fig. 10 Comparison of the engineering stress—stretch between the micro-sphere model and the
data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uniaxial, pure
shear, and equibiaxial data simultaneously
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and the data of Treloar [47]: (a) material parameters are extracted by uniaxial data and (b) by uni-
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and equibiaxial data simultaneously

3 Visco-Hyperelasticity

3.1 The Basic Theory for Visco-Hyperelasticity. In this
section, we review the basic theory of thermodynamics for viscohy-
perelastic theory [53,54].

3.1.1 General Thermodynamic Theory. Any thermodynamic
process should satisfy the Clausius—Duhem inequality [53]

1. .
The SEDF can be denoted as
W=WC,E,.... &) (33)

where &, (@=1,..., n) are the internal variables, substituting
Eq. (33) into Eq. (32), we have

(5-25¢)2¢- L=

(34)
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From Eq. (34), we have

(35)

(36)

In order to determine the internal variables, n set of internal evo-
lution equations should be given as

‘ga = éa(c’ gla §2’ e gn) (37)

Equations (35)—(37) are fundamental equations for the dissipa-
tion processes. The viscoelastic process is also known as a dissipa-
tion process, so it should satisfy these equations. Therefore, the
key problem for formulating a thermodynamically based model
is to choose a reasonable SEDF W, internal variables &,, and
their evolution equations. There are no general expressions for
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models without considering entanglement constraints (EC) and those with entanglement
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Table 3 Comparison of the performance of different models F
Categorization Models Evaluation ratio W
A
Without EC  Neo-Hookean model (1943) 05232 e
Three-chain model (1943) 0.7758 — e
Arruda—Boyce model (1993) 0.9229 F
e F -
With EC Slip-link model (1981,1986) 0.9881 '
Extended tube model (1999) 0.9932 —
ABGI model (2003) 0.9408 B
Micro-Sphere model (2004) 0.8290 m(C.)
Non-affine network model (2013) 0.9816 . . i
Xiang et al. model (2018) 0.9909 Fig. 14 Rheological model: maxwell representation
Other models Mooney—Rivlin model (1940, 1948) 0.5232
Ogden model (1972)* 0.7300
Yeoh model (1993) 0.9095
Gent model (1996) 0.9046 g
F, ‘
“Here, we adopt 6 parameters Ogden model, and the parameters are obtained “ h ﬂ ,\
only by fitting the uniaxial data, resulting in poor performance. The excellent
performance can be obtained by simultaneously fitting uniaxial, pure shear B F,
and equibiaxial data. E

viscohyperelastic models. Any constitutive equation would be
regarded as reasonable once it satisfies Eq. (36). There are two
ways to construct the evolution equation: the first way is to con-
struct it based on experimental observations, while an alternating
way is led by the structure of molecular chains. The basic theories
acknowledging the structure of molecular chains will be discussed
in Sec. 3.1.3 in detail.

3.1.2 Thermodynamic Theory for the Standard Linear Solid
Model. The standard linear solid model is a widely used rheological
model. There are two kinds of representations for the standard linear
solid model: Maxwell representation and Kelvin representation, as
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Fig. 15 Rheological model: Kelvin representation

shown in Figs. 14 and 15. Here, we only review the basic theory of
the Maxwell representation since it is used by many researchers
[53,55-62].

For the Maxwell representation, the deformation of branches A
and B is equal to the applied macroscopic deformation, i.e., F =
F, =Fp. For branch B, the deformation gradient tensor can be
multiplicatively decomposed into two parts as F=F.F, (more
details about multiplicative decomposition can be found in
Refs. [53,55,63]), where F, and F, are the deformation gradient
tensors of the spring and dashpot in branch B, respectively,
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as shown in Fig. 14. So, the SEDF W in Eq. (33) can be
formulated as

W =W (C) + W2(C.) (38)

where C (C=F"F) and C, (C,=FF,) are the right Cauchy—Green
deformation tensor of springs A and B (Fig. 14), respectively.
Substituting Eq. (38) into Eq. (32), we obtain
E_plq pTy . L ¢
(S -S"-F, S.F, ):§C+CGSB:DV20 (39)
where D, =sym(L,), F, and L, are the deformation gradient tensor
and the velocity gradient tensor of viscous damper, respectively

(shown in Fig. 14). The PK2 stress of the spring A (S%) and the
spring B (S,) are defined as

oW, (C
st =2 alc( ) (40)
and
S, = zavgz—c(f” 1)
From Eq. (39), we have
S=Sf+F'S,F,”
C.S.:D, >0 (42)

Various specific constitutive equations could be obtained by
selecting different forms of the SEDF and the evolution laws of D,,.
The derived constitutive equation would be reasonable if it satisfies
Eq. (42) and agrees with the specific experimental observations.

3.1.3  Basic Theory of Molecular Chain Dynamics. In this sub-
section, we give a brief introduction to two widely used basic the-
ories of molecular chain dynamics: Rouse model [64] and reptation4
model [38,65]. It should be pointed out that further readings on this
subject can be found from the monograph of Cho [41].

The Cauchy stress based on the suggestion of the structure of
molecular chains can be expressed as [38,41]

3I’lkBT
b2

c=-pl+

N-1

(ot 1 (O=Ta(D)Tar1(—Ta(1))

a=1

(43)

where r, is the position vector of the ath Kuhn monomers, and ¢
indicates time. From Eq. (43), the stress tensor can be determined
once r, is known. Rouse [64] and Edwards [38] successfully calcu-
lated them based on different microscopic pictures.

Rouse [64] regarded a as a continuous index # that runs from 0 to
N, so that r,(f) can be transformed as r(n, ) and Eq. (43) can be
rewritten as

6=—pl (44)

3nkgT N lor or
(S
He further proposed a bead-spring model by representing the single-
chain diffusion as Brownian motion, and which led to the expres-

sion of r(n, t) as

or  3kgT &
(,7:= 4,22 aT;+L-r+g(n, 1)
(g, 0)=0; (g(n, Ngim, 1) (45)
2kpT ,
= —5mn5 -
¢ (t—1)

“The motion of a molecular chain performing a wormlike random walk in the ‘tube’
formed by its neighboring chains is frequently referred to as reptation.

Journal of Applied Mechanics

Fig. 16 A molecular chain reptate in a tube formed by surround-
ing chains

with the boundary condition

o =0 (46)
6” n=0,N

where L is the velocity gradient tensor and ¢ is a friction coefficient.
The term g(n, t) signifies the stochastic force.

Equation (45) can be solved with the boundary condition
Eq. (46). Substituting the solutions into Eq. (44), one can determine
the stress tensor.

Edwards [38] developed a reptation theory by considering a tube
that confines the lateral motions of a single chain with the length L,
as shown in Fig. 16. He wrote the position vector r of a molecular
chain as the function of time # and the arc length s (0 S<s<=<L)of a
single chain. So Eq. (44) can be reformulated as

3nkgT L (*/oror
=—plI = (=2 )ds
=TT NL<6S6S> ’

(47)

Neglecting the compressibility, Cho [41] further reformulated
Eq. (47) as

3nkgT L [*
6=—pl+ "bf ﬁj Y(s, 1)ds (48)
0
where
1
Y(s, 1) = (u(s, Hu(s, 1)) — §I (49)
with
or
u(s, )= % (50)
The dynamic equation can be expressed as [38,41]
oY Y
5 =Dega (€3]
with the boundary conditions
YO0,H=Y(L, =0 (52)
where D, is a diffusion constant.
Equation (49) can be explicitly solved as
_ o 4, mAS o
Y(s, 1) = Z(F) m;d —eTnsin ==y = Ty (53)
where F is the deformation tensor, Z(F) is given as
F-u)F -u) 1
1) =(—) —-1 54
@) < Cuu [, 3 o9
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Fig. 17 Rheological model: generalized Maxwell representation

where ( )¢ is the ensemble averaging operator. Substituting Eq. (53)
into Eq. (48), we have

3nkgT L?
c=-pl+ 2 ﬁZ(F)d)(z) (55)
with
¢(1) = i S tin (56)
m=odd”2m

According to Eq. (55), the stress tensor can be determined once
the tensorial function Z(F) is evaluated.

3.2 Thermodynamically Based Models. Lubliner model:
Lubliner [63] extended the work of Green and Tobolsky [66] by
introducing the multiplicative decomposition concept into visco-
elasticity. He considered three types of rheological models for vis-
coelasticity under large deformations: Maxwell representation
(Fig. 14), Kelvin representation (Fig. 15), and generalized
Maxwell representation (Fig. 17). Lubliner [63] assumed the free
energy function W can be decomposed into the volumetric and
the distortion parts, and the volumetric deformation is assumed to
be purely elastic and the viscoelasticity is caused by the distortion
deformation. Lubliner [63] chose the Mooney—Rivlin model as
the specific form of the SEDF [48,49] and quantified the evolution
laws of internal variables. So the viscohyperelastic model was con-
structed completely.

Model of Le Tallec et al.: Le Tallec et al. [67] developed a visco-
elastic framework for incompressible solids based on the Maxwell
rheological model (Fig. 14), and the related numerical scheme
was proposed for real applications. They presented the framework
of a thermodynamic model that incorporated the
St.-Venant-Kirchhoff model for the specific SEDF [68].

Holzapfel-Simo model: Holzapfel and Simo [69] developed a
thermomechanical fully coupled model. This model is based on
the concept of internal state variables and is consistent in thermody-
namics; i.e., it satisfies Eq. (42). The theoretical frameworks for the
SEDF and the evolution equations were summarized, and their
model can be interpreted by using the Generalized Maxwell rheo-
logical model (Fig. 17). The specific form of the free energy can
be chosen from a pool of the SEDF. The generalized
St. Venant-Kirchhoff SEDF [68] was used as an example in their
paper.

Reese-Govindjee model: Based on the work of Lubliner [63],
Reese and Govindjee [53] extended the model by considering the
finite viscous deformation and nonlinear evolution laws for
viscous behavior. Due to the fact that the evolution equation of
the internal variables has a similar mathematical structure as the
one used in finite elastoplasticity [70], the evolution can be easily
implemented in an existing finite element code. Based on the
Maxwell rheological model (Fig. 14), whose theoretical framework
has been discussed in Sec. 3.1.2 in our paper, the general expres-
sions of the SEDF and evolution equation were formulated in
their paper. The specific form of the SEDF in their paper is the
Ogden model [50].
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Bonet model: Bonet [71] decomposed the free energy into volu-
metric, long-term, and viscous components and derived a new non-
linear internal evolution equation, and the evolution equation was
expressed in an incremental form for numerical implementation.
Bonet model was derived based on the generalized Maxwell rheo-
logical model (Fig. 17) under an isothermal condition. He devel-
oped the model for two types of formulations: material
formulation and spatial formulation. The material formulation was
defined in the reference configuration for describing anisotropic
materials, and the related general SEDF and evolution equations
were given, respectively. The spatial formulation was employed
for isotropic materials, and the related general SEDF and evolution
equations were also given, respectively. The specific equations in
this paper were presented by using the models of Neo-Hookean
[42] and Peric et al. [72].

Model of Amin et al.: Amin et al. [59] investigated the rate-
dependent behavior of rubbers within compression regimes based
on the Maxwell rheological model (Fig. 14). To better characterize
the hyperelastic response, a modified hyperelastic model was pre-
sented. The evolution equation was given in their paper. Later,
Amin et al. [60] continued their efforts, and they investigated the
rate-dependent behavior of filled rubbers within compression and
shear regimes. They also used the scheme of Maxwell representa-
tion (Fig. 14) and derived the general form of the free energy func-
tion. Based on the experimental observations, the power laws for
evolution equation were proposed in their paper. The specific
form of SEDF was given for practical application.

Hong model: Hong [55] proposed a theoretical frame to couple
the viscoelastic and the electric fields. In this paper, the Maxwell
rheological model (Fig. 14) was used, and the general SEDF and
evolution equation were derived, respectively. The specific material
model was given in this paper as an example.

Kumar and Lopez-Pamies model: Kumar and Lopez-Pamies [56]
proposed the so-called two potential constitutive framework for
rubber viscoelasticity, and the model accounts for the non-Gaussian
elasticity of elastomers and the deformation-enhanced shear thin-
ning. Besides, the model was proved to be computationally efficient
and robust via comparing it with experimental data of two elasto-
mers. Furthermore, several models, including Le Tallec et al.’s
[67], Bergstrom and Boyce’s [21] and Reese and Govindjee’s
[53] models, etc., can be regarded as the special cases of their frame-
work. Based on the Maxwell rheological model (Fig. 14), their the-
oretical framework was constructed with specific forms.

3.3 Physically Based Models. Bergstrom and Boyce model:
Based on a series of experimental data, Bergstrom and Boyce
[21] proposed a semi-physically (micromechanism-inspired)
based new model with the assumption that the mechanical behavior
can be decomposed into an equilibrium network and a nonlinear
rate-dependent network which is governed by the reptational
motion of molecular chains. The model was developed by using
the Maxwell rheological model, as shown in Fig. 14, the spring A
represents the equilibrium network and the spring B represents
the nonlinear rate-dependent network. They characterized the non-
linear rate dependency by assuming the molecular chains doing
Brownian motion along the constraint tube.

Vandoolaeghe and Terentjev model: Vandoolaeghe and Terent-
jev [73] extended the classical Rouse model to study the equilib-
rium and dynamic response of cross-linked polymer within the
affine deformation limitation. The general form of stress is formu-
lated in their paper. Merging the Rouse model with the effects of
the entanglement, Vandoolaeghe and Terentjev [74] proposed an
improved tube model for rubber viscoelasticity but this model did
not take into account the non-affine deformation of the molecular
network.

Model of Tang et al.: Tang et al. [22] proposed a two-scale theory
of nonlinear viscoelasticity for unfilled and filled cross-linked elas-
tomers, and the tube model was modified to consider the cross-links
by using fractional derivative methods. Besides, the local
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inhomogeneous deformation is also described by an extended
multi-resolution framework. In their work, the elastomeric micro-
structure is assumed to consist of the crosslinks and reinforcement
superimposed by free chain networks (microzone). For unfilled
network, the microzone deforms homogeneously, while the micro-
zone in filled network with weak physical bonds deforms
inhomogeneously.

Model of Long et al.: Long et al. [75] proposed a three-
dimensional finite strain constitutive model which quantifies the
connection between rate-dependent mechanical behavior and kinet-
ics of breaking and reattachment of temporary cross-links in dual
cross-linked gels.

Model of Li et al.: Extending the tube theory [46] by considering
the deformation of the tube, Li et al. [23] decomposed the network
into the hyperelastic cross-linked network and free chains. The vis-
coelasticity is assumed to be attributed to the diffusion of free
chains. Based on the decomposition, they proposed a physically
based model to simulate finite strain viscoelasticity, which can be
understood by the molecular dynamics method. However, they
only considered the disentanglement of free chains and ignored
the contour length relaxation.

Model of Xiang et al.: Xiang et al. [24] developed a physically
based viscoelastic constitutive model. The stress is decomposed
into a hyperelastic part which comes from the elastic ground
network (cross-linked network and entanglement network), and a
viscous part which is originated from free chains. Utilizing the
same scheme from the previous work [19], the free chains are
considered to be either: the untangled cross-linked network or
entanglement network. The contour length relaxation and disentan-
glement from the networks of free chains are responsible for the
viscous behavior.

3.4 Mixed Models. Miehe-Goktepe model: Miehe and
Goktepe [76] proposed a non-affine model for rubber viscoelasticity
by adding the contribution of viscous overstress (internal variables)
into the equilibrium stress which is from the ground-state network
and modeled by their previous work [25]. Their model is thermody-
namically consistent, even though the internal variables, formulated
physically as the viscous overstress, is attributed to the superim-
posed chains.

Model of Linder et al.: Following the work of Miehe and Goktepe
[76], Linder et al. [77] proposed a new thermodynamically consis-
tent micromechanics-based model. Linder et al. [77] assumed that
the viscous stress originates from the transient sub-network that
was formed by the temporary entanglements. The microscopic
mechanism of their model is equivalent to the generalized
Maxwell rheological model (Fig. 17), and the evolution of the sub-
network was developed by considering the Brownian motion of the
endpoints of the network.

Model of Zhou et al.: More recently, Zhou et al. [78] developed a
micro—macro constitutive model that incorporates the nonlinear vis-
cosity, which is related to the diffusion of polymer chains. Their
model was constructed within the thermodynamics framework
based on the generalized Maxwell representation (Fig. 17); the

Table 4 Viscohyperelastic model

(Lubliner, 1985); (Le Tallec et al., 1993);
(Holzapfel and Simo, 1996); (Reese and
Govindjee, 1998); (Bonet, 2001); (Amin et al.
2002, 2006); Hong (2011); (Kumar and
Lopez-Pamies, 2016)

(Miehe and Goktepe, 2005); (Linder et al.,
2011); (Zhou et al., 2018)

(Rouse, 1953); (Doi and Edwards, 1988);
(Bergstrom and Boyce, 1998);
(Vandoolaeghe and Terentjev, 2005, 2007);
(Tang et al., 2012); (Long et al., 2014); (Li
et al., 2016); (Xiang et al., 2019)

Thermodynamically based
models

Mixed models

Physically based models

Journal of Applied Mechanics

spring and dashpot in the rheological model are linked to the
elastic network and viscous sub-network, respectively. The
related viscous stress and internal variables evolution equations
were derived by using the modified tube model.

3.5 Summary 2. In Table 4, we summarize the viscohypere-
lastic models reviewed in Sec. 3. The internal variables and evolu-
tion equations, which depend on the materials and loading
conditions, are the key characterizations of different models consid-
ering the Clausius—Duhem inequality. Here, we classify the models
with phenomenological evolution equations as thermodynamically
based models, and the ones with evolution equations derived
from physical mechanisms as mixed models. Physically based
models refer to those derived from the structure of molecular
chains without thermodynamic considerations.

4 Damage

4.1 The Basics for the Mullins Effect. The rubbery materials
exhibit an obvious degradation in the mechanical behaviors after
their first deformation. The change (mainly stress softening) in
mechanical properties is named as the Mullins effect due to a
series of researches made by Mullins et al. [79,80] and Mullins
and Tobin [81,82]. The Mullins effect has been studied for more
than one century since the first experimental observation by
Bouasse and Carriere [83] in 1903; nevertheless, researchers have
not yet reached a unified view of the microscopic mechanism of
the Mullins effect.

The Mullins effect was mostly discovered in particle-filled
rubber-like materials. Bueche attributed the Mullins softening
effect to tearing molecular chains off the surface of particles as
well as breaking of chain between filler particles [84,85]. Later
on, Harwood et al. and Harwood and Payne reported that the
unfilled pure gum and unfilled vulcanizate show the stress softening
phenomenon as well [86,87]. They pointed out that the possible
sources of the Mullins effect on unfilled rubbers include the follow-
ing: (1) breaking of crosslinks, (2) breaking of network chains and
(3) residual local orientation of polymer chains.

The breaking of covalent bonds of crosslinks and chains causes
permanent damage showing contrary to the recovery of the
Mullins softening effect. Hence, a chain slipping model was pro-
posed by Houwink to explain this phenomenon [88]. The polymer
chain slips along the surfaces of filler particles when the deformation
of reinforced rubber increases and the reversible bonds between
chain and fillers break at the same time. After unloading, new
bonds reform between polymer chain and fillers, resulting in a
longer polymer chain between fillers (because slipping does not
work in unloading), and the chains start to slip again once the histor-
ical maximal deformation is exceeded. The degradation of materials
(entropy change) can be restored by increasing the temperature. This
microscopic physical picture interprets the stress softening and res-
toration well. The discussion earlier does not involve the irrecover-
able breaking of covalent bonds between polymer chains and fillers.

Kraus et al. [89] showed the small change of network chain
density by the swelling experiment of vulcanizates. Meanwhile,
the inappreciable volume expansion of particle-filled styrene-
butadiene rubber (SBR) confirmed that few bonds break when
stretched to 300% elongation. Therefore, Kraus et al. [89] con-
cluded that bond breaking is not the only reason for the Mullins
effect. They believed that the breakage of filler structure combined
with the breaking of the bonds accounts for the Mullins effect.
Moreover, the effect of filler rapture appears to be more essential
in the condition of lower temperature, higher strain rate, and
higher filler concentration.

Hanson et al. [90] proposed a new microscopic explanation for
the Mullins effect and attributed the stress softening to the disentan-
glement. They observed that the Mullins effect disappears for the
silica-filled polydimethylsiloxane (PDMS) when the second
stretch direction is perpendicular to the first stretch direction.
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According to the physical picture they proposed, once the silica-
filled PDMS is deformed, one polymer chain slides through the
other chain at its attachment point to the filler particle, thus remov-
ing the entanglement. The irreversible and directional removal of
entanglement leads to the anisotropic Mullins effect. Furthermore,
the cross-linked chain density keeps the same while the entangle-
ment density decreases, this exactly is the most prominent differ-
ence from other micro interpretations.

The aforementioned physical mechanisms for the Mullins effect
are based on the observations of mechanical experiments. Research-
ers also carried out other experiments to verify their microscopic
interpretations. Suzuki et al. [91] measured the chain scission of
silica-filled SBRs whose interfacial properties between polymer
matrix and fillers vary. The carbon radicals formed by chain scis-
sion can be accurately detected by the electron spin resonance
(ESR) measurements. The experiments showed that the stronger
the interfacial bonding between polymer and fillers is, the larger
the increase of carbon radicals is, and the more prominent the
Mullins effect is. Thus, Suzuki et al. concluded that chain scission
might contribute to the Mullins effect. Later, Ducrot et al. [92] intro-
duced a special chemoluminescent cross-linker (which emits light
when breaks) into elastomers. The light emission helps to indicate
where bond breakage happens in real-time, and it shows the poten-
tial to research the origin of the Mullins effect. Following the study
of Ducrot et al. [92], recent research by Clough et al. [93] demon-
strated that the scission of even a small quantity (<0.1%) of covalent
bonds contributes distinctly to the Mullins effect of silica-filled
PDMS. Furthermore, they showed unambiguously that covalent
bond scission happens in an anisotropic way, which results in the
anisotropy of the Mullins effect.

With the understanding of the microscopic mechanism behind the
Mullins effect, researchers developed mechanical models, including
the physically based models, thermodynamically based models, as
well as the mixed models, to quantitatively describe the Mullins
effect. Here, we introduce models for the Mullins effect as compre-
hensively as possible, and some recently proposed and representa-
tive models will be analyzed in detail in later chapters.

Based on the assumption that the particle reinforced rubber con-
sists of soft and hard regions, Mullins and Tobin [81] put forward a
phenomenological two-phase model to characterize the mechanical
behaviors of the filler reinforced rubbers. Since the deformation of
the hard region is assumed to be negligible, the overall strain of
rubber is proportional to the strain of the soft region. The hard
region can be transformed into a soft region under large deforma-
tion, and the volume fraction of the soft region increases as the his-
torical maximal stress increases. Followed by this work, Mullins
and Tobin [82] proposed a strain amplification factor to quantify
the relationship between the strain of the soft region and the
average strain of the rubber. Johnson and Beatty [94] carried out
an extended exploration of the two-phase theory and strain amplifi-
cation factor to quantify stress softening, and their model was
applied to a dynamic problem for the first time and then applied
to capture the Mullins effect in equibiaxial extension (inflation of
a balloon) [95]. Thereafter, the strain amplification expression for
uniaxial tension was extended to a general three-dimensional defor-
mation state [96] and was further incorporated into a constitutive
model for Mullins effect [97] (more details in Sec. 4.4).

The notion by Bueche [84], i.e., stretch-induced debonding
between filler and polymer matrix, was employed by Govindjee
and Simo [98] to form a physically based continuum damage
model. The feature of this model is the decomposition of free
energy into the contribution from the chain network between cross-
linkers and from chain network between filler particles. Soon after,
this micro-mechanical model was transformed into a phenomeno-
logical one to improve computing efficiency [99]. Then, Goktepe
and Miehe [100] extended the isotropic theory of Govindjee and
Simo [99] into an anisotropic model. Lion [101] developed a mac-
roscopic theory for filled rubber, among which the Mullins effect
was described by a continuum damage model, and the evolution
of damage depends on the historical maximal strain. There are
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some other macroscopic models based on the continuum damage
mechanics, and the classic examples include Refs. [102-106].

The residual deformation and anisotropy of the Mullins effect
were taken into account in some models. Based on the theory of
pseudo-elasticity proposed by Ogden and Roxburgh [107] (more
details in Sec. 4.2), Dorfmann and Ogden [108] developed a phe-
nomenological constitutive model for Mullins effect with residual
deformation. Two internal variables were adopted into the strain
energy function to separately capture the stress softening and resid-
ual deformation. Based on the physical mechanism of the Mullins
effect, Goktepe and Miehe [100] constructed an anisotropic
Mullins-type damage model grounded on the micro-sphere model
(more details in Sec. 4.4). Molecular chains along different direc-
tions have different elongations and different degrees of damage,
leading to the residual deformation and anisotropy. The works
based on the micro-sphere model includes Refs. [109-111].
Recently, Zhong et al. [27] took the micro-sphere model to describe
the damage of cross-linked network and considered the degradation
of entanglement (more details in Sec. 4.3).

4.2 Thermodynamically Based Models. Ogden-Roxburgh
model: Ogden and Roxburgh [107] developed a pseudo-elastic
model for the Mullins effect of rubbery material. Considering a spe-
cification of the model to a biaxial deformation

1 1 .
n=1- —erf[— Wy — W(y, /Iz))] (57)
r m
Wm = W(/llma /12m) (58)
ow ow
— =As—=1ls— =163 — & = 1, 2 59
op—03=1 T nAg 7 n6ps —63) p (59)

Here, C) denotes the quantities without damage effect. For
example, W is the SEDF of the purely hyperelastic material. W is
the corresponding SEDF considering the damage effect. The
damage parameter # connects the stress after damage and its corre-
sponding perfectly elastic stress (Eq. (59)). n is expressed as an
error function of W and its corresponding value W,, defined by
Eq. (58), with (41, 42,,) being the value of (4, 4,) at the point at
which unloading begins. The parameter r represents the degree of
damage, and m describes the dependence of damage on deformation.

When the material deforms along a primary loading path for the
first time, the damage parameter keeps a constant (7 =1), which
means the material behaves like an intact hyperelastic material.
The unloading from any point on the primary loading path activates
the damage parameter. For the first unloading and the subsequent
submaximal reloading and unloading, n develops in accordance
with Eq. (57) (O<n<1). Once W(A1, 42) reaches W,,, we regain
n=1. And the loading curve rejoins the primary loading path,
with W,,, updated to a new value.

According to Eq. (57), the damage parameter depends on the
energy rather than the deformation or stretch, which makes this
model different from the models whose damage criteria are based
on deformation (e.g., the network alteration model [26]). Any
pairs of (4, 4,) that satisfies W,, = W(1, A2) can be regarded as a
starting point for new damage.

Similarly, to quantitatively describe the pseudo-elasticity of
double-network hydrogel, Wang and Hong [112] built a relation-
ship between stiffness of double-network hydrogel and its corre-
sponding value after damage by parameter 7, which was
expressed as a function of historical maximal stretch. Lu et al.
[113] adopted an analogous form of the parameter # to build a con-
stitutive model incorporating the Mullins effect for soft materials.
By adopting the softening variable n, Wang et al. [114] developed
a phenomenological model which captures the Mullins effect and
the shakedown phenomenon of tough hydrogels under cyclic
loads. Recently, Lu et al. [115] put forward another pseudo-
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elasticity theory by introducing an internal variable into the strain
energy function of a single chain. This theory is capable of model-
ing the Mullins effect and the complex rate-dependent behaviors of
tough hydrogels.

In this model, the dissipation rate is non-negative, which means
Clausius—Duhem inequality is satisfied here. This thermodynami-
cally based model can reasonably capture the damage behaviors
of rubbery materials, while the damage parameter setting is incon-
sistent with the actual damage development in rubbery materials to
some extent. This model is phenomenological.

4.3 Physically Based Models. Model of Marckmann et al.:
Marckmann et al. [26] developed a new network alteration theory
to describe the Mullins effect. For both the particle-filled elastomer
and none particle-filled elastomer, chain fracture and linker break-
age happen as the applied deformation increases. Consequently,
the number density of chains decreases and the number of Kuhn
monomers of a single chain (the average chain length) increases,
which are described by the following three equations:

N = N(Amax) (60)
1 =n(Amax) 61)
n - N = constant (62)

where N denotes the average chain length and n is the number
density of chains. The product of N times n signifies the number
of monomers per unit volume which keeps a constant. While the
details of the network alteration (fracture of polymer chains and
linkers) can hardly be observed experimentally, the specific func-
tion form of N and n depend on the mechanical responses of specific
materials, and the exponential function and polynomial expression
are mostly used [26,109]. By adopting the eight-chain model, the
Cauchy stress can be expressed as

1 A A
i= =P + = CrR(Amax)v/ N (Amax _IL_l B v
i=1,2,3
with
Cr (j«ma\x) = n(ﬂmax)kBT (64)
At) =11 (1)/3 (65)
Amax = 52%, [/1(7)] (66)

where p is the hydrostatic pressure which can be determined by the
boundary condition, Ck is the modulus, 4; is the principal stretch,
and A, is the historical maximal chain stretch.

The network alteration theory was further improved by Chagnon
etal. [116] where Eq. (62) is no longer valid because chain breakage
leads to the formation of dangling chains. Two equations are
required to describe the alteration of chain length N and chain
density n, respectively.

The network alteration theory is grounded on the molecular chain
microstructure. Both the physical meaning and mathematical
expression are explicit. This model can be further improved to
describe the damage-induced anisotropy and residual deformation.
In the Ogden-Roxburgh model, during the first loading, the
damage parameter is inoperative, until unloading occurs; on the
contrary, in the Model of Marckmann et al., damage occurs imme-
diately during the first loading, and the damage-related variables no
longer develop in the subsequent unloading. The two models have
completely opposite settings for damage variables, while the latter
is closer to reality.
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Model of Zhong et al.: Recently, Zhong et al. [27] proposed a
damage model for soft materials. The SEDF is composed of
the cross-linked part and the entangled part, as discussed in
Sec. 2.2.2 of this paper. For the cross-linked part, they adopted
the network alteration theory to describe the damage effect, and
they used the micro-sphere model to incorporate the damage-
induced anisotropy and residual deformation. For the entangled
part, as the deformation increases, the surrounding chains break
and the entangled constraint acting on an individual chain will
decrease. The irreversible degradation of entangled constraint is
reflected by a decreasing entangled modulus. The principal stress
along direction i with damage effect is expressed as

7 i, 2
- 3G142(a)
;= Z weight(j) 2 2
J (1 _ (j’chain) )(1 + (luhuin) )
N/ 2Ni

1
- Ge -+ Phydro (67)

A
Here, i =1, 2, 3 indicates three principal directions and j=1,2, ..., J
stands for the chain series number. The symbols o} (i =1, 2, 3) =
[, , ¥] denote the end-to-end unit vector of the chains along
the jth direction, and weight(j) is the chain density weight along
the jth direction, and pj,4,, is the hydrostatic pressure. The cross-
linked modulus for the jth direction is expressed as

G. = G.g/DamageCo/(t) (68)

with the initial (non-damage) cross-linked modulus G.y. The
number of monomers of the chains along jth direction is expressed
as

N =Ny - DamageCo/(r) (69)

with N, being the initial number of monomers per chain. The
damage coefficient for the jth direction chains is

DamageCo/(f) = max [p - F, . ()= 1% +1]

O<r< chain

(70)

with p being the damage factor of the cross-linked network, and the
stretch of the chains along the jth direction given by

Bonain =105 + B} + 2317 (7D
The entangled modulus is expressed as
o R (72)
/ €Xp (k(Amax - l))
Amax = max [v/11(2)/3] (73)
<7<t

with the initial entangled modulus G,,, the damage factor of the
entangled network k, and the historical maximal value of macro-
scopic deformation A,,x. For the cross-linked network, they distin-
guished the various chain stretches along different directions to
incorporate the damage-induced anisotropy and adopted a unified
macroscopic stretch for the entangled network to avoid complexity.

In most of the damage models, degradation of the entanglement
between molecular chains was often ignored and it was considered
in this damage model. This model can capture the stress softening,
damage-induced anisotropy, and residual deformation with five
parameters bearing physical significance.

Zhao model: Zhao [28] developed a theory to characterize the
damage of interpenetrating polymer networks (IPN). Taking the
double-network hydrogel [117] as an example. This IPN includes
a highly cross-linked network A and a loosely cross-linked
network B. The interpenetration of network A stretches the
polymer chains of network B and reduces its chain density. At the
same time, the chains of network A are also stretched by network
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B accompanied by a decreased chain density. Pre-stretch exists for

the two networks and can be expressed as C; '~, with
G="1 i=AB (74)
n;

where 7; is the number density of chains of the ith network without
pre-stretch and #; is the number density of chains of the ith network
of the IPN. Due to the existence of pre-stretch, the total chain stretch
can be expressed as

A= CBN = B+ 23+ 2
y 3

where A corresponds to the chain stretch because of the deforma-
tion of IPN caused by the external loading.

Network A is highly cross-linked so its chain extension limit is
much smaller compared with network B. The damage of network
B is ignored and the damage of network A is described by the
network alteration theory

(75)

Ni = Nagexp [gAT* — C;')] (76)
na = ngo exp [-p(AT™ — C;'7)] (77

where 7,4 is the initial chain density of network A, and N4 is the
original number of freely joint links of an individual chain in
network A, the symbols p and g denote material constants. AJ“
is the historical maximal total chain stretch of network A.

Based on the above assumptions, the uniaxial tension/compres-
sion stress can be expressed as

C\PKTp, 1 , s
X A _
a <3VAMAA R AR (A4 A

c;/ KTy 2l

31/8\/1_\];/\3 ( ’Ij)
where v,4 and vp are the volumes of one monomer of network A and
B, respectively, and f is the inverse Langevin function.

By integrating the network alteration theory and the interpene-
trating network theory, Zhao model predicts the Mullins effect of
IPN and explains the necking instability phenomenon observed in
the experiments of double-network hydrogel.

Zhu-Zhong Model: Zhu and Zhong [118] proposed a model for
double-network hydrogel. Similar to the Zhao model, they split
the double-network hydrogel into network A and network B, with
network A damaged after deformation and network B fully elastic.
The pre-stretches and total chain stretches of these two networks
are described by Eqgs. (74) and (75).

Zhu and Zhong [118] took the chain length N, and chain density
n; of the network A as two internal variables to quantify the damage
evolution. However, different from Zhao Model which adopted
empirical equations (Egs. (76) and (77)), these two parameters are
determined from analyzing the energy dissipation. First, similar to
the energy dissipation by the viscoelasiticity as presented in
Sec. 3.1.1, the energy dissipated by internal fracture of network A
satisfies the Clausius—Duhem inequality (Eqs. (34) and (36)),
which is expressed by a specific form here as

§=—|:6—WNA +6—W7'1Ai| >0

(78)

ON4 7

Based on the assumption that no dangling chain is produced during
the damage of network A, the product of N, and n4 keeps a constant,
set as @y

(80)

with Ny and nyg are the corresponding quantities of Ny and ny
before any damage happens. Then, the energy dissipation rate can

Ny - ng =Npo - nao = Pa

110801-16 / Vol. 87, NOVEMBER 2020

be expressed in an incremental form

oW @, 0W
-
6NA N/% 6nA

€= Emax = Ecritical

N, (€max) if
E(e)= [ ] !

0 otherwise 81)

It is obvious from Eq. (81) that the evolution of the energy dissi-
pation with respect to deformation is related to the development of
the parameter N,. When the deformation of double-network hydro-
gel is smaller than its historical maximal value, no additional energy
is dissipated and the parameter N, remains unchanged. Once the
deformation exceeds its historical maximal value which is larger
than a critical strain, the damage further develops and part of the
mechanical energy is dissipated. Once we get the specific form of
the energy dissipation &(¢) based on the experimental data (e.g.,
the hysteresis loop between loading and unloading curves), the
damage evolution law, i.e., the evolution law for the two internal
variables can be solved. And the constitutive formulation of the
double-network elastomer is determined.

In the models based on network alteration theory, like the Model
of Marckmann et al., the Model of Zhong et al. and Zhao Model, as
we mentioned above, damage happens immediately once the exter-
nal force is applied. Based on the experimental observations of the
double-network hydrogel [119], Zhu and Zhong set a critical strain,
above which the damage initiates. In the Zhao Model, the evolution
laws of the chain length and chain density are assummed in advance
(Egs. (76) and (77)), and the damage parameters are determined by
mathematically fitting the theoretical stress—stretch relationship
with experimental data, like the overall loading/unloading stress—
stretch data. While the development of the chain length and chain
density in this model is decided by analyzing the energy dissipation
(Eq. (81)) and mass conservation (Eq. (80)), several sets of data
on both stretch value and area of hysteresis loop determine the
energy dissipation function &(¢). In terms of model applicability,
the Zhu-Zhong Model captures the mechanical behavior of
double-network hydrogel before the neckling, while the Zhao
Model further describes the harding phenomenon after the neckling
of double-network hydrogel.

Model of Lavoie et al.: Lavoie et al. [29] developed a continuum
model to describe the progressive damage of multi-network elasto-
mer (MNE). MNE composed of M networks, and the deformation
gradient of the ith network can be expressed as

F, = FO|,_, (82)
and the corresponding left Cauchy—Green deformation tensor is
B, =F,(F:)" (83)

where F corresponds to the deformation applied on the MNE by the
external loading, and ®!,_, is the deformation gradient for the ith
network caused by the M—1 times swelling and drying operations.

The total SEDF of MNE is the sum of each network’s energy
density times its volume fraction ¢, as

Wy (B) = Z B Wi (Bj) (84)
and the Cauchy stress is
owi
ou = Z B2 aMB(, g, i — Pl (85)

Similar to the double-network hydrogel, the mechanical response
of the filled network (i=1) varies from the matrix networks (i> 1),
so we need different SEDFs to describe them.

The SEDF for the matrix network is expressed by the generalized
neo-Hookean constitutive model as

Wi, (I, (B}, ))— i>1

) —1y, (86)

with a shear modulus u,, and a material parameter 7,,,.
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The SEDF for the filled network can be expressed as

o0
W, = yj FN)B(ry s NES,(r*)dN (87)
1
where u =nkgT, n is chain density without swelling or drying. f(N)
is the probability density function that describes the distribution of
chain lengths. B(r}; .., N) is the damage function which depends on
both the historical maximal chain stretch 7}, and the number of
Kuhn monomer per chain N. E},(r*) is the dimensionless free
energy of the stretched polymer chain and r* is the fractional
stretch of polymer chains.

The probability density function (V) can be determined by some
experimental methods. For example, Ducrot et al. [92] synthesized
polymers with specific cross-linkers, and these cross-linkers emit
light when they break. The recorded light intensity can estimate
the chain length distribution. The Maxwell-Boltzmann distribution
can also be adopted, and this distribution was incorporated into a
rate-dependent model to describe the progressive damage behavior
of elastomers [120]. The damage function B(r}, ., N) depends on
both the historical maximal chain stretch 7}, and the number of
Kuhn monomer per chain N. The interested readers may refer to
Ref. [29] for more details about the damage function. The fractional
stretch r*=R/Nb of polymer chain is given as

. R L(B))
y =—=
Nb 3N

where R is the end-to-end distance of a single chain and b is the
length of a Kuhn monomer. The dimensionless polymer chain
energy E%, (r*) is expressed as

(88)

7

EL@G) = J )

o

F,@"dr* (89)

where rj=+/1/N is the initial fractional chain stretch. The dimen-
sionless chain force is expressed as

* 1 *\—2 1 * *
Fch_2(1 rY) 2 2r r'<09
* 513 * * 2
F = o+ 501(r*=0.9) + 26,238(r*—0.9)
+68,436(r*=0.9) r*>0.9 (90)

In this model, the distribution of chain length is taken into account.
The molecular chain with a specific length has a related damage
function. A new force—stretch relationship for a single chain is
adopted for avoiding the singularity of chain force when r* gets
close to 1. This model provides an accurate description of the exper-
imental data of multi-network elastomers.

4.4 Mixed Models. Qi-Boyce model: Following the concept of
soft/hard domain by Mullins and Tobin [81], Qi and Boyce [97]
developed another damage model. The macroscopic deformation
and the deformation of the soft domain are connected by the ampli-
fication factor, and this factor is affected by the proportion of the
soft domain. As the historical maximal deformation increases, the
volume fraction of the soft domain increases. The SEDF W of
the material is assumed to be only contributed by the soft domain
and is expressed as follows:

W = vgikpT | v/NAchain + N In — b 1)
sinh
where f is the inverse of Langevin function formulated as
=L (Aewain/VN) 92)
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The chain stretch of soft domain Ay, is formulated by the mac-
roscopic deformation /; and the amplification factor X as

Achain = vX(I1/3 - 1) +1 93)
and the amplification factor X is expressed as
X=1+3.5(1-v)+18(1 — ) (94)

with v, being the volume fraction of the soft domain. The quantity v,
varies with the historical maximal deformation and is described as

. VN-1
Vs = A(vgs — l}»")imax2 :;;};n 0
(VN = AT,
: 0. Achain <Ay
Ama)_( _ U, chain chain 96
chain Achains  Achain = Aghain oo

where A and v are material constants.
Once the SEDF W is obtained, the Cauchy stress o can be calcu-
lated by

x'X kgT N Ac ain
= W2 “/_L—l( h )B—pl 97)

3 Achain «/N

with the left Cauchy—Green deformation tensor B. The symbol p
denotes the hydrostatic pressure that can be determined by bound-
ary conditions, and I is the identity tensor.

This model adopted the concept of soft and hard phases and the
amplification factor. It well predicts the mechanical behaviors
during cyclic loading under various states of deformation.

Goktepe-Miehe model: In order to describe the anisotropic damage
behavior of particle-filled rubber-like materials, Goktepe and Miehe
[100] extended their micro-sphere hyperelastic model for consider-
ing the damage. The overall network consists of the hyperelastic
cross-link to cross-link (CC) part and the particle-to-particle (PP)
part which is assumed to be the source of the damage. The mechan-
ical response of the hyperelastic CC network is described by the
micro-sphere model [25], which has been introduced in Sec. 2.2.2
of this review. Attention herein is focused on the discussion of the
PP network. The damage behavior is originated in the PP network
due to the destruction of bonds between polymer chains and filled
particles. The main equation in this model is

B =&, d)- By° (98)
where £ and ¢ are the normalized stress function and the normalized
energy of single-chain, respectively, d is the internal damage vari-
able. ?* is the micro stress after damage, and S{” is the correspond-
ing perfectly elastic micro stress as

5" = ksTN™ ¢/ () 99)

with N”” being the number of chain segments (Kuhn monomers) of
the PP network. The ¢'(4) is the derivative of ¢ with respect to A and
the expression of ¢ is

BA")

)= APPBAPP) + In—r 2
0= A PAL +in

(100)
where fis the inverse of Langevin function, the relative stretch 127 is
written as

A

pp—__
A =

= (101)

here 1 in Eq. (101) stands for the micro stretch of a single chain, and
the micro stretch of a single chain is connected to the macro stretch by
the affine relationship shown as

A=21 (102)
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with the macro stretch 4 being given by

1=gf 1 (103)

and

t=Fr (104)

where g is the Kronecker symbol of the current configuration
and r is a unit vector. F is the macroscopic deformation gradi-
ent tensor.

As shown in Eq. (98), the perfectly elastic micro stress " and
the corresponding micro stress after damage 7 are connected by
the normalized stress function &. The specific expression of & is
given as

&g, d) = c1(d)p — c2(d)]* + c3(d) (105)
co(d)=ksexp(—1)*v.d) a=1,2,3 (106)
- _J¢ for ¢p=¢(d) and ¢>0
4= { 0 otherwise 107)

where [k, v,], a=1, 2, 3 are six material parameters. The relation-
ship between internal damage variable d and the normalized energy
@ is expressed as Eq. (107).

Once the micro stress after damage f*” is obtained, the macro-
scopic Kirchhoff stress and the tangent modulus can be calculated by

T = (nPP/;PPZ’lt ® t> (108)

C” =28,z (109)
where n”” is the chain density of the PP network. The average oper-
ator “<->” in Eq. (108) is interpreted as the homogenization over the
surface of a unit micro-sphere [100].

In this model, the micro-sphere model is adopted to characterize
the residual deformation and damage-induced anisotropy. There are
13 parameters that need to be fitted by experimental data in total, in
which five parameters are from the CC network and others belong to
the PP network.

Model of Vernerey et al.: Vernerey et al. [121] developed a statis-
tical damage model by analyzing the chain configuration. For a
polymer chain consisting of N Kuhn monomers, the end-to-end
vector R satisfies the following distribution

3\ 3R-R
QB =co{ ap2) P\~ 2w

where R is the undeformed end-to-end vector of a single chain, cg
the initial total chain density, and @ is the chain distribution of
undamaged state. The chain distribution can also be expressed in
the current state as ¢o(r, 1), where r is the current end-to-end
vector of a single chain. When the end-to-end distance of a single
chain exceeds a critical value, the chain rapture, and the breakage
of the chain then causes damage to the polymer network; as a
result, the chain distribution changes as

(110)

DR, 1) =Dy(R)(1 — AR, 1)) (111)
or expressed in the current configuration as
@, 1) = o, (1 =6, 1)) (112)

where ¢ is the current end-to-end distance distribution and @ is the
end-to-end distance distribution of undeformed configuration. The
quantities with subscript “0” correspond to the non-damage situa-
tion. The notation A(d) describes the dimensionless damage distri-
bution which describes the proportion of fractured chains. A(5) is a
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distribution function about chain length and it evolves with time
(deformation). The most essential thing is to find the evolution
law of the damage distribution. It is not difficult to imagine that
the larger the initial end-to-end distance of a single chain is, the
easier it breaks. Vernerey et al. [121] adopted a cumulative proba-
bility function P(r) to solve the damage distribution

1 1 5
Tl ol el

where o, stands for the standard deviation and it describes the var-
iation in chain fracture, r.. is a critical fracture end-to-end distance of
a chain. A basic feature for P(r) is that it is close to zero when the
end-to-end distance is small, while increases sharply to one when
the end-to-end distance approaches r.. Accordingly, the damage
evolution equation can be phrased as

P(r)= (113)

AR, )=VPF)-F VPF)-F>0

. (114)
AR, 1)=0 VP@r)-1<0
with the initial value of A as
AR, 0) = P(r) (115)

Once the evolution of damage is confirmed, the chain distribution
at any current configuration can be calculated, and the Cauchy stress
is

c=j[¢—(b](t®r)d§2,+pl (116)
where the integral is taken over all configuration space Q,. The
quantity p is determined by the boundary condition and I is the
identity tensor. ¢ =dy/dr is the chain force vector, with the chain
energy y expressed as

w(r):kBTN<iﬁ+1n b ) (117)

JN sinh

This model describes the end-to-end distance distribution of a
single chain quantitatively. Once the end-to-end distance exceeds
a critical value, the chain fractures and thus causes damage. The
highlights of this model include the clear microscopic physical
meaning as well as the capability to accurately characterize the mac-
roscopic mechanical response.

4.5 Summary 3. In Table 5, we summarize the damage
models reviewed in Sec. 4. All the models introduced in this
section have a damage criterion. The core problem for building a
damage model is to construct reasonable damage criteria. For phys-
ically based models, all of their damage variables bear physical
meanings. If the damage variables do not have physical meaning
but the models nevertheless satisfy the Clausius—Duhem inequality,
we call them thermodynamically based models. If parts of their
damage variables have physical meaning, we term them as mixed
models.

Table 5 Damage model

Thermodynamically based
models
Mixed models

(Ogden and Roxburgh, 1999)

(Qi and Boyce, 2004); (Goktepe and Miehe,
2005); (Vernerey et al., 2018)

(Marckmann et al., 2002); (Zhao, 2012);
(Zhong et al., 2019); (Lavoie et al., 2019)
(Zhu and Zhong, 2020)

Physically based models
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5 Conclusions and Remarks

This paper presents an overview of constitutive models account-
ing for the hyperelasticity, visco-hyperelasticity, and damage phe-
nomena in soft materials. We specifically focus on the so-called
physically based models accounting for microscopic polymer
chain characteristics such as, for example, polymer chain entangle-
ment. Typically, the models that take into account the entanglement
constraints provide more accurate fitting of the experimental data.
On the other hand, one may want to limit the number of fitting
parameters; in this case, sufficient accuracy still can be achieved,
as, for example, for Arruda—Boyce model [44] with only two
parameters. However, when higher precision is required, especially,
under large non-trivial deformation modes, the models, considering
entanglement constraints, are recommended. Among such models,
the model by Xiang et al. [19] and the non-affine network model
[20] show the best capability to fit the experimental data under
large deformation. An attractive feature of these accurate models
is that they require only three parameters that are directly related
to the physical parameters at the microscopic length scales.

The key to developing thermodynamically based viscohyperelas-
tic models resides in the choice of the SEDF, internal variables, and
their evolution equations. Physically based models derived from the
motion of molecular chains provide a better understanding of the vis-
cosity origin. Quantitively comparing the performance of various
viscohyperelastic models is, however, challenging due to their dif-
ferent application conditions. Nevertheless, we point out some char-
acteristics for these models to help choose suitable models for
particular material systems. Holzapfel-Simo model [69] can be
used to deal with the fully thermomechanical coupled (thermovis-
coelasticity) problems. Bonet model [71] is applicable to the aniso-
tropic material. The model of Amin et al. [59,60] is specially
developed for high damping rubbers under compression and shear
regimes. Kumar and Lopez-Pamies model [56] can characterize
the deformation-enhanced shear thinning behavior. The model of
Tang et al. [22] can describe the local inhomogeneous deformation
for both unfilled and filled cross-linked elastomers. The model of
Long et al. [75] aims at the dual cross-link self-healing gel. The
model of Li et al. [23] directly derives the material parameters
from molecular dynamics simulations.

Constructing a reliable damage criterion is a necessary and core
task for the development of damage behavior models for soft mate-
rials. Damage criteria determine whether the damage happens and
how the damage develops. Qi—Boyce model [97] and Goktepe
—Miehe model [100] adopted damage parameters to describe the
relationship between the stress after damage occurs and the corre-
sponding perfectly elastic stress; and the damage parameters
depend on the SEDF and its historical maximum value. The
model of Vernerey et al. [121] utilized a damage distribution func-
tion to describe the evolution of chain length distribution with
damage. In the network alteration model of Marckmann et al.
[26], based on a specific physical picture, the chain density
decreases and the average chain length increases when the historical
maximal deformation increases. All the damage models we men-
tioned are able to capture damage-induced stress softening beha-
vior. Particularly, the models based on micro-sphere hyperelastic
models, such as the model of Zhong et al. [27] and the Goktepe-
Miehe model [100], are able to further describe damage-induced
residual deformation and anisotropy; in addition, Zhao model
[28], Zhu and Zhong’s model [118] and model of Lavoie et al.
[29] can describe the damage of multi-network elastomers.

The mechanics and physics of soft materials are immensely rich
fields, and the current review, mostly focusing on hyperelasticity,
visco-hyperelasticity, and damage, does not cover all the phenomena
related to soft material behavior. We note that while the current state
of constitutive models provides powerful means for modeling of
conventional soft materials, the development of new synthetic and
3D-printed soft materials poses unique challenges and opportunities
for the development of suitable constitutive models. Moreover,
the constitutive models for soft materials are of essence for
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understanding the complex behavior of soft biological tissues and
organs. Developing in vivo constitutive models for biological
tissues and organs is of vital importance to develop reliable patient-
specific models [122]. For instance, accurate modeling of the
mechanical behaviors of the ventricular wall is helpful to develop
a predictive patient-specific model for dyssynchronous heart
failure [123]. However, the difficulties to measure the accuracy in
vivo properties pose a challenge to develop in vivo models. Inspir-
ingly, machine learning methods, especially deep learning, can be
instrumental for the development of new constitutive models. One
of the deep learning methods is called physics-informed neural
network method, and it is started to be used to estimating
unknown constitutive relations for given systems [124,125].
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Appendix

In this Appendix, we will briefly introduce the deformation
tensors used in this paper. Further comprehensive readings on this
topic can be found from Ref. [37].

As shown in Fig. 18, the material point denoted by vector X in the
reference configuration € is mapped by F into the position x in the
deformed configuration Q. Thus

dx =FdX (A1)
where
Ox
F= X Gradx (A2)

is the definition of deformation gradient tensor.
The right and left Cauchy—Green deformation tensors are respec-
tively defined by

C=F'F (A3)

and
B = FF’ (A4)

The first invariant of the right (or left) Cauchy—Green deforma-
tion tensor which is frequently used in constitutive models is
defined as

I =tr(C) = tr(B) (AS)

(0]

Fig. 18 Depiction of the reference configuration Q, mapping
into the deformed configuration Q
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