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Abstract

Understanding of wave propagation phenomena in solids is pivotal for numerous
engineering applications in healthcare, petroleum, military, and aerospace indus-
tries. Among them nondestructive material testing, vibration protection of sensi-
tive electronics, unwanted noise mitigation, earthquake forecasting, and medical
ultrasound diagnostics. The ability of flexible materials to sustain large deforma-
tions opens rich prospects for manipulating elastic wave characteristics by defor-
mation. Moreover, elastic waves can be tuned through designing micro- or macro-
structures, which can be further actively controlled by external stimuli, such as me-
chanical loading, electric or magnetic fields. Understanding of how large deforma-
tions affect relatively simple isotropic and more complex anisotropic materials is
essential for this task. Therefore, in my thesis, I investigated the acoustic properties
of the relatively simple initially isotropic non-linear materials and then proceeded
with the periodic layered and fiber composites made of these materials. Firstly,
I studied the influence of the deformation induced stiffening (intrinsic feature of
most soft materials) on the propagation of small-amplitude elastic plane waves.
Secondly, I showed that electroelastic isotropic materials (i.e. dielectric elastomers)
can be utilized to achieve acoustic functionalities such as decoupling of pressure
and shear waves by application of an electric field. Thirdly, I analyzed wave prop-
agation in non-linear elastic and electroelastic laminates. In particular, I derived
the long wave estimates of the phase and group velocities for the waves propagat-
ing in the laminates subject to external mechanical or electrical stimuli. Moreover, I

found the material compositions and loading conditions producing wide complete



band gaps (frequency ranges where neither pressure nor shear waves can propa-
gate) at desired low frequency ranges. Finally, I investigated the anisotropy of
elastic wave propagation in finitely deformed fiber composites (FCs). Specifically,
by employing rigorous analytical methods of non-linear mechanics, I derived long
wave estimates for phase and group velocities of shear waves propagating in non-
linear FCs. Next, by utilizing Bloch-Floquet approach in a finite element code,
I calculated dispersion relations for shear waves propagating along the fibers in

FCs with square arrays of fibers.



List of abbreviations

FC - Fiber composite

P-wave — Pressure (longitudinal) wave
S-wave — Shear (transversal) wave

BG - Band gap

SBG — Shear wave band gap

PBG — Pressure wave band gap

DE - Dielectric elastomer

RVE — Representative Volume Element



Chapter 1

Preamble

Lightweight composite materials with excellent mechanical properties are of im-
mense importance for aerospace engineering [8]; however, in aerospace structures,
undesirable vibrations and noise propagate from the source, e.g., an engine, to
other parts; this phenomenon requires control, reduction, or even elimination.
Therefore, new lightweight materials allowing tunable noise and vibration reduc-
tion need to be developed, while maintaining mechanical properties such as stiff-
ness, toughness, and damage tolerance. Moreover, better understanding of wave
propagation phenomena in flexible materials can benefit nondestructive material
testing in composite aerospace structures. Motivated by these requirements for
aerospace structural materials, in my PhD research I explored the general field of
elastic wave propagation in non-linear isotropic elastic [21] and electroelastic [22]
materials and then in layered [19, 23] and fibrous [25] composites made of these

materials.



1.1 Wave propagation in non-linear elastic materials

1.1.1 Finitely deformed isotropic materials

Small amplitude elastic wave propagation in finitely deformed homogeneous isotropic
materials was pioneered by Biot [5]. Boulanger and Hayes [6] considered wave
propagation in finitely deformed incompressible Mooney-Rivlin materials and de-
rived explicit relations for wave velocities. Boulanger et al. [7] extended this work
to a broader class of finitely deformed compressible Hadamard materials and first
obtained the explicit expressions for the phase velocities of longitudinal (pressure)
and transversal (shear) waves. Recently, Destrade and Ogden [15] have revised
and generalized the problem of an infinitesimal wave propagation in the finitely
deformed hyperelastic materials by application of the invariant theory. More re-
cently, I have investigated infinitesimal (linear) wave propagation in finitely de-
formed compressible Gent materials, exhibiting pronounced stiffening effects, and
obtained closed form expressions for the phase velocities of longitudinal and transver-
sal waves [21]. It is worth mentioning that deformation can be utilized not only
for the changing of phase and group velocities of elastic waves but also for decou-
pling of P- and S-waves in these relatively simple originally isotropic non-linear

materials [9, 20].

1.1.2 Finitely deformed laminates

Small amplitude (linear) elastic wave propagation in linear bi-laminates made of

isotropic materials was pioneered by by Rytov [43]. He derived explicit disper-



sion relations for steady-state P- and S-waves propagating perpendicular and par-
allel to the layers. Recently, problem of wave propagation in periodic laminates
has been revived in a framework of elastic metamaterials [53, 59]. Hence, I ex-
tended classical result of Rytov [43] for non-linear bi-laminates made of hypere-
lastic isotropic materials, namely neo-Hookean and Gent materials [19]. This al-
lowed me to investigate influence of finite deformations on S- and P-wave band
gaps in these laminates. In particular, I found that S-wave band gaps (SBGs)
in laminates with compressible neo-Hookean layers are not influenced by defor-
mation, because deformation-induced changes in geometry and effective material
properties fully compensate each other. Thus, I corrected a misconception that
had prevailed in the literature [47], namely that SBGs could be tuned by applica-
tion of elastic deformation in compressible neo-Hookean laminates — I rigorously
showed, through exact analytical solution, that they could not [19]. However, con-
traction or extension of the laminate with Gent layers (exhibiting strong stiffening
effects) widens and shifts up SBGs towards higher frequencies due to the stronger
effect of deformation-induced change in the layer properties as compared to the
change in the layer thicknesses. Moreover, I derived closed-form expressions for
the phase and group velocities of long S-waves propagating in any direction in the
tinitely deformed laminates with incompressible neo-Hookean layers. For the case
of wave propagation perpendicular to the layers, I also obtained long wave esti-
mates for the velocities of P- and S-waves propagating in laminates with compress-
ible neo-Hookean or Gent layers [19]. More recently, Li et al. [32] studied oblique
S-wave propagation in finitely deformed laminates and showed that SBGs closes

immediately when the wave inclines from the normal (i.e., perpendicular to the

6



layers) direction of propagation. Additionally, Li et al. [33] investigated influence
of compressibility on BGs in buckled bi-laminates. Slesarenko et al. [50] found that
shear waves of lowest frequencies in marginally stable bi-laminates (i.e., deformed
close to the instability point) have negative (anti-parallel to the phase velocity)
group velocities for certain wavenumbers, which foreshadow onset of elastic in-
stability. Very recently, Demcenko et al. [13, 14] extended my analysis [19] and
investigated propagation of finite amplitude elastic waves in hyperelastic lami-

nates.

1.1.3 Finitely deformed fiber-reinforced composites

By employing the nonlinear elastic theory [57] and a phenomenological approach,
Scott and Hayes [46] considered small amplitude plane waves superimposed on
a homogeneous deformation in the so-called idealized fiber-reinforced materials
(with an incompressible matrix and inextensible fibers). The infinitesimal elastic
wave propagation in nearly incompressible and nearly inextensible fiber-reinforced
materials with unidirectional fibers was examined by Rogerson and Scott [38].
Later, Ogden and Singh [37] revisited the problem of infinitesimal wave propa-
gation in an incompressible transversely isotropic elastic solid in the presence of
an initial stress. In particular, they exploited the phenomenological theory of in-
variants and presented a more general and transparent formulation of the theory
for small amplitude waves propagating in a deformed transversely isotropic hy-
perelastic solid.

In my work [25], I employed a micromechanics based approach [11] accounting



for the phase properties and their spatial distribution to analyze the wave propa-
gation in finitely deformed 3D FCs, as opposite to previous works that employed
phenomenological approach [46, 44, 45, 38, 37], or numerically modeled the com-
posites in 2D settings [3], or did not consider finite deformations [1, 30]. I derived
explicit closed-form expressions for phase and group velocities of the S-waves
for any direction of propagation in finitely deformed 3D FCs with neo-Hookean
phases. These explicit expressions provide essential information on the S-wave
propagation in the long wave limit. To account for the interaction of the S-waves
with the composite microstructure, I implemented the Bloch-Floquet analysis [1, 3]
in the finite element code (COMSOL), allowing me to analyze small amplitude mo-
tions superimposed on finite macroscopically applied homogeneous deformation.
Moreover, I compared the micromechanics-based homogenization approach and
the numerical Bloch-Floquet analysis and showed the equivalence of these dis-
tinct approaches for the large wavelengths [25]. More recently, I studied influence
of fiber arrangement on shear waves and elastic instabilities in finitely deformed
FCs [24]. In particular, I showed that elastic instabilities and S-waves propagating
along the fibers in uniaxially deformed FCs can be tuned through the choice of the
periodicity (or periodic unit cell aspect ratio b/a) of FCs. It worth mentioning that
my numerical results on elastic instabilities in FCs with rectangular arrays of fibers

were validated by Li et al. [31] on 3D-printed FCs.



1.2 Wave propagation in non-linear electroelastic ma-
terials

Another part of my PhD research deals with problems of elastic wave propagation
in dielectric elastomers (DEs) materials that can significantly deform when sub-
ject to an electric field (Pelrine et al., 1998). Investigation of this problem opens new
possibilities for improving small length-scale devices, e.g., micro-electromechanical
systems in aerospace structures, where electric field is the preferred control pa-
rameter. Remarkably, even isotropic DEs allow to tune elastic wave propagation
by an electric field, e.g. one can decouple P- and S-waves propagating in DE via
application of a specific electric field [22]. However, for achieving more sophis-
ticated wave phenomena, such as band gaps, structured materials must be intro-
duced [61, 28].

Following the work of Toupin [56], the theory of nonlinear electroelasticity for
homogeneous isotropic hyperelastic media has been revised recently by Dorfmann
and Ogden [16], McMeeking and Landis [36], and Suo et al. [54]. More recently,
Cohen et al. [10] proposed a model based on considerations of polymer networks
under electromechanical loadings. Motivated by potential enhancement of elec-
tromechanical coupling, which is typically rather weak in DEs, microstructured
DEs have been explored [12, 55, 42] showing significant potential of this approach.
However, one needs to account for electromechanical instabilities [40, 4, 27] when
dealing with composite DEs.

The analysis of small amplitude wave propagation in finitely deformed non-

linear electroelastic materials in the presence of an electric field in the frame of the

9



quasi-electrostatic approximation was presented by Dorfmann and Ogden [17].
This paper has been followed by a number of works on elastic wave propagation
in finitely deformed homogenous and composite DEs [26, 48, 22, 60]. Note that
layered DEs are of specific importance since they may be realized through various
layer-by-layer material fabrication techniques which already allow manufacturing
of deformable layered materials [39, 29].

During my PhD I revisited the problem of S-wave propagation perpendicularly
to the layers in the laminates made of ideal (neo-Hookean) dielectric elastomers
and corrected a misconception that had prevailed in the literature [48, 49], namely
that SBGs could be shifted via application of an electric field I rigorously demon-
strated, through exact analytical solution, that they could not [23]. My results were

recently confirmed by Jandron and Henann [28].
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Chapter 2

Research methods

2.1 Non-linear elasticity

Consider a continuum body and identify each point in the reference configuration
with vector X. In the current configuration, the new location of the corresponding
points is defined by vector x = x(X, t). Then, the deformation gradient is F =
0x/0X, and | = detF > 0. For a hyperelastic compressible material with a strain
energy function ¢(F), the first Piola-Kirchhoff stress tensor can be calculated as

follows

_ 0y(F)
P= 1. 2.1)

For an incompressible material, ] = 1 and Eq. (2.1) modifies as

_9p(F) o7

where p represents an unknown Lagrange multiplier. The corresponding Cauchy
stress tensor is related to the first Piola-Kirchhoff stress tensor via the relation o =
J71P - FT.

11



In the absence of body forces the equations of motion can be written in the
undeformed configuration as

2

Dx
DivP = pg—2 2.3
ivP = pg D2’ (2.3)

where py is the initial density of the material and the operator D?(e)/D#?> repre-
sents the material time derivative. If the deformation is applied quasi-statically, the
right hand part of (2.3) can be assumed to be zero, and the equilibrium equation
reads as

DivP = 0. (2.4)

Consider next infinitesimal motions superimposed on the equilibrium state.
The equations of the incremental motions are

D?u

DiVP = pPo

where P is the incremental change in the first Piola-Kirchhoff stress tensor and u is
the incremental displacement.

The linearized constitutive law can be written as
Py = AoijrrFi, (2.6)

where F = Grad u is the incremental change in the deformation gradient, and the
tensor of elastic moduli is defined as Ag;ukp = 0%/ dFydFg. Under substitution of

(2.6) into (2.5) the incremental motion equation takes the form

Dzl/li
AOz’jkl”k,lj = Po—D 2 (2.7)

12



2.1.1 Small amplitude motions superimposed on large deforma-

tions

To analyze small amplitude motions superimposed on a finite deformation, we

present equation of motion (2.7) in the updated Lagrangian formulation

o%u;
Ajjritigj = PW;, (2.8)

where Ajjr, =] _1A0ijkl F, F;j is the updated tensor of elastic moduliand p = | ~1og
is the density of the deformed material.

We seek a solution for equation (2.8) in the form of plane waves with constant
polarization

u=gh(n-x—ct), (2.9)

where /i is a twice continuously differentiable function and unit vector g denotes
the polarization; the unit vector n defines the direction of wave propagation, and
c is the phase velocity of the wave.

Substituting (2.9) into (2.8), we obtain

Q(n)-g= pczg, (2.10)
where
Qix = Ajjunjn (2.11)

is the acoustic tensor defining the condition of propagation of the infinitesimal
plane waves. Thus, for a real wave to exist acoustic tensor has to be positively

defined for any non-zero vectors n and g

g-Q(n) - g = Ajunjngige = pc* > 0. (2.12)

13



Recall that the inequality
Ajjnjnigigr > 0 (2.13)

is called the strong ellipticity condition [57]. This inequality also arises in the sta-
bility theory of elastic and elasto-plastic solids. Thus, if the inequality (2.13) does
not hold true in any point of the body for the applied boundary conditions, the
body is unstable in this state. In a similar vein, the body becomes unstable if the
velocity of at least one wave with any polarization and any propagation direction
in the body becomes zero. It is worth noting that loss of strong ellipticity analy-
sis is widely used for finding macroscopic instabilities in homogenizable compos-
ites [34, 35, 2, 41].

For incompressible materials Eq. (2.8) modifies as

2
. 0j
Aijiagj +p,i = Pﬁ, (2.14)
together with the incompressibility constraint
uj; = 0. (2.15)

Substitution of (2.9) and p = poh’(n - x — ct), where py is a scalar, into (2.14) and
(2.15) yields

A

Q(n) - g=pc’g and g-n=0, (2.16)
where Q = 1-Q-Tand I = I — n®n is the projection onto the plane normal to
n. Thus, in the incompressible case, the strong ellipticity condition (2.13) subject
to the restriction g-n = 0. The readers, who are not familiar with non-linear
elasticity, are referred to the book by Volokh [58] for comprehensible discussion

and derivations of the material presented above.
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2.2 Bloch-Floquet approach for periodic composites

To analyze elastic wave propagation in finitely deformed periodic composites, I
superimpose small amplitude (linear) motions on a finitely deformed state [3]. Re-
call that in a periodic structure plane waves can be described by the Bloch func-
tion [30]. To perform the analysis, I utilize the finite element method with the help

of COMSOL.

2.2.1 Static finite deformation

Firstly, the solution for the finitely deformed periodic composite is obtained. The
macroscopic deformation gradient F = 1/0Q) [ FdV is applied through periodic
boundary conditions imposed on the displacements of the representative volume

element (RVE) faces such that
Ug—Uy=(F-1I)-(Xg—Xau), (2.17)

where A and B are the nodes on the opposite faces of the RVE boundary and
U = x(X) — X is the displacement field; RVE occupies a domain Q) in the un-
deformed configuration. The macroscopic first Piola-Kirchhoff stress tensor and
the corresponding Cauchy stress tensor are calculated as P = 1/Q [, PdV and
0 = 1/Q [, odV, respectively. Rigid body motions are prevented by fixing the

displacements of a single node, i.e. U4 = 0.

15



2.2.2 Small-amplitude motions superimposed on a deformed state

Secondly, the Bloch-Floquet periodicity conditions are superimposed on the de-
formed state. The corresponding incremental change in the displacement and the

tirst Piola-Kirchhoff stress tensor are
u(X,t) =UX)e ™ and P(X,t) =P (X)e “, (2.18)
where w is the angular frequency. Substitution of (2.18) in (2.5) yields
DivP + pow?U = 0. (2.19)
Next, according to the Floquet theorem
UX+R)=UX)e R and P (X+R)="7P(X)e KR, (2.20)

where R defines the distance between the nodes on the opposite faces of the RVE
in the reference configuration, and K is the wavevector in the reference configu-
ration. The periodicity conditions (2.20) are imposed in the finite element code
through the corresponding boundary conditions for the displacements of the op-
posite faces [3, 51]. The dispersion relations are obtained by solving the eigenvalue
problem stemming from Eq. (2.18), (2.19) and (2.20) for a range of the wavevectors
K. Recall that the corresponding wavevector in the deformed configuration can be

found via relationk = F~ T - K.

2.3 Non-linear electroelasticity

In this section, a brief description of non-linear electroelastic theory is presented.

For a full story, the readers are referred to the book by Dorfmann and Ogden [18]

16



and references therein.

2.3.1 Electrostatics

Here, the so-called quasi-electrostatic approximation assuming the absence of mag-
netic fields and neglecting electromagnetic interactions is adopted. Thus, in the
absence of free body charges and currents, the equations of electrostatics in the

current configuration read as
divD = 0 and curlE = 0, (2.21)

where D and E denote electric displacement and electric field applied in the current
configuration, respectively. Here and thereafter, the differential operators with
the first low-case letter refer to the current configuration, while the differential
operators with the first upper-case letter refer to the reference configuration.

In the reference configuration, the equations of electrostatics read as
DivD; = 0 and CurlE; =0, (2.22)

where

D, =JF ! -DandE, =F' -E (2.23)

are the Lagrangian counterparts of D and E, respectively.

2.3.2 Mechanical balance laws

In the absence of body forces, the linear and angular momentum balance for an

electroelastic material are

divt = pxy and T = T, (2.24)

17



where T represents the total Cauchy stress tensor (current configuration).

In Lagrangian description the balance equations (2.24) read as
DivP = pgx 4 and P-FT = F. PT, (2.25)

where

P=Jr-FT (2.26)

is the first Piola-Kirchhoff total stress tensor (reference configuration).

2.3.3 Constitutive equations

To model non-linear behavior of DEs, an energy potential ¢(F, Dy ), as introduced
in Dorfmann and Ogden [16], is considered. The strain energy-density potential
is a function of deformation gradient F and Lagrangian counterpart of electric dis-
placement D;. Then, for an electroelastic material, the first Piola-Kirchhoff total

stress tensor and Lagrangian counterpart of electric field are given by

_ 9y 9P
P = SF and E; = D, (2.27)

For an incompressible material, ] = 1, and the constitutive equations (2.27) modify
as

9y T 9P
P= SF —pF " and EL_BDL (2.28)

2.3.4 Incremental equations

For an electroelastic material, the incremental constitutive equations for the first

Piola-Kirchhoff stress and Lagrangian electric field read as

PZCotF—l—MO'DL and EL:FZMo—l—KO'DL, (2.29)

18



respectively. Here, the superposed dot represent incremental changes in the cor-
responding variables; Cy, M), and Ky are the tensors of electroelastic moduli de-
fined as

021 0% 021
Co=3rr M ~=p, ™ Xo=355p, (2.30)

For an incompressible material, the incremental equations (2.29) read as

P:CQ:F+ F_T'FT'F_T—'F_T—FM()-DL and EL:FZMO+KQ'DL.
P P

(2.31)

2.3.5 Incremental motions superimposed on finite deformation in

the presence of an electric field

In a framework of the updated Lagrangian formulation, the incremental forms of
the governing Egs. (2.22) and (2.25);, describing small motions superimposed on

finite deformation, transform to
divDy, = 0, curlEr, = 0, and divP, = px, (2.32)

where

D, =] 'F-Dy, B, =FT.E, and P, =] 'P-F' (2.33)

are the so-called push-forward versions of Dy, Er, and P, respectively. Identifying
the field of incremental displacements as u = x and then displacement gradient
as H = gradu = F-F~!, the following updated incremental relations (2.29) are
obtained

P,=C:H+M -D;, and E,,=H: M+K D, (2.34)

19



where
Cinks = | 'CoijutFriFst, Mk = MojjmEF,} and K= JF T.Ky-F1 (235)

are the updated tensors of electroelastic moduli, enjoying the following symme-
tries

Cirks = Crsirs Mk = My, and K =K. (2.36)
For an incompressible material, the incremental equations (2.34) read as
P,=C:H+pH' —pI+ M-D;, and E,=H: M+K-Dy,; (237
moreover, the incompressibility assumption implies

trH = divu = 0. (2.38)

2.3.6 Plane waves in incompressible DEs subjected to electrome-

chanical loading

The solution of Egs. (2.32) is sought in the form of plane waves with constant po-

larizations [17]
u=gf(n-x—ct), D, =dg(n-x—ct), and p = II(n-x — ct), (2.39)

where f, g, and IT are arbitrary twice continuously differentiable, continuously
differentiable, and continuous functions, respectively; as before, the unit vectors
g and d represent polarization vectors of mechanical and electrical displacements,
respectively; the unit vector n denotes the direction of wave propagation, and c is

the phase velocity of the wave.

20



Substitution of (2.37) and (2.39) into (2.32) and (2.38) yields
A.g=pc*g and g-n=0, (2.40)

where A is the so-called generalized acoustic tensor defining the condition of prop-
agation of plane elastic waves in an incompressible electroelastic solid. The gener-
alized acoustic tensor for an electroelastic material with an arbitrary energy poten-

tial ¢(F, D) can be calculated as follows [52]

A=0-——F"—R (tK)I-K) -R7, (2.41)

Qix = Cijynjn; and R=n-M. (2.42)

The generalized acoustic tensor A is symmetric. Recall that an incompressible elec-
troelastic material is strongly elliptic (stable), if its generalized acoustic tensor A is
positively defined, i.e. g-A -g > 0 for any unit vectors n and g satisfying the
incompressibility constraint (] = 1) n- g = 0 along an electromechanical loading

path defined through a combination of D; and F.
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Chapter 3

Findings

This chapter contains the findings of the research conducted to fulfill the require-
ments of the Graduate School of the Technion — Israel Institute of Technology. The
thesis submitted as a collection of papers, which were published in peer-reviewed
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We analyse the propagation of elastic waves in soft materials subjected to finite defor-
mations. We derive explicit phase velocity relations for matter with pronounced stiffen-
ing effect, namely Gent model, and apply these results to study elastic wave propagation
in (a) nearly incompressible materials such as biological tissues and polymers, (b) highly
compressible and (c) negative Poisson’s ratio or auxetic materials. We find, that for nearly
incompressible materials transverse wave velocities exhibit strong dependence on the di-
rection of propagation and initial strain state, whereas the longitudinal wave velocity is
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pressible materials, we show that both longitudinal and transversal wave velocities depend
strongly on deformation and direction of propagation. Moreover, the dependence becomes
stronger when stiffening effects increase. When compression is applied, the longitudinal
wave velocity decreases regardless the direction of wave propagation in highly compress-
ible materials, and increases for most of the directions in materials with negative Poisson’s
ratio behaviour. We demonstrate that finite deformations can influence elastic wave prop-
agation through combinations of induced effective compressibility and stiffness.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation of elastic waves has been investigated
intensively [1-16] because the understanding of the phe-
nomenon is vital for a large variety of applications from
non-invasive material testing and medical imaging for
health care to petroleum exploration. Recently, the field
of acoustic or phononic metamaterials has attracted con-
siderable attention. The peculiarity of these metamateri-
als originates in their microstructure [17,18], which can
be tailored to give rise to various effects such as local
resonances [19], band-gaps [12] and cloaking [20]. Fur-
thermore, soft metamaterials, due to their capability to

* Corresponding author.
E-mail address: rudykh@technion.ac.il (S. Rudykh).

http://dx.doi.org/10.1016/j.em1.2015.06.003
2352-4316/© 2015 Elsevier Ltd. All rights reserved.

sustain large deformations, open promising opportuni-
ties of manipulating acoustic characteristics via deforma-
tion [21-23].

In this work, we derive explicit phase velocity rela-
tions for finitely deformed materials, which stiffen when
stretched/compressed. Our analysis is based on the the-
ory first developed by Hadamard [2], which was recently
revised by Destrade and Ogden [11]. We specify the the-
ory for the class of Gent materials, and obtain compact
explicit expressions of phase velocities for any finite de-
formation and direction of propagation. The availability of
explicit relations for phase velocity is important for design-
ing mechanotunable acoustic metamaterials. Moreover, the
information may benefit non-invasive medical diagnos-
tic techniques by providing important information on the
dependence of elastic wave propagation on pre-stress/
pre-strain conditions, which are common in biological
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tissues. By application of the derived explicit expressions,
we show the role of deformation and significant influence
of stiffening effects on wave propagation in soft media
undergoing finite deformations. Moreover, we extend the
analysis to a class of exotic metamaterials characterized by
negative Poisson’s ratio (NPR) behaviour. Examples of NPR
materials, also known as auxetics, include living bone tis-
sue [24], skin [25], blood vessels [26], certain rocks and
minerals [25], and artificial materials [27]. As we shall
show, elastic wave propagation in these materials is sig-
nificantly affected by deformation. In our analysis, we
treat the materials as continuous media; their overall ho-
mogenized behaviour is characterized by effective elastic
moduli. These material properties may originate in so-
phisticatedly engineered microstructures that give rise to
remarkable overall properties (for example, negative Pois-
son’s ratio or/and bulk modulus). The information on
elastic wave propagation in terms of the effective proper-
ties can guide the design of new tunable metamaterials.
Moreover, this information can shed light on the distinct
roles of geometrical changes and material non-linearities
occurring in tunable metamaterials due to large deforma-
tions [28]. Furthermore, even simple homogeneous mate-
rials can behave like smart metamaterials when finitely
deformed. For example, they can be used to disentangle
shear and pressure waves [23,29].

2. Analysis

To analyse the finitely deformed state, we introduce
the deformation gradient F(X, t) = Vx ® x(X, t), where
X and x are position vectors in the reference and current
configurations, respectively. To take into account the non-
linear effects of the finite deformation as well as material
non-linearity, we analyse the wave propagation in terms
of infinitesimal plane waves superimposed on a finitely
deformed state [2,4]. To account for the stiffening effects
(due to, for example, finite extensibility of polymer chains,
or due to collective straightening of collagen fibres in
biological tissues) in finitely deformed media, we make use
of the strain-energy density function corresponding to an
approximation of the Arruda-Boyce model [30], namely
the Gent model [31,32] which is given in Eq. (1).

(=3
v (F) = 5 In (1 i ) wlin J

K_m_ B g—1y
+<2 3 jm>u D2, (1)

where wu is the initial shear modulus, K is the initial bulk
modulus, I; = tr Bis the first invariant of the left Cauchy-
Green tensor B = F- F', and | = det F. The model neatly
covers the stiffening of the material with the deformation;
as the first strain invariant approaches Iy = 3 +J,,, the en-
ergy function becomes unbounded and a dramatic increase
in stress occurs. Consequently, J;,, is a locking parameter.
Clearly, when J,, — oo, the strain-energy function (1) re-
duces to

¥ (F) = %(11 —3)—puinJ+ (K/2—u/3) (0 — D2 (2)

Fig. 1. Direction of propagation n relating to principal directions in
general case (a) and when n lies in one of the planes of orthotropy
(b). Here (eq,e;,es;) is orthonormal basis of eigenvectors of left
Cauchy-Green tensor B.

which is a compressible extension of the neo-Hookean
strain-energy function [33].

Recall the definition of an acoustic tensor [2,4] which
defines the condition of propagation of plane waves

Qmn) = A :n@n, (3)
where the unit vector n defines the direction of propa-

(2134)
gation of the wave; A = J~! (F . Aff”‘”) - F' and

Ag = gig/r are tensors of elastic moduli in current and ref-
erence configuration respectively; superscripts (1324) and
(2134) denote isomers of the fourth-rank tensors [34,35],
as detailed in Appendix A.

Strong stiffening. Acoustic tensor for finitely deformed

Gent material (1) takes the form

_ M K 2 23\,
Q(n) = ] (l—l—(’u 3 Jm)])n@)n

Hn
J&?
where & = 34J,,—I;,Iis the identity tensor, and BQ B(1324
is the fourth-rank tensor isomer (see Appendices A and B).

General case. One can conclude from (4) that in general
case (when n does not lie in any plane of orthotropy
(Fig. 1(a)) and deformations are different along each
principal axis, i.e. all eigenvalues of tensor B are different)
the waves are neither purely longitudinal nor purely
transversal (for details see Appendix B).

Case 1. If wave vector n lies in one of the planes of
orthotropy (Fig. 1(b)) then we always have one purely
transversal wave with the velocity

+ =2 (¢m-B-nI+2n®n:B®B"Y), (4)

¢r = /(@B -0/ (poé), (5)

where pp is the density of the undeformed material.
Any finite deformation F at a homogeneous state can be
represented as

F=1e;®e;+1e; @€, + Aze3 ® es, (6)

where A1, 3 are stretch ratios along principal directions.
Thus, expression (5) holds true for any combination of A4,
A and A3.

Case 2. When wave vector n lies in one of the planes
of orthotropy (for example in e; — e;) and stretch ratios
in this plane are equal (A; = A, = i) then we have
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one longitudinal and two transversal polarizations with
following velocities

= \/M (1 +nJ? +JnE2 (S +Zi2) iz) /Po (7)
and

Cor = Ay/ 1/ (0oE) (8)

respectively, withn = K/u — 2/3 — 2/]n.

Case 3. For waves propagating along the principal direc-
tion (n = e;), the velocities of longitudinal and transversal
waves are

6= i (1 02 42 (5 +242) 22) /00 9)

and

Cor = Aiv/ W/ (00&). (10)

Case 4. When materials undergo so-called uniform
dilatation or compaction (A = A, = A3 or F = ql), then
we have only pure modes with the velocities given by

a =\/,u (1+ (nq* +Jm&E 2 (€ +2¢%)) 4%) /1o (11)
and

Cor = G/ Wm/ (00&). (12)

Weak stiffening. In case of a weak stiffening effect,
namely, ], — oo, the acoustic tensor (4) reduces to the
well-known expression [9]

Qn) =an®n+aI—-n®n), (13)
where n®n is the projection on the direction n; (I—n®n)
is the projection on the plane normal to n; a; = (K —

2u/3)) +uwJ 'A+n-B-n)anday = /" '(n-B - n).
Consequently, there always exist one longitudinal and two
transverse waves for any direction of propagation n. Phase
velocities of these waves can be calculated as [13] ¢ =
JaiJ/po and ¢, = /axJ/po. In the small deformation
limit these formulae reduce to ¢; = /(K 4+ 414/3)/po and
Cr = +/I/po. It is worth mentioning that Boulanger and
Hayes [13,16] presented explicit phase velocity expres-
sions for wide classes of Hadamard and Mooney-Rivlin
materials; however, the Gent material model, considered
here, does not belong to these classes of hyperelastic ma-
terials.

3. Examples

To illustrate the dependence of wave propagation on
the deformation and direction of propagation, we consider
the case of uniaxial tension

F=)e;®e +il—e; ®e), (14)

where 2 is the applied stretch ratio and & = A(A, K/u) is
defined through A and the compressibility of the material.
Remind that the compressibility of the material is defined
by the ratio K/u. In the linear elastic limit the elastic
moduli are related through

K 2(1+4+v)

o 3(1-2v) (15)

a

Fig. 2. Polar diagrams of the phase velocities in nearly incompressible
materials: for the purely transversal (a), quasi-longitudinal (b), quasi-
transversal (d) waves in Gent material with J,, = 3 and K/u = 300;
and for the purely transversal (¢) wave in neo-Hookean material with
K/ = 300.

where v is Poisson’s ratio. Thus, —1/3 < K/u < o0
with & > 0. Note that for —1/3 < K/pu < 0 the
material is stable only if constrained [34,36,37]. It follows
from (15) that matter exhibits auxetic behaviour when
—1/3<K/u < 2/3.

Nearly incompressible materials. For nearly incom-
pressible materials (K /. > 1and A ~ A~"/2) the depen-
dence of the longitudinal wave velocity on the direction
of propagation and initial stress state is relatively weak
unless extreme levels of deformation are attained. Fig. 2
shows the polar diagrams of the phase velocities for the
nearly incompressible Gent and neo-Hookean materials
under extreme levels of deformation. Here and thereafter
the velocities are normalized by their value in the unde-
formed state; c¢; and c, are phase velocities along prin-
cipal directions e; and e,, correspondingly; more details
on phase velocity or slowness surfaces can be found in
the textbooks of Auld [38] or Nayfeh [39]. At the extreme
levels of deformations, the stiffening effect manifests in a
significant increase of the effective shear modulus, which
becomes comparable with the bulk modulus (see Eq. (9)).
Fig. 2(b) shows that velocity of longitudinal wave increases
in both compressed and stretched materials. Moreover,
stiffening of the material gives rise to the dramatic de-
pendence of transversal wave velocities on the direction
of propagation and deformation as compared to the ma-
terials with weak stiffening effect (compare Fig. 2(a) and
(d) vs (c)). Besides, we observe that the dependence of the
phase velocities on deformation and propagation direction
increases when the locking parameter J,, decreases (which
corresponds to an earlier stiffening of the material with de-
formation). Comparing the quasi-transversal wave veloc-
ity profiles with the purely transversal ones on the Fig. 2,
we observe that the velocity of quasi-transversal wave has
maxima for the non-principal directions (Fig. 2(d)). Note
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Fig. 3. Polar diagrams of the phase velocities in highly compressible
materials: for the quasi-longitudinal (a) and purely transversal (c) waves
in Gent material with J,, = 3 and K/ = 1; for the purely longitudinal
(b) and transversal (d) waves in neo-Hookean material with K/ = 1.

that this phenomenon is not observed in Hadamard mate-
rials [40,41].

Highly compressible materials. In contrast to nearly
incompressible materials, for highly compressible matter,
the velocity of longitudinal wave depends strongly on
the direction of propagation and initial deformation state
even for moderate levels of deformation. More specifically
Fig. 3(a) and (b) show that the velocity of pressure wave
increases when material is stretched and decreases when
it is compressed. Propagation of shear waves in highly
compressible media differs significantly from the one
in nearly incompressible materials. In particular, under
compression the velocities of shear waves decrease in any
directionif K/ < 1(Fig. 3(c)), while it can either decrease
or increase depending on the propagation direction in the
nearly incompressible case (Fig. 2(a) and (c)). It should
be noted that the deformation induced stiffening has a
significant influence on both modes (compare Fig. 3(a), (c)
vs (b), (d)), in particular when material is stretched. This is
due to an increase in the effective shear modulus (the term
/€2 inEq.(9)and p)n, /€ in Eq. (10)). The polar diagram
of the phase velocity for the quasi-transversal wave in Gent
material withJ,, = 3and K/ = 1is similar to one plotted
in Fig. 3(c), and it is not presented here.

Auxetic materials. Next, we consider auxetic materials
characterized by NPR behaviour. Yet can such materials ex-
ist? Would they be stable? How can they be constructed?
These questions have recently arisen in many papers
[19,27,36,37,42-45] and still the topic is open for discus-
sion. Wang and Lakes in their article [36] report that bulk
modulus can be varied within the range —%“ < K < oco.
Based on this and the previous estimations (Eq. (15)), we
examine the material behaviour when —1/3 < K/u < 0.
To illustrate the auxetic materials behaviour, we present
the dependence of X and Poisson’s ratio on the applied
stretch A for different ratios of K/ .

Fig. 4 show that NPR behaviour is more pronounced
in materials with negative bulk modulus. Note that the
material becomes locally non-auxetic when certain level
of deformation is reached. Furthermore, this level depends
on stiffening of the material. In particular, materials with
pronounced stiffening effect become locally non-auxetic
faster than materials with weak stiffening effect. For

=-=-=NH({K/p=1) Gent (K/ip=1,J_=3)
=-=-=NH(K/u=023) Gem(K-"}l:O‘].szj)
=s=:= NH (K/pu =~ 0.3) = Gent (K/n=-03,J_=3)
a
1.05
1.00
e =
0A95 e A.
y/
/
A’.
Y
K/
0.90 P
0.85 : ; i I
0.4 0.6 0.8 1.0
A
b o050
025 4
=)
T T

-1.00
0.4 0.6 0.8 1.0

Fig. 4. Dependence of & (a) and Poisson’s ratio v (b) on applied stretch A
for Gent and neo-Hookean materials with different ratios K /.

example, A, =~ 0.66 for neo-Hookean material with
K/uw = —0.3,and A, =~ 0.76 for Gent material with
K/u =—-0.3and]J, = 3.

An example of wave velocities for auxetic materials is
shown in Fig. 5. We observe that the velocity of the lon-
gitudinal wave increases in any direction of propagation
n when the material undergoes compression (Fig. 5(b)).
This is in contrast to the case of highly compressible mat-
ter (see Fig. 3(a) and (b)). Moreover, the velocity of the lon-
gitudinal wave increases and reaches the maximum when
wave vector n lies in the plane of transverse isotropy. How-
ever, for materials with strong stiffening effect the veloc-
ity of longitudinal wave decreases in some direction of
propagation (see Fig. 5(a)). Fig. 5(c) and (d) show that ve-
locities of transversal waves decrease considerably for all
directions of propagations n in contrast to the effect of de-
formation observed in the nearly incompressible materials
(Fig. 5(a), (c) and (d)). The influence of stiffening on elastic
wave propagation is rather weak in the case of auxetics as
compared to nearly incompressible and highly compress-
ible materials; yet it can be observed. In particular, phase
velocity of transversal wave decreases more under com-
pression when stiffening effect is pronounced (compare
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- A=035

—cem L=08§

Fig. 5. Polar diagrams of the phase velocities in auxetics: for the quasi-
longitudinal (a) and purely transversal (c) waves in Gent material with
Jm = 3 and K/ = —0.3; for the purely longitudinal (b) and transversal
(d) waves in neo-Hookean material with K/ = —0.3.

Fig. 5(c) vs (d)). The polar diagram of the phase velocity for
the quasi-transversal wave in Gent material with J,, = 3
and K/u = —0.3 is similar to one plotted in Fig. 5(c), and
is not shown here.

4. Concluding remarks

We derived explicit expressions for phase velocity for
finitely deformed materials with pronounced stiffening ef-
fect and demonstrated the significant role of the deforma-
tion on elastic wave propagation on examples for nearly
incompressible, highly compressible and extreme auxetic
materials. Furthermore, we demonstrated how direction
of wave propagation influences on the phase velocities
of elastic waves. These findings may guide further design
of mechanotunable acoustic metamaterials and phononic
crystals with a large range of constituent properties. The lo-
cal strain field in these engineered materials could be used
to induce regions with extremely varied phononic prop-
erties to give rise to various acoustic effects. This opens a
very rich and broad research avenue for designing tunable
acoustic/phononic metamaterials.

Appendix A. Isomers of a fourth-rank tensor

Here we follow the notation of isomer firstly introduced
by Ryzhak [34,35]. Let .M be a fourth-rank tensor with the
following representation as the sum of a certain number of
tetrads:

M=a1®a2®a3®a4+b1®b2®b3®b4+-~. (A])

Let (ijks) be some permutation of the numbers (1234). Then
the isomer M@ is defined to be the fourth-rank tensor
determined by the relation

M=a®aQ@qu®@a+b bbb +---. (A2)

The fact that the isomer is independent of the choice
of the polyadic representation of the original tensor can
be readily proved by using well-known isomorphism
between tensors and multilinear forms of the same rank.

Appendix B. Proof of absence of pure modes in general
case in deformed Gent material

For clarity sake let us write an expanded form of tensor
n ® n : B® B"3?% and its scalar product on n. First, let us
write B and B ® B:

B=F F =)l¢;®e +1e,®e, +Ae3®@e;  (B.1)
BRB=1e;Qe; ®e;Re+1e,0e, Qe Qe
+res Qe Qe Qes
+MM (e Re R Qe +e; R e @ e)
+)€)\§(el®e1®e3®e3+e3®e3®e1®e1)
—H»%A%(ez®e2®e3®e3+e3®e3®e2®ez). (B.2)

Now we can write the isomer (1324) of fourth-rank
tensor B® B as

B®B =)le;®@e; @6 Qe
+reRe Qe+ 1R Qe Qe
+AM (@ e Qe Qe +e;Re Qe Qe)
+AAM (e ResRe ®es+esRe ®e;Re)
+MM (@R, 0e+e30e;Qe3®e)). (B3)

Resolving n on the orthonormal basisn = n,e;+n,e;+
nses, we obtain

n®n:B®BP = )ine; @e, + Ajnle, ®e,
+A3nles ® es + Ay (61 @ e, +e; @ey)
+A1A3nins (61 ®@ e + €3 @ ey)
+2303mn3 (6; @ €3 + €3 @ €;) (B.4)

and

n®n:B®B" . .n= (An} + A3nd + A3nj)

x (Ainjer + A3nae; + Ajnses). (B.5)

Now, let g be a polarization vector, hence if g | n
we have longitudinal polarization and if g 1 n we have
transversal polarization. Firstly, assume that g || n then
expression (4) yields

Q) -n= (a¢+pEM-B-n))n

+28(n®n:B®B"*Y) . n, (B.6)
where for convenience we denoted @« = %(1 + (g -
% — ]lm)]z> and B8 = %" Since in general case vector

(n®n : B®B™Y . n) is not collinear to n (see Eq. (B.5)),
therefore vector g = n is not an eigenvector of acoustic
tensor, i.e. longitudinal polarization is absent, g.e.d.

Now let us assume that g L n then (4) yields

Qm)-g = B&m-B -n)g
+2f8(n®n:BRBM). g (B.7)
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Suppose that g is an eigenvector of acoustic tensor then

BEm-B-n)g+28(n®n:BRB?Y) . g=0g (BS)
Scalar multiplication of the last equation by n yields
n-(n®n:BB").g=0

or (Anie; + A3ne; + A3nses) g =0. (B.9)

Yet last expression does not hold true in the general case.
Consequently, g | n is not an eigenvector of acoustic
tensor, g.e.d.
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We investigate elastic wave propagation in finitely deformed dielectric elastomers in the presence of an
electrostatic field. To analyze the propagation of both longitudinal (P-) and transverse (S-) waves, we uti-
lize compressible material models. We derive explicit expressions for the generalized acoustic tensor and
phase velocities of elastic waves for ideal and enriched dielectric elastomer models. We analyze the slow-
ness curves of elastic wave propagation, and find the P-S-mode disentangling phenomenon. In particular,
P-and S-waves can be separated by applying an electric field. The divergence angle between P-and S-
waves strongly depends on the applied electrostatic excitation. The influence of an electric field depends
on the choice of a material model. In the case of the ideal dielectric model, the in-plane shear wave
velocity increases with an increase in electric field, while for the enriched model the velocity may de-
crease depending on material constants. The divergence angle also gradually increases with an increase in
electric field, while for the enriched model the angle variation may be limited. Material compressibility
affects the P-wave velocity, and for relatively compressible materials the slowness curve of the P-wave
evolves from circular to elliptical shape manifesting in an increase in the refraction angle of the P-wave.
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As a result, the divergence angle decreases with an increase in material compressibility.
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1. Introduction

Dielectric elastomers (DEs) are soft responsive materials that
can change their form and shape when subjected to an electric
stimulus (Pelrine et al., 2000; Bar-Cohen, 2002). DEs have at-
tracted considerable attention due to a large variety of possible
applications ranging from artificial muscles and soft robotics to
energy conversion and noise canceling devices (O'Halloran et al.,
2008; Brochu and Pei, 2010; Carpi et al., 2011; Rudykh et al., 2012;
Kornbluh et al., 2012; Rogers, 2013). The theoretical framework of
the non-linear electroelasticity is based on a theory first developed
by Toupin (1956; 1963), which was recently revisited by Dorfmann
and Ogden (2005; 2010) and Suo et al. (2008); Suo (2010). This fol-
lowed by a series of works on modeling DEs (Volokh, 2012; Itskov
and Khiém, 2014; Keip et al, 2014; Cohen and deBotton, 2014;
Jabareen, 2015; Miehe et al., 2015; Aboudi, 2015; Hossain et al.,
2015; Cohen et al., 2016), to name a few recent contributions.
The electromechanical coupling in typical DEs is rather weak,
and, therefore, DEs need to operate at the edge of instabilities and
breakthrough voltages to achieve meaningful actuation (Zhao et al.,
2007; Zhao and Suo, 2008; 2010; Rudykh and deBotton, 2011;

* Corresponding author. Tel.: +972 48292547.
E-mail address: rudykh@technion.ac.il (S. Rudykh).

http://dx.doi.org/10.1016/j.ijsolstr.2016.04.032
0020-7683/© 2016 Elsevier Ltd. All rights reserved.

Rudykh et al., 2014; Rudykh and Bertoldi, 2013; Gei et al., 2014;
Siboni et al., 2014; Bortot et al., 2016). Potentially, the need for the
high voltage can be reduced through architectured microstructures
of DEs increasing the electromechanical coupling (Huang et al.,
2004; Rudykh et al., 2013; Cao and Zhao, 2013; Galipeau et al.,
2014; Chatzigeorgiou et al., 2015). Moreover, synthesis of new
soft dielectric materials seems to be another promising approach
(Madsen et al., 2014). The effective electromechanical properties
of DEs can be actively controlled by external electric stimuli. The
dominant factor is the finite deformations induced by an electric
excitation. Since in purely elastic materials wave propagation
strongly depends on the mechanical properties of the media and
deformation fields (Rudykh and Boyce, 2014; Galich and Rudykh,
2015b; 2015a), this opens an opportunity to manipulate wave
propagation in DEs by applying an electric field.

In this work, we focus on elastic wave propagation in finitely
deformed DEs in the presence of a uniform electric field. To
explore the elastic wave propagation in DEs, we follow the widely
used approach for the analysis of small-amplitude motions super-
imposed on the finite deformations (Ogden, 1997) induced by an
external stimulus (Dorfmann and Ogden, 2010; Destrade and Og-
den, 2011). To allow for the consideration of the longitudinal wave
propagation (differently from the recent works (Gei et al., 2011;
Shmuel et al., 2012; Chen and Dai, 2012), where incompressible
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Fig. 1. Schematics of the splitting of pressure (P-) and shear (S-) elastic waves in
a nearly incompressible neo-Hookean DE. P-wave does not refract from the initial
direction of propagation, while S-wave refracts at a certain angle.

materials were considered), we utilize compressible electroactive
material models, namely the ideal (Zhao et al., 2007) and enriched
DE models. By application of wave propagation analysis to the
compressible DE models, we derive explicit expressions for the
generalized acoustic tensor and phase velocities for both longitu-
dinal and transverse waves. We find that electrostatically induced
changes in the key characteristics of shear (S-) and pressure (P-)
waves lead to a disentangling phenomenon, where P-and S-waves
travel in different directions. Fig. 1 schematically illustrates the
P-and S-wave splitting phenomenon. The divergence angle strongly
depends on the external field, the induced deformation, and mate-
rial compressibility. P-and S-waves possess diverse properties and,
thus, can be used for different purposes. For example, the S-wave
serves as a virtual “finger” to probe elasticity of internal regions
of the body in shear wave elasticity imaging (Sarvazyan et al.,
1998). Longitudinal and transversal elastic waves can be separated
at the interface between dissimilar materials; however, this may
cause a loss of energy or/fand a wave-mode conversion at the
interface (Achenbach, 1973). Alternatively, we can use dielectric
elastomers to split P-and S-elastic waves by applying a bias electric
field. This feature can be employed, for example, in small-scale
micro-electromechanical systems, where it is convenient to use an
electric field to control the performance. Moreover, due to mathe-
matical similarities between electro- and magneto-active materials,
this splitting phenomenon can be utilized in magnetorheological
elastomers controlled by an external magnetic field.

2. Analysis

To analyze the finitely deformed state, we introduce the de-
formation gradient F(X,t) = Vi ® X(X,t), where X and & are po-
sition vectors in the reference and current configurations, respec-
tively. In order to model a non-linear electroelastic material be-
havior, we consider an energy function v (F, Dy), which is a func-
tion of deformation gradient F and electric displacement vector Dy
in the reference configuration. The corresponding electric displace-
ment in the current configuration is given by D = J-'F - Dy, where
J = det F > 0. The first Piola-Kirchhoff stress tensor and electric
field in the reference configuration are given by

Y = _ 0y
Po=—= and Ey=—2%-, 1
0= E 0= 35, (1)
the corresponding counterparts in the current configuration are
T=J'"Py-F' and E=FT.E,. (2)

Linearized constitutive Eqgs. (1) read as
8Py =Co: 8F+ Mo -8Dy and 8Ey=68F: Mo+Ky 8Dy, (3)
where § denotes an incremental change; Cp, My and K, are

the so-called tensors of electroelastic moduli (Dorfmann and
Ogden, 2010) defined as

9%y 0%y 9%y
CO = m, MO = aFaD.O and I(O = m (4)

Note that Cy = Cff‘m) and Ky = Kg; here the superscript (3412)
denotes an isomer of the fourth-rank tensor (Galich and Rudykh,
2015b; Ryzhak, 1993; Nikitin and Ryzhak, 2008) as detailed in
Appendix A.

Next, we consider the small-amplitude motions superimposed
on finite deformations; hence, we present the incremental consti-
tutive Eqs. (3) in the frame of the updated reference configuration

SP=C:8H+ M 8Dy, and 8Ey =8H: M +K- 8D, (5)

where 8P =J~16Py - FT, 8Dy =) 'F-8Dg, 8Ep; =FT-8Ey, SH=
SF.F1,
c= 1 (F-c2% . F)™Y M= F MY Fand K

= JFT . Ko -F1. (6)

Note that C=CG42) M3 =M and K=K'. The linearized
equation of motion and Maxwell’s equations in Eulerian form are

REITS
W?
where @ is the incremental displacement; p = py/J is the den-
sity of the deformed material and pq is the initial density of the
material. We assume the absence of free body charges and cur-
rents. Note that we use the so called quasi-electrostatic approxi-
mation (Dorfmann and Ogden, 2010; Maugin, 1985); more specifi-
cally, the interactions between electric and magnetic fields are ne-
glected. This is the non-relativistic approximation corresponding to
the case where the mechanical velocity is significantly smaller than
the light velocity (Dorfmann and Ogden, 2010).

We seek for a solution for Eqs. (7) in the form of plane waves
with constant polarizations

T=rif(i-X—ct) and 8Dy =dg(ii-X—ct), (8)

Vi -8P=p Vex8Ey =0 and Vi-8Dg =0, (7)

where f is a twice continuously differentiable function and g is a
continuously differentiable function; unit vectors 7i and d are po-
larization vectors of mechanical and electrical displacements, re-
spectively; the unit vector i defines the direction of wave propa-
gation, and c is the phase velocity of the wave.

Substituting (5) and (8) into (7), we obtain

A .1 = pc’, 9)

where A is the so-called “generalized” acoustic tensor defining the
condition of propagation of elastic plane waves in non-linear elec-
troelastic materials. The generalized acoustic tensor of electroelas-
tic materials with an arbitrary strain energy function v (F, Dy), has
the following form (Destrade and Ogden, 2011; Spinelli and Lopez-
Pamies, 2015)

2 U
A=Q-—= R ((trK)I-K) -R, 10)
Q (trK)2 — trK2 (( ) ) (

where
i=l-ide (11)

is the projection on the plane normal to i, K=1.K -1, and
Q=C":7gfd and R=#- M. (12)

Note that the generalized acoustic tensor A and the purely elas-
tic acoustic tensor Q are symmetric. Recall that for DE to be sta-
ble, the generalized acoustic tensor A has to be positively defined.
Note that an analogue of the generalized acoustic tensor (10) was
derived by Destrade and Ogden (2011) for incompressible magne-
toelastic materials.

A detailed description of the non-linear electroelastic theory for
DEs can be found in publications of Dorfmann and Ogden (2005;
2010), and Suo et al. (2008), Suo (2010).
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It is well known that incompressible materials do not support
longitudinal waves. Therefore, to analyze both transversal and lon-
gitudinal waves, we consider the energy function v (F, Dy) for the
compressible electroelastic material in the following form:

¢(F, 50) = Ipelus(F) + Ziéj

where ¥ ,4(F) is a purely elastic energy function (for example,
neo-Hookean, Mooney-Rivlin, Gent, etc. (Ogden, 1997)), € is the
material permittivity in the undeformed state (F=1) and y; are
dimensionless parameters, moreover g + ¥ + ¥» = 1, and

I4e:ﬁ0~§0, 153250~c~ﬁ0 and [eeZDO-c2~ﬁo (14)
are invariants depending on the electric displacement D, and right
Cauchy-Green tensor C=F' - F.

For the energy function (13) the relation between the electric
field and displacement is

(Yolae + Vilse + Valge), (13)

-1 -
E= E(yoB’1 +y1l+y2B) - D, (15)

where B=F-F' is the left Cauchy-Green tensor. The correspond-
ing tensors of electroelastic moduli are

1
C = Cegs + 3¢ (VO(C4e + 71Cse + V2C6e)a

1
M = e <V0M4e + Y1 Mse + V2M6e> and
1
K= - (y,B™! I B 16
6(Vo + 711+ 12B), (16)

where C, is derived from the purely elastic part v ,5(F) of the
energy function in accordance to (4) and (6); and the explicit ex-
pressions for the other tensors are given in Appendix B.

Finally, the corresponding generalized acoustic tensor takes the
following form

1

4
A= Qelas + Z (VOQAe + V1Q5e + VZQGe - EAE.’)v (]7)

where Q . is calculated by applying of Egs. (4), (6) and (12) to
the purely elastic part v ,,5(F) of the energy function; the explicit
expressions for 7, and tensors Qge, Qse, Qs and A, are given in
the Appendix B. Remarkably, in the particular case of F= A€ ®
€1 + A28 ® € + A3e3 ®e3, M=¢ and ﬁo = D,é,, the generalized
acoustic tensor (17) reduces to

2

A= Quut 228 6, (18)
€AS

here the set of (€7, €, €3) defines the orthonormal basis.

Let us consider the influence of an electric field on the P-and S-
waves propagation. Important characteristics of elastic waves can
be deduced from the consideration of slowness curves. Fig. 2 (a)
schematically shows the slowness curves for P-and S-waves propa-
gating in a DE subjected to an electric field. P-and S-waves refract
differently from the initial direction of propagation, thus, the P-and
S-waves can be split in such media. The normals to the slowness
curves can be defined by the corresponding angle 6 (see Fig. 2 (a))

Sp.s Sing — (dsps/dg) cosep
Sps COSQ + (dsps/de) sing’
where ¢ is the incident angle and sps(¢) = c;,fs (¢) are slownesses
of P-and S-waves, respectively. Consequently, the divergence angle
between P-and S-wave can be calculated as AQ = 6, — 6;.

tanf,s = (19)

3. Results
3.1. Ideal dielectric elastomer model

First, we consider an ideal dielectric elastomer model (Zhao
et al,, 2007), namely Y9 = 5 = 0 and y; =1 in (13). For the elastic

part of the energy function (13), here and thereafter, we utilize a

model of a compressible neo-Hookean material (Ogden, 1997)
K
VaasB) = 5 =3) —n + (5 - )0 - 1% (20)

where I} = trC is the first invariant of the right Cauchy-Green ten-
sor, u is the shear modulus and K is the bulk modulus.

For the ideal DE, the generalized acoustic tensor takes the form
A=aiief+al, (21)

where 7® 1 is the projection on the direction 7 and I is given in
11),

a; = (K=2u/3)] + ) ' (1 +7-B- 1) (22)

—

and @ =) '(A-B-n). (23)

Consequently, there always exist one pressure and two shear waves
for any direction of propagation 1, finite deformation F and elec-
tric displacement D. The phase velocities of these waves can be
calculated as

p=4/aJ/po and ¢ =./azj/po. (24)

Remarkably, while the electroelastic moduli (16) explicitly depend
on the electric field, the phase velocities of elastic waves do not ex-
plicitly depend on the electric field. The dependence of the veloc-
ities on an electric field is introduced through the electrostatically
induced deformation. Let us consider the case when Dy = D./i€e;,
DE can freely expand in plane é&; — €3, and the deformation gradi-
ent can be expressed as

F=X(D)&; ®¢ +A(D)(1- & &) (25)

For an incompressible ideal DE (Zhao et al., 2007), the stretch ra-
tios can be expressed as A = (1+D2)~1/3 and i = A~1/2. It should
be noted that these relations approximately hold even for very
compressible materials with K/ ~ 1 for the range of deforma-
tions and electric fields considered here. Recall that neo-Hookean
DE is stable for D < +/3 (Zhao et al., 2007) and it will thin down
without any limit when the electric field is further increased. Note
that in the absence of an electric field, expressions (24) reduce to
cp=+/(K+4p/3)/po and cs = /1/po.

For the nearly incompressible DE, the phase velocities of P-and
S-waves can be calculated as

1 + D%cos?
¢ = <<1< 3+ W)/po (26)
and
s = \/(1 +D2cos? ) (1 + D2)72/3y,/,00, (27)

where the propagation direction is defined as = (cosg, sing, 0).
Hence, refraction angles of P-and S-waves are

(K +u/3+p(1+ D2)72/3)tan<p

tanf, = (28)
K+ /3 +p(1+D0%)"
and
tan g
tan6; = 13D (29)

Remarkably, relations (26), (27), (28) and (29) approximately hold
even for very compressible materials with K/iu ~ 1 for the range
of deformations and electric fields considered here. By making use
of relations (26) and (27), the slowness curves of P-and S-waves
for the ideal DE can be constructed. Fig. 2 (b) shows an example
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Fig. 2. (a) Schematic illustration of slowness curves for P-and S-waves in the DE subjected to an electric field. (b) Slowness curves of P-and S-waves for the ideal DE with
K/ = 50 subjected to the electric excitation of D = 1. Slowness curves are constructed by using (26) and (27). Scale is 0.2 per division, and slowness curves are normalized
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Fig. 3. Divergence angle as function of non-dimensional electric displacement - (a)

of the slowness curves for an ideal DE with K/ = 50 subjected to

the electric excitation of D = 1.

Fig. 3(a) shows that the divergence angle A6 significantly de-
pends on the value of an applied electric field. In particular, the
divergence angle increases monotonically with an increase in the
electric field until the limiting value of the electric field is reached
(D = +/3). Fig. 3(b) shows the dependence of the divergence angle
A6 on the incident angle ¢. We observe that the divergence angle
A6 has a maximum for a certain incident angle ¢, depending on
the applied electric field. The incident angle ¢, corresponding to
the maximal divergence angle is given by

tangg =

arccos (2 + Dz)

a(ap(a +27) +3D%ay (e —3p) +¢)

w3 (a? +27) +¢

where o =1+D? a;=a?33K+u) and ¢ =9Ka?(u? +3K
(K+u)). The maximal angle, ¢y, monotonically increases with
an increase in the electric field. Note that for u/K < 1, ¢g =

~172

(30)

Next we consider the influence of the material compressibility
on the elastic wave propagation in DEs. It has been recently shown
that for highly compressible material (in the absence of an electric
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, and incident angle - (b) for the nearly incompressible neo-Hookean DE with K/u = 300.

field) the phase velocity of the longitudinal wave depends signifi-
cantly on the direction of wave propagation and applied deforma-
tion (Galich and Rudykh, 2015b). Here, we also observe a strong
dependence of the P-wave velocity on the direction of wave prop-
agation and the deformation induced by an electric field. An in-
crease in the material compressibility parameter /K results in a
more pronounced influence of electrostatically induced deforma-
tion on elastic waves. In particular, the slowness curves of P-wave

evolve from circle to ellipse shape with an increase
Thus, refraction angle of P-wave differs from the
namely P-wave refracts along with S-wave. Fig. 4 s

in electric field.
incident angle,
chematically il-

lustrates the phenomenon in compressible materials. The depen-
dence of the divergence angle on compressibility for different val-

ues of the electrostatic excitation is presented in
an increase in material compressibility weakens th
phenomenon.

3.2. Enriched electroactive material model

Motivated by the experimental observations

Fig. 5. Clearly,
e disentangling

(Wissler and

Mazza, 2007; Li et al, 2011), in this section we investigate elas-
tic wave propagation in DEs described by an enriched electroactive

material model (13). The model is similar to that

considered by
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Fig. 4. Schematics of the splitting of P-and S-waves in the compressible neo-
Hookean DE. P-and S-waves unidirectionally refract from the initial direction of
propagation, however, their refraction angles are different.

25 y T T T T T T T T
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Fig. 5. Divergence angle as function of material compressibility for the ideal neo-
Hookean DE subjected to different levels of electrostatic excitation, ¢ = /6.

Table 1

Material constants of DE model (13).
Reference Yo Y1 Y2
Ideal DE (Zhao et al., 2007) 0 1 0
Wissler and Mazza (2007) 0.00104 114904 —0.15008
Li et al. (2011) 0.00458  1.3298  -0.33438

Gei et al. (2014). To allow for the investigation of pressure waves,
we extend the model to capture the compressibility effects. Table 1
summarizes the parameters of the material model (13) for differ-
ent experimental data (Wissler and Mazza, 2007; Li et al.,, 2011).

In the case when yy # 0, y, # 0, and the deformation gradient
identical to (25), and i = €7, the expressions for phase velocities
take the following form

Cp :\/((I<—2u/3)A214+ (1+32)u)/po (i =ey), (31)
Cs = \/(VzDz)» +A2)/po (M= e) (32)
and

¢ =A/I/po (M =é3). (33)

For incompressible materials A = A~1/2, and the stretch ratio A can
be determined by solving the following polynomial equation

W1 +D (1 +2022%) = 1. (34)

Hence, the phase velocity of the in-plane shear wave (with po-
larization 1 = é5) explicitly depends on the electric field in con-
trast to the result (24), for the ideal DE model. Fig. 6 shows the
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Fig. 6. Phase velocity of in-plane shear wave as functions of non-dimensional elec-
tric displacement for ideal and enriched DE models, ¢ = 0.

phase velocity of the in-plane shear wave as a function of the non-
dimensional electrostatic excitation for the ideal and enriched DE
models. One can see that the consideration of the I, and Ig, invari-
ants strongly influences the in-plane shear wave velocity. In par-
ticular, the increase in phase velocity of the in-plane shear wave is
less prominent (dashed blue curve in Fig. 6) as compared with the
ideal DE model result; moreover, the velocity may even decrease
with an increase in the electric field (see the example for the par-
ticular material denoted by the dot-dashed green curve in Fig. 6),
while for the ideal DE model the velocity always increases. These
differences indeed affect the splitting mechanism and, thus, differ-
ent results are produced by these material models. Fig. 7 illustrates
the difference in the divergence angles for the ideal and enriched
DE models. In particular, Fig. 7(a) shows that the divergence angle
A is smaller than it is predicted by the ideal DE model. Moreover,
for Li et al. experimental data, the divergence angle A@ decreases
with an increase in the electric field after a certain level of the
applied voltage is reached. Fig. 7(b) shows that the divergence an-
gle AO has a maximum for a certain incident angle ¢;. Moreover,
the incident angle ¢4, producing the maximum divergence angle,
varies for different materials.

Although in this work we perform a fully electromechanical
coupling analysis, it is possible to employ only a purely mechani-
cal analysis of wave propagation in non-linear electroelastic solids.
In that case the contribution of the electroelastic moduli tensors
M and K is neglected, and only terms of the tensor C contribute
to the generalized acoustic tensor. Remarkably, this approximation
yields very close results for the phase velocity of pressure wave as
the fully electromechanically coupled analysis; moreover, the re-
sulting expressions for the phase velocities of the shear waves are
identical in both analyzes. For example, for the deformation gradi-
ent (25), i = &; and Dy = D./fi€€,, the classic acoustic tensor takes
the form

Q = Quias + UD* (W 2 + V1A + 12020 Ne @ €

+ MVZD2172€2 ® éz. (35)
It is easy to see that the resulting expressions for the phase veloci-
ties of S-waves are the same as given by expressions (32) and (33),

and the corresponding expression for the phase velocity of P-wave
has the form

cp= \/ w(1+32 + (K/p — 2/3)A234 + D2 (yor=2 + y1 + 1242)A~4)/po.  (36)
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Fig. 7. Divergence angle as function of non-dimensional electric displacement for ¢
with K/u = 300.

Expression (36) for the P-wave velocity differs from (31) by
the additional term containing the electric displacement magni-
tude. However, according to our observations for K/u 2 100, this
term can be neglected for small and moderate levels of electric
displacement.

4. Concluding remarks

In this paper, we considered pressure (P-) and shear (S-) elas-
tic waves propagating in soft DEs subjected to finite deformations
in the presence of an electric field. To allow for the consideration
of P-wave propagation, we utilized the ideal and enriched material
models accounting for the compressibility effects. Explicit expres-
sions for the generalized acoustic tensor and phase velocities of
elastic waves for DEs subjected to an electric field were presented.
We found that, for the ideal DE model, the elastic wave propaga-
tion is explicitly independent of an applied electric field, while it is
influenced through the deformation induced via bias electric field;
this is despite the fact that all electroelastic moduli tensors explic-
itly depend on the applied electric field. However, for the enriched
material model, including all three electroelastic invariants I, Is,
and Ig,, elastic wave propagation explicitly depends on the applied
electric field; in particular, the phase velocity of the in-plane shear
wave decreases when an electric field is applied.

These findings were applied to explore the phenomenon of dis-
entangling P-and S-elastic waves in DEs by an electric field. We
showed that the divergence angle between P-and S-waves strongly
depends on the value of the applied electric field and direction
of wave propagation. Moreover, we found that an increase in the
material compressibility weakens the separation of P-and S-waves.
This is due to the fact that the P-wave also refracts (in the same
direction as the S-wave) from the initial direction of wave prop-
agation, while for nearly incompressible materials the change in
the P-wave direction is negligible. The phenomenon can be used
to manipulate elastic waves by a bias electrostatic field; this can
be beneficial for applications in small length-scale devices, such
as micro-electromechanical systems, where an electric field is the
preferred control parameter. Thanks to the mathematical similar-
ities in the description of electro- and magneto-active materials,
the disentangling phenomenon can be utilized to control P-and S-
waves in magnetorheological elastomers by applying an external
magnetic field.
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Appendix A. Notation of tensor isomers

To achieve a more compact representation of the results, we
have used the notation of isomers firstly introduced by Ryzhak
(1993); Nikitin and Ryzhak (2008). Let S be a third-rank tensor
with the following representation as the sum of a certain number

of triads:
S=ﬁ1®62®d3+51®52®53+~~~ (A1)

Let (ikj) be some permutation of the set (123). Then the iso-
mer S is defined to be the third-rank tensor determined by the

relation
S(ikj):d}®dk®a'j+5i®5k®5j+... (A.2)

Analogously, we can define isomers for higher-rank tensors. For
example, if S=b®I, where b is an arbitrary vector and I is
the unit tensor, then @31 =832 —1gh and SBD =3. If S =
M ® N, where N and M are arbitrary second-rank tensors, then
S(3412) =N®M.

Appendix B. Components of the electroelastic moduli and
generalized acoustic tensors
Here we introduce the following notations
Lypy=a-L-b L% =a-L*.bL*=L-L
LY =a. L' -bL,Y=aL? bL2=L"L"
a , ,
19 =a
L1 Lo
L3=-L2.L!'deb = §(d®b+b®d’),
ay = a-b,a? = (ay)?, (B.1)

where L is an arbitrary second-rank tensor, @ and b are arbitrary
vectors.

Cye =
(CSe =

Boi(@l+1g11342),
201D0%% _DeDel-1®D D)
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+Dp (I 1+ 101134),
Cee = 2(0®1® (B-D)?3 1 Bg D g D143
_'_ﬁ@ B ® D‘(2134) + (B . D’) ® 1 ® 5(2134)
+DoDeB™ t DB D
I B-D)oD—-1®D0® (B-D)
Do B-D)ol-B-D)eDel)
+Bpp(I Q1+ 1®1134), (B.2)

Qi = 2B VAT,
Qse = 2((Dp+D2)i®@ i+ D21 — 2D,D @ ),
Qse = 2((2BpnDy + Bpp)ii @ i + 2Bpu Dyl
—2Bp,D ® i® + D?B + 2D, (B - 1) ® D*
—2D,(B-D) ® M + Bp,D ® D). (B.3)

M4e = _2l® (B_l 5),
20x1+D 1?3 —1g D),
Mee= 2(0@B+D@B?» + (B-D)®l
+(B-D)elI® _1g (B-D)). (B.4)

5
I

Re = —2ii@ (B .D),
2(Dyl+ Dol —f®D),
Rse = 2(D,B+ D ® (B- 1) + Bp,l
+B-D)oid—iw (B-D)). (B.5)

~
3
Il

n =y (2Bn” —B 1B — (B,")?)
+y7 (2B —B: B — (Bm)?)

+(vo(1: B —B") + J/l)z +(nB+n)’
+2y0y2((: BB — LB, — 1) (B.6)

Ae= i@+ al+asD®D+ asi®D° + asB + ag(B - i) ® D°
+a;(B-D) @ +ag(B- M) ® i° + agB? + a1 (B? - i) ® D°
+ay(B?-D) ® i + ap(B? - 1) @ i + a3(B- M) @ (B 1)
+auB’ + a;5(B - M) @ D° + a4 (B* - D) @ 11°
+ai7(B? ) @ (B-1)° +agB! +ag(B! M) @ i
+ayB" M) ®D° +ay (B D)@
+ayu (B i) e (B-A) +ay(B?.D) i, (B.7)

where

a = 5 ((BY, — (BY,")?)1: B~ — B, VBY Y — By,

n

+2By,"By,”) + ¥7Dp
+ Vz3 (,331(3213) - B%) + 2707172 (/332351) + BD"BE);D

+ B4Bpp — Dp)
+y0¥ (BaDp + By ) + vov3 (BaBly — 3Bop +28Dp
2a82)

+ 7175 (28485 — By + (B5,")?) + v1v3 (2BBon — BYy) )
+ 7273 (BBYy — 3BY," +2B4Dp + BY,V (2D, — 11BY,"))
+Y2YZ(BDp + Bpp).

ay = y£D2 + v3 B(Bon)* + 20¥1Y2Dn (BaBon — Dn) + yoyi BaD3

+¥0V4 (BaBpn — 2Dy)Bpn + y13Bon (Bon + 28Dy)
+ VZVIZ (,BDH + ZBDn)Dna

as = v (72 (1 (B - Bu)?) + BuiBE — BY)
+Yo(Bun — Bl "Bi) + (1: B (B — (Bw)?))
(B - Buw)?) ).

ag = 2()’())’1 ¥2(Dn = 2B4Bpn) — ¥£Da — 5 (LiBYy — BS))
- V0V12,34Dn
+v0v# (3Bon — BaBly, + 11 (B, Bun — 2Dy)
+DnBun — B,V B) + v177Bon (Bun — 211)
+72¥¢ (Bun (BS," (1 B™') — B, 2) — 2Dy Bs)
—Y2¥{ (BDn + ZBDH)),

as = y2 (yzzBDn (2Dnf — Bpn) + 2¥0y1 BaD;;

+ 02D (2B4Bon — Dy) + 21728D% + nyﬁ), (B.3)

a5 = 2y (3 (D33 + 1y Bon = DuBun)) + YY1 B
+Y0¥2((1: B™") (Bon — DuBun) — Biy"Bon)
+¥1Y2(Bpn + BDn) + J/12Dn),

a7 = ~292(v2BBon + 2961 B4Ds + Yo7 (BsBon — 2D1)
+2y1Y2BDn + V]ZDn),

ag = 2y» <VOV2 (BS," (1D — Bpy) — D2)
+Du(73 (B5," 1 B~ B,2) - 7B
- VOVlBB;U -N V230n>),

ag = ¥#Dn(¥2(BDn — 2Bpn) + Dn(YoBa — ¥1)).
aio = 2y (¥2(iDn — Bpn) + Y0 B4Dn).
1= 2¥#(2(Bon — BDn) — Da(YofBa — ¥1)).

ap = —ZVOVZZDnB,(J;U,

fry

a

flry

@13 = ¥#Dn(V2(2Bon — [1Dy) + 1Dn — ¥oDa(1: B™1)),

a4 = —y5 D2, a5 = —2y3Dn, a1 = —01s, A17 = —2014,

a1s = —Yo(V1Dn + v2Bon)?, a1o = —27/02318;1)()/an + ¥2Bpn),
a0 = 2Y0Y2Bmn (¥1Dn + Y2Bpn),

az1 = 2Y0(¥2¥0(Dn — BaBpn) — Y28 (¥1Dn + v2Bon) — 10 BaDn).
22 = 2Y0Y2Dn (¥1Dn + ¥2Bon), a23 = 2y¢ (¥1Dn + ¥2Bon),
B=I —By and Bs=1:B'—BV. (B.9)

References

Aboudi, ]., 2015. Micro-electromechanics of soft dielectric matrix composites. Int. J.
Solids Struct. 64, 30-41.

Achenbach, J.D., 1973. Wave Propagation in Elastic Solids. Applied Mathematics and
Mechanics. North-Holland Publishing Company.

Bar-Cohen, Y., 2002. Electroactive polymers as artificial muscles: A review. J.
Spacecr. Rockets 39 (6), 822-827.

Bortot, E., Denzer, R., Menzel, A., Gei, M., 2016. Analysis of viscoelastic soft dielectric
elastomer generators operating in an electrical circuit. Int. J. Solids Struct. 78-79,
205-215.


http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0031

PI. Galich, S. Rudykh/International Journal of Solids and Structures 91 (2016) 18-25 25

Brochu, P, Pei, Q., 2010. Advances in dielectric elastomers for actuators and artificial
muscles. Macromol. Rapid Commun. 31 (1), 10-36.

Cao, C., Zhao, X., 2013. Tunable stiffness of electrorheological elastomers by design-
ing mesostructures. Appl. Phys. Lett. 103, 041901.

Carpi, F, De Rossi, D., Kornbluh, R., Pelrine, R.E., Sommer-Larsen, P., 2011. Dielectric
Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices,
Models and Applications of an Emerging Electroactive Polymer Technology. El-
sevier Science.

Chatzigeorgiou, G., Javili, A., Steinmann, P, 2015. Interface properties influence
the effective dielectric constant of composites. Philos. Mag. 95 (28-30), 3402-
3412.

Chen, W., Dai, H., 2012. Waves in pre-stretched incompressible soft electroactive
cylinders: exact solution. Acta Mech. Solida Sinica 25 (5), 530-541.

Cohen, N., deBotton, G., 2014. Multiscale analysis of the electromechanical coupling
in dielectric elastomers. Eur. J. Mech. A/Solids 48, 48-59.

Cohen, N., Menzel, A., deBotton, G., 2016. Towards a physics-based multiscale mod-
elling of the electro-mechanical coupling in electro-active polymers. Proc. R.
Soc. A 472, 20150462.

Destrade, M., Ogden, R.W., 2011. On magneto-acoustic waves in finitely deformed
elastic solids. Math. Mech. Solids 16, 594-604.

Dorfmann, A., Ogden, RW., 2005. Nonlinear electroelasticity. Acta Mech. 174,
167-183.

Dorfmann, A., Ogden, RW., 2010. Electroelastic waves in a finitely deformed elec-
troactive material. J. Appl. Math. 75, 603-636.

Galich, PI, Rudykh, S., 2015a. Comment on "disentangling longitudinal and shear
elastic waves by neo-hookean soft devices” [appl. phys. lett. 106, 161903
(2015)]. Appl. Phys. Lett. 107 (5), 056101.

Galich, PIL, Rudykh, S., 2015b. Influence of stiffening on elastic wave propagation in
extremely deformed soft matter: from nearly incompressible to auxetic materi-
als. Extreme Mech. Lett. 4, 156-161.

Galipeau, E., Rudykh, S., deBotton, G., Ponte Castafieda, P., 2014. Magnetoactive
elastomers with periodic and random microstructures. Int. J. Solids Struct. 51,
3012-3024.

Gei, M., Colonnelli, S., Springhetti, R., 2014. The role of electrostriction on the sta-
bility of dielectric elastomer actuators. Int. J. Solids Struct. 51 (3-4), 848-860.

Gei, M., Roccabianca, S., Bacca, M., 2011. Controlling bandgap in electroactive poly-
mer-based structures. IEEE/ASME Trans. Mechatron. 16 (1), 102-107.

Hossain, M., Vu, D.K, Steinmann, P, 2015. A comprehensive characterization of
the electro-mechanically coupled properties of VHB 4910 polymer. Arch. Appl.
Mech. 85 (4), 523-537.

Huang, C., Zhang, Q.M., deBotton, G., Bhattacharya, K., 2004. All-organic dielec-
tric-percolative three-component composite materials with high electrome-
chanical response. Appl. Phys. Lett. 84 (22), 4391-4393.

Itskov, M., Khiém, V.N., 2014. A polyconvex anisotropic free energy function for elec-
tro-and magneto-rheological elastomers. Math. Mech. Solids 1081286514555140.

Jabareen, M., 2015. On the modeling of electromechanical coupling in electroac-
tive polymers using the mixed finite element formulation. Procedia IUTAM 12,
105-115.

Keip, M.A., Steinmann, P, Schrdder, J., 2014. Two-scale computational homogeniza-
tion of electro-elasticity at finite strains. Comput. Methods Appl. Mech. Eng.
278, 62-79.

Kornbluh, R., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S., Eckerle, J.,
Low, T., 2012. From boots to buoys: Promises and challenges of dielectric elas-
tomer energy harvesting. In: Lenore, R. (Ed.), Electroactivity in Polymeric Mate-
rials. Springer, US, pp. 67-93.

Li, B., Chen, H., Qiang, J., Hu, S. Zhu, Z., Wang, Y., 2011. Effect of mechanical
pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D Appl.
Phys. 44 (15), 155301.

Madsen, EB., Yu, L., Daugaard, A.E., Hvilsted, S., Skov, A.L., 2014. Silicone elastomers
with high dielectric permittivity and high dielectric breakdown strength based
on dipolar copolymers. Polymer 55 (24), 6212-6219.

Maugin, G.A., 1985. Nonlinear Electromechanical Effects and Applications, 1. World
Scientific.

Miehe, C., Vallicotti, D., Zdh, D., 2015. Computational structural and material sta-
bility analysis in finite electro-elasto-statics of electro-active materials. Int. ].
Numer. Methods Eng. 102 (10), 1605-1637.

Nikitin, L.V., Ryzhak, E.I, 2008. On stability and instability of a compressed block
pressed to a smooth basement. Mech. Solids 43 (4), 558-570.

O’Halloran, A., O'Malley, E, McHugh, P, 2008. A review on dielectric elastomer ac-
tuators, technology, applications, and challenges. J. Appl. Phys. 104 (7), 071101.

Ogden, RW., 1997. Non-Linear Elastic Deformations. Dover Publications, New York.

Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J., 2000. High-speed electrically actuated
elastomers with strain greater than 100. Science 287 (5454), 836-839.

Rogers, J.A., 2013. A Clear Advance in Soft Actuators. Science 341 (6149), 968-969.

Rudykh, S., Bertoldi, K., 2013. Stability of anisotropic magnetorheological elastomers
in finite deformations: a micromechanical approach. J. Mech. Phys. Solids 61,
949-967.

Rudykh, S., Bhattacharya, K., deBotton, G., 2012. Snap-through actuation of thick-
-wall electroactive balloons. Int. J. Nonlinear Mech. 47, 206-209.

Rudykh, S., Bhattacharya, K., deBotton, G., 2014. Multiscale instabilities in soft het-
erogeneous dielectric elastomers. Proc. R. Soc. A 470, 20130618.

Rudykh, S., Boyce, M.C.,, 2014. Transforming wave propagation in layered media via
instability-induced interfacial wrinkling. Phys. Rev. Lett. 112, 034301.

Rudykh, S., deBotton, G., 2011. Stability of anisotropic electroactive polymers with
application to layered media. Z. Angew. Math. Phys. 62, 1131-1142.

Rudykh, S., Lewinstein, A., Uner, G., deBotton, G., 2013. Analysis of microstructural
induced enhancement of electromechanical coupling in soft dielectrics. Appl.
Phys. Lett. 102, 151905.

Ryzhak, E.I, 1993. On stable deformation of unstable materials in a rigid triaxial
testing machine. ]. Mech. Phys. Solids 41 (8), 1345-1356.

Sarvazyan, A., Rudnenko, O. Swanson, S., Fowlkes, J., Emelianov, S., 1998. Shear
wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ul-
trasound Med. Biol. 24 (9), 1419-1435.

Shmuel, G., Gei, M., deBotton, G., 2012. The rayleigh-lamb wave propagation in di-
electric elastomer layers subjected to large deformations. Int. J. Nonlinear Mech.
47 (2), 307-316.

Siboni, M.H., Avazmohammadi, R., Ponte-Castafieda, P., 2014. Electromechanical in-
stabilities in fiber-constrained, dielectric-elastomer composites subjected to al-
l-around dead-loading. Math. Mech. Solids 1081286514551501.

Spinelli, S.A., Lopez-Pamies, 0., 2015. Some simple explicit results for the elastic di-
electric properties and stability of layered composites. Int. ]. Eng. Sci. 88, 15-28.

Suo, Z., 2010. Theory of dielectric elastomers. Acta Mech. Solida Sinica 23 (6),
549-578.

Suo, Z., Zhao, X., Greene, W.H., 2008. A nonlinear field theory of deformable di-
electrics. J. Mech. Phys. Solids 56, 467-486.

Toupin, R.A., 1956. The elastic dielectric. J. Ration. Mech. Anal. 5, 849-915.

Toupin, R.A., 1963. A dynamical theory of elastic dielectrics. Int. J. Eng. Sci. 1,
101-126.

Volokh, K.Y., 2012. On electromechanical coupling in elastomers. J. Appl. Mech. 79
(4), 044507.

Wissler, M., Mazza, E., 2007. Electromechanical coupling in dielectric elastomer ac-
tuators. Sens. Actuators A Phys. 138 (2), 384-393.

Zhao, X., Hong, W., Suo, Z., 2007. Electromechanical hysteresis and coexistent states
in dielectric elastomers. Phys. Rev. B 76, 134113.

Zhao, X., Suo, Z., 2008. Method to analyze programmable deformation of dielectric
elastomer layers. Appl. Phys. Lett. 93, 251902.

Zhao, X., Suo, Z., 2010. Theory of dielectric elastomers capable of giant deformation
of actuation. Phys. Rev. Lett. 104, 178302.


http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30056-7/sbref0025

J. Mech. Phys. Solids 98 (2017) 390-410

Contents lists available at ScienceDirect L
Journal of the Mechanics and Physics of Solids
journal homepage: www.elsevier.com/locate/jmps : /)’?'5
Elastic wave propagation in finitely deformed layered materials f
CrossMark
Pavel I. Galich?, Nicholas X. Fang”, Mary C. Boyce®, Stephan Rudykh®*
2 Department of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel
> Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139-4307, MA, USA
© School of Engineering and Applied Science, Columbia University, New York 10027, USA
ARTICLE INFO ABSTRACT
Keywords: We analyze elastic wave propagation in highly deformable layered media with isotropic
Layered materials hyperelastic phases. Band gap structures are calculated for the periodic laminates undergoing
Elastic waves large deformations. Compact explicit expressions for the phase and group velocities are derived

Finite deformations
Band gaps
Phononic crystals

for the long waves propagating in the finitely deformed composites. Elastic wave characteristics
and band gaps are shown to be highly tunable by deformation. The influence of deformation on
shear and pressure wave band gaps for materials with various composition and constituent
properties are studied, finding advantageous compositions for producing highly tunable
complete band gaps in low-frequency ranges. The shear wave band gaps are influenced through
the deformation induced changes in effective material properties, whereas pressure wave band
gaps are mostly influenced by deformation induced geometry changes. The wide shear wave
band gaps are found in the laminates with small volume fractions of a soft phase embedded in a
stiffer material; pressure wave band gaps of the low-frequency range appear in the laminates
with thin highly compressible layers embedded in a nearly incompressible phase. Thus, by
constructing composites with a small amount of a highly compressible phase, wide complete
band gaps at the low-frequency range can be achieved; furthermore, these band gaps are shown
to be highly tunable by deformation.

1. Introduction

Metamaterials have attracted considerable attention due to their unusual properties such as negative elastic moduli (Babaee
et al., 2013), mass density (Brunet et al., 2013), and negative refractive index (Liu et al., 2011). Soft metamaterials, capable of large
deformations, open promising opportunities for tuning and switching acoustic properties by deformation (Bertoldi and Boyce,
2008a; Rudykh and Boyce, 2014b; Babaee et al., 2016). Even relatively simple deformable homogeneous materials can exhibit
switchable acoustic functionalities upon applied deformations (Galich and Rudykh, 2015a). Indeed, soft microstructured
metamaterials possess even greater capability for transforming and tuning wave propagation by external stimuli, such as mechanical
loading (Rudykh and Boyce, 2014b; Bertoldi and Boyce, 2008b), electric (Gei et al., 2011; Galich and Rudykh, 2016) or magnetic
fields (Destrade and Ogden, 2011). Applied deformation can lead to a change in the internal geometry of a phononic crystal giving
rise to formation and/or transformation of phononic band gaps (BGs) (Kushwaha et al., 1993, 1994; Tanaka et al., 2000; Hussein,
2009). Moreover, local material properties can also change as a result of inhomogeneous distribution of local deformation fields
leading to local softening or stiffening (Galich and Rudykh, 2015b). In fact, these effects are of significant importance for
understanding elastic wave phenomena in soft biological tissues that are frequently found in a deformed state due to growth or other
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biological processes. Large deformations together with material heterogeneity may give rise to elastic instabilities (Bertoldi et al.,
2008; Rudykh and deBotton, 2012; Li et al., 2013; Slesarenko and Rudykh, 2016) — a phenomenon actively used in material design
by nature (Crosby, 2010). Recently, this approach has been employed to utilize instability-induced dramatic microstructure
transformations and achieve remarkable tunability of acoustic metamaterials (Bertoldi and Boyce, 2008a; Rudykh and Boyce, 2014b;
Babaee et al., 2016). Inspired by possible applications — such as noise reducers, acoustic mirrors and filters, waveguides, to name a
few — a number of recent works were dedicated to the analysis of influence of material parameters (Zhou et al., 2009), topologies
(Mousanezhad et al., 2015), deformations (Bertoldi and Boyce, 2008a), and stiffening effects (Wang et al., 2013) on elastic wave
propagation and band gap structure in various phononic crystals. Nevertheless, realization of the complex microstructures remains
challenging, especially, at small length-scales desirable for some applications. Recent advances in additive and layer-by-layer
material manufacturing allow fabrication of highly structured layered materials ranging from sub-light-wavelength scale (Kolle et al.,
2013) to meso-length-scale (Li et al., 2013; Rudykh et al., 2015). These layered materials can produce complete phononic BGs — the
frequency ranges where neither pressure nor shear waves can propagate — spanning different frequency ranges depending on the
characteristic microstructure size. Moreover, these BGs can be further actively controlled by deformation. In this work, we
specifically focus on identifying the key parameters defining the appearance of shear wave, pressure wave, and complete BGs in
finitely deformed layered composites with isotropic phases. Special attention is given to the influence of deformation on the acoustic
characteristics and BGs.

The layered media exhibit both geometrical and material non-linearities when subjected to finite strains; hence, these non-linear
effects need to be taken into account in the model. To this end, we first obtain the solution for the finitely deformed state of
hyperelastic periodic layered materials, and then perform the wave propagation analysis in terms of the incremental small amplitude
motions superimposed on the finitely deformed state. By utilizing an exact analytical solution for the finitely deformed
incompressible laminates with alternating isotropic hyperelastic phases, we derive explicit relations for the phase and group
velocities in finitely deformed incompressible laminates in the long wave limit. Moreover, based on the expressions of the phase
velocities for finitely deformed compressible homogeneous materials, we estimate the phase velocities of pressure and shear waves
propagating perpendicular to the layers in finitely deformed laminates comprised of compressible phases. Next, considering steady-
state plane waves in layered media, we thoroughly analyze band gap structures for shear and pressure waves propagating
perpendicular to the layers in soft laminates with nearly incompressible and highly compressible phases. We show that wide shear
wave BGs at the low-frequency range can be achieved by constructing laminates with thin soft layers embedded in a stiffer matrix.
Moreover, these band gaps can be further tuned by deformation through the change in the geometry and effective properties of the
phases. We find that for layers with pronounced stiffening effects (such as Gent materials), the change in the material effective
properties prevails over the change in the geometry. However, for the materials with weak stiffening effects (such as neo-Hookean
materials) the deformation induced change in the material properties is entirely compensated by the change in the geometry. We
find that wide pressure wave BGs at the low-frequency range are attainable in laminates with small amount of highly compressible
phase embedded in a nearly incompressible matrix. These pressure wave BGs are highly tunable by deformation. The laminate
geometry change induced by deformation is shown to be the dominant factor influencing pressure wave BGs (as compared to the
influence of the change in the effective material properties). Consequently, wide complete BGs at low-frequency range can be
achieved by including a small amount of thin highly compressible phase into a nearly incompressible matrix. Furthermore, these
complete BGs can be widened and shifted via deformation.

2. Theoretical background

Consider a continuum body and identify each point in the undeformed configuration with its position vector X. When the body is
deformed, the new location of a point is defined by mapping function x = y (X, 7). Thus, the deformation gradient is F = 0x/dX, and
its determinant J = detF > 0. For a hyperelastic material whose constitutive behavior is described in terms of a strain energy
function y (F), the first Piola—Kirchhoff stress tensor is given by

o ®
P==F &)

The corresponding true or Cauchy stress tensor is related to the first Piola—Kirchhoff stress tensor via the relation ¢ = J-'PF”. In the
absence of body forces the equations of motion can be written in the undeformed configuration as

D
D @

where py is the initial density of the material, and the D?(e)/Dt? operator represents the material time derivative. If the deformation
is applied quasi-statically, the right hand part of Eq. (2) can be assumed to be zero, and the equilibrium equation is obtained, namely

DivP = 0. (3)

Div P = p,

2.1. Wave propagation in homogeneous media

Consider next small amplitude motions® superimposed on the equilibrium state. The equations of the incremental motions are

391



P.I. Galich et al. J. Mech. Phys. Solids 98 (2017) 390-410

D%u
Di2 ’ (4)
where P is an incremental change in the first Piola—Kirchhoff stress tensor and u is the incremental displacement. The incremental
change in the deformation gradient is F = Grad u.

The linearized constitutive law can be written as

Div P = p,

By = AojukFu 5)
with the tensor of elastic moduli defined as Agiup = 02y /0F, 0Fs. Under substitution of Eq. (5) into Eq. (4) the incremental motion
equation takes the form of

DZM,'

Aojibx,lj = P 6)
To analyze small amplitude motions superimposed on a finite deformation, we present (6) in the updated Lagrangian formulation

02u,-

At ;j = v )
where Ay, = J\ AgyuFFy and p = J7'p, is the density of the deformed material.

We seek a solution for Eq. (7) in the form of the plane waves with constant polarization
u=gh(nx — ct), (€©)]

where h is a twice continuously differentiable function and unit vector g is the polarization; the unit vector n defines the direction of
propagation of the wave, and c is the phase velocity of the wave.
By substitution of (8) into (7), we obtain

Qm)-g = pc’g, 9
where
Qi = Ajuniny (10)

is the acoustic tensor which defines the condition of propagation of the infinitesimal plane waves.
For incompressible materials J = 1 and g-n = 0, and Eq. (9) reads as

Qg = pc’g, @an

where Q = /I\QII\ andT=1-n ® n is the projection on the plane normal to n.

2.2. Wave propagation in periodic layered media

Consider periodic laminates constructed of two alternating phases with initial volume fractions v, and v, = 1 — v,. Here and
thereafter, the fields and parameters of the constituents are denoted by subscripts (e), and (e),, respectively. Geometrically, the
layers are characterized by their thicknesses d¢ = v,d° and d;} = v,d°, where d° is the initial period of the laminate (see Fig. 1(a)).

When laminates are deformed (see Fig. 1(b)), the layer thicknesses change as follows:

dy = Aad], dp=lpdy, and d=hd, (12)

where 4 = v, A1, + VpAip; hiap are the stretch ratios in the direction e; for phases a and b, respectively.

Let us consider steady-state compression small amplitude plane waves superimposed on a finitely deformed state and
propagating along the x direction orthogonal to the interface between the layers (Bedford and Drumheller, 1994) (see Fig. 1(b)
and (c)). For each layer, the one-dimensional wave equation takes the form

0%u; _ 2 0%u;
- (13)

where u; denotes the displacement in x direction, and subscript £ stands for a or b. We seek a solution within each layer in the
following form?:

ug - Aéei(kgxfwl) + Bée[(fk‘fxfwl)’ (14)

where w denotes the angular frequency, and k; = w/c; is the wave number. The normal stress within each layer is

1 Note that we consider only small amplitude elastic waves (Ogden, 1997); the amplitudes of the superimposed on finite deformations displacements of the material
points are assumed to be much (infinitesimally) smaller than any characteristic dimension of the composite, lul/d<1; so that its geometry and the constitutive
properties of the material (such as density and tangent elastic moduli) at each point of the composite are assumed to be unchanged by these small amplitude motions.

2 Note that we consider only small amplitude elastic waves here, i.e. us/d<1.
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553

Y.

Fig. 1. Schematic representation of the undeformed (a) and deformed (b) periodic layered material with alternating phases a and b. A unit cell (¢); (ej, e, e3) is the
orthonormal basis.

0145 Zgz ()u,;:
il
P OX (15)

where z; = p.c; is the acoustic impedance.
The interface continuity condition between the layers implies

u, (0, 1) = u,(0,1) and 6,0, 1) = 6,(0, 1), (16)

where we assign x = 0 to be the interface between the layers of the unit cell (Fig. 1(c)).
Two additional conditions are obtained from the periodicity of the material by the use of Floquet theorem. For this reason we
adjust Eq. (14) to be the steady-state wave expression with the same wave number k for both materials

us = l]g(x)ei(k“”"), (17)
where
Us(x) = Az + Bee ¥ and K = ke + k. (18)

According to Floquet theorem, function U:(x) must be periodic functions of x with the period equal to the length of the unit cell,
namely d = d, + dj,

Ui(=dy) = Up(dp). (19)
The corresponding relations for the stress are

s = Zx(x)e!kr=en), (20)
where

5 (x) = izzw (A e®E* — BremKEY) 2D

and
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24 (=dy) = Zp(dy). (22

Thus, Egs. (16), (19) and (22) together with (17), (18), (20) and (21) yield the dispersion relation @ = w (k) for the steady-state
wave (Rytov, 1956)

coskd = cos(wd“)cos(w—db) - l(ﬁ + ﬁ)sin(w—d“)sin(w—db).
Ca Cp 2 b Za Ca Cp (23)
The dispersion relation (23) is derived for pressure waves. However, the same expression can be obtained for shear waves by

considering displacements perpendicular to axis x in Eq. (13). In this case, the phase velocities of shear waves are used in (23) to
obtain the dispersion relation for shear waves.

3. Results

The macroscopically applied loading is expressed in terms of the average deformation gradient
F = VaFu + V},Fb, (24)
where F, and F, are the corresponding deformation gradients within each phase. The displacement continuity condition along the
interface between the layers yields the condition for F, and E,
(F, - F)q=0 (25)
and the interface stress jump condition is
P, — Pp)m =0, (26)
where unit vector m denotes the initial lamination direction (see Fig. 1(a)), q is an arbitrary unit vector orthogonal to m.
Loading paths. Although the analysis is general and can be applied for materials subjected to any deformation F, the examples
are given for (i) in-plane and (ii) equibiaxial deformations. The corresponding macroscopic deformation gradients are
(i) in-plane tension
F:Zle1®e1+lez®e2+e3®e3, (27)
(i) equibiaxial deformation
F=le ®@e +1I-¢ ®e), (28)
where A is the applied stretch in the direction of the layers (see Fig. 1), and 4; is an unknown and needs to be calculated. For an

incompressible laminate 1, = A-! and 4, = A2 for in-plane and equibiaxial deformations, respectively. To describe the behavior of
incompressible phases, we utilize the neo-Hookean strain energy function (Ogden, 1997)

inc _ & . _
e =5 @ E-3), (29)
where y, is the initial shear modulus.

The constitutive behavior of the compressible phases is assumed to be governed by the extended neo-Hookean strain energy
function (Ogden, 1997)

W = &(Ffz FE-3)—punJ+ ﬁ(f — 12
¢ 2 cTETE ’ (30)
where A; is the first Lame's parameter. Recall that A relates to the bulk modulus as K = A + 2u/3.
By making use of strain energy function (30) together with (25) and (26), the unknown stretch ratios 4, and 4, are determined.
In particular, the explicit expressions are
(i) in-plane tension

_ A7+ 20+ 0,4+ 1))@+ mA G+ 20)

|4
A and A= ———70r,
“ 21 + 1,27 T2+ ) 31)
where 1, = A/, n, = Apluy, and y = g, A + 4 + 1,4 + 5,)2%;
(ii) equibiaxial deformation
I naAQC + \/2(4 + 1,4+ r]a)/14)(2 + 711,&2(4' +21%)) and A= ¢
“ 21 + 1,29¢ I YO 32)

where ¢ = n,2% + 4 + 1, (4 + n,)A*.

To account for the stiffening effects (for example, due to a finite extensibility of polymer chains) in finitely deformed
incompressible laminates, we employ the strain-energy density function corresponding to an approximation of the Arruda—Boyce
model (Arruda and Boyce, 1993), namely the Gent model (Gent, 1996)
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ll/im': —”gjméln(l _ Ff: Ff - 3)
) — |

¢ e (33)

where J, is the so-called dimensionless locking parameter defining the lock-up stretch ratio, such that in the limit (E;: E: — 3) — J,,
the strain energy becomes unbounded. Thus, for incompressible Gent materials under in-plane tension, the lock-up stretch ratios
can be calculated as

20K = (JIe + 4 £ JTn)12, (34)

“«,»

where “+” and “~” correspond to the extension (4 > 1) and contraction (1 < 1), respectively. Clearly, in the limit J,, — oo, the strain-
energy function (33) reduces to the neo-Hookean material model (29).

The constitutive behavior of the compressible phases exhibiting strong stiffening is assumed to be governed by the extended Gent
strain energy function (Horgan and Saccomandi, 2004; Wang et al., 2013)

_ Hedn F:F-3 A M
ye = -2 d ln(l - %) = pelnJ; + (75 - J_é](JE .

g 'mé mé (35)

Again, in the limit J, - oo, the strain-energy function (35) reduces to the extended neo-Hookean material model (30).
3.1. Long wave estimates for finitely deformed layered materials

3.1.1. Incompressible laminates

First, let us consider layered materials with incompressible phases. The incompressibility assumption allows us to obtain a closed
form exact solution for finitely deformed periodic layered materials with neo-Hookean phases (deBotton, 2005; Tzianetopoulou,
2007; Rudykh and Boyce, 2014a; Spinelli and Lopez-Pamies, 2015). By utilizing the exact analytical solution, an effective strain
energy function can be constructed (Spinelli and Lopez-Pamies, 2015)

B=2FF E-jf & 1
F=LEFF-3- —(m~C~m _ 77)
v 2 2 m-C'm (36)
where C = F”-F is the average right Cauchy—Green deformation tensor, and
-1
B = Vat, + vop, and ﬂ=[ﬁ+ﬁ] .
o A 37)

Note that while the solution for finitely deformed laminates is provided in deBotton (2005), Tzianetopoulou (2007), Rudykh and
Boyce (2014a), Spinelli and Lopez-Pamies (2015), the strain energy function in the form of (36) is reported by Spinelli and Lopez-
Pamies (2015).

The acoustic tensor (11) corresponding to the strain energy function (36), takes the form

Am.F =gl +¢0F m @ AF " m). (38)

where

_ _ o — (482
¢ =amBn) + (i - HmFm) and ¢, = ”az”(% - 1),

(39)
where B = F-F' is the average left Cauchy—Green deformation tensor, « = m-C "m, and = n-F7-m. One can show that the
acoustic tensor (38) has the following eigenvalues in the two-dimensional space normal to n:

a=¢q and a=q + q,(a — £2). (40)

In general, we have two distinct shear waves propagating in the finitely deformed incompressible laminate. The corresponding
phase velocities are

el = Jalp, and &) = Jalp,, (41)

where p, = wpy, + VbPy, is the average initial density of the laminate.

Note that the phase velocities of shear waves (41) coincide only for special cases of applied deformation and direction of wave
propagation. For instance, for wave propagating perpendicular to the layers, i.e. n = m = e, the phase velocities of shear waves
coincide:

(i) in-plane tension

aw = C =25 = Wil , (42)
(ii) equibiaxial deformation
Cow = Es(vl./) = E\(l%’) = /‘[_2\ ﬁ/ﬁ() . (43)
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However, if the wave propagates along the layers, i.e. m = ¢; and n = e,, the phase velocities of shear waves are distinct:
(i) in-plane tension

ey = AJilp, (g=ey) (449

and

eW =@+ G - Dp)ipy (g =ep, (45)

(ii) equibiaxial deformation
o =alpy (g=e (46)

and

el = 172G + G0 = DI, (g = e). 47)

Note that expressions (45) and (47) yield explicit expressions for the critical stretch ratios corresponding to the onset of macroscopic
instability under in-plane and equibiaxial contractions:
(i) in-plane tension

N\
Al = (1 - ﬁ] ,
: z (48)
(ii) equibiaxial deformation
\I/6
Al = (1 - ﬁ] .
3 (49)

It is worth mentioning that Eq. (48) agrees with the results obtained by Rosen (1965), and Triantafyllidis and Maker (1985) utilizing
distinct approaches.

To illustrate the influence of the deformation and direction of wave propagation on the elastic waves in the layered materials, we
construct slowness curves (which are commonly used in acoustics, Auld, 1990) by the use of the explicit relations (41). Fig. 2 shows
examples of the slowness curves s, (¢) = 1/¢,, () for (a) out-of-plane (with polarization e3) and (b) in-plane (with polarization lying
in plane e; — e,) shear waves in layered material undergoing equibiaxial deformation, where the direction of propagation is defined
as n = (cos ¢, sing, 0). Note that the critical stretch ratio for the laminate with v, = 0.1 and yu,/u, = 20 undergoing equibiaxial
contraction is 1% = 0.92; therefore, we present slowness curves corresponding to the equibiaxially contracted laminate (4 = 0.95) in
the macroscopically stable state. The slowness curves clearly indicate the significant influence of the applied deformation on the wave
propagation. Specifically, an extension results in a decrease of the phase velocities of the shear waves propagating perpendicular to
the layers; while the phase velocities increase for waves propagating along the layers since these directions experience extension. The
phase velocity of the in-plane shear wave in the equibiaxially deformed laminate has maxima for certain directions of wave

a . b

L esessssnsrdiocsceres i

essessseced

2oeecesvene.

Fig. 2. Slowness curves for (a) out-of-plane and (b) in-plane shear waves propagating in the laminate with v, = 0.1, u,/u, = 20, and p,/py, = 1 under equibiaxial
deformation. Scale is 0.4 per division, and the slownesses are normalized by /i /p; .
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propagation (see Fig. 2(b)). In particular, these directions are expressed as

1 _ 6
(/10=igarccos —|+nz, z=0,1.

-3

(50)
In the undeformed state, ¢, = + %, + %”. Moreover, these directions differ from the principal directions in contrast to the out-of-

plane shear wave — the phase velocity of which has maxima in the directions of the principal axes. For example, in the equibiaxially
deformed laminate the phase velocity of the out-of-plane shear wave is maximal for the wave propagation along the layers, i.e. for
n = +e; (see Fig. 2(a)). Note that in the undeformed state the phase velocity of the in-plane shear wave is the same for wave
propagation along and perpendicular to the layers, namely Eq. (41), yields

@ = [T

= =

(51)
The dispersion relations for long waves in the incompressible laminates are derived from (41)
@) = Jbilpy and @) = \[balpy (52)
where
= — 7 — i 4B} z
b= EOCBK) + (i — D kFm) and by = by + E B[ e[ - B
a? a k2 (53)
where k is the wave vector, k = |kl is the wave number, and g, = kF ' m.
Now we can find the transmission velocity of a wave packet or the group velocity (Kittel, 2004)
Ve = Vk . (54)
From (52) and (54), we obtain the explicit formulae for the group velocities in homogenized laminates
W ABn + (i — p)(n-F-m)F-m
N (55)
and
P 2)_ 4
v = j ZBn + (i — p)(n-F-m)Fm + ”72”([1(5 - %]F_T-m + (ﬂ - a]n .
[Py a a a (56)

To illustrate the derived results (55) and (56), energy curves (Nayfeh, 1995) are plotted in Fig. 3. Fig. 3 shows the energy curves
for (a) out-of-plane and (b) in-plane shear waves in the laminate with v, = 0.1, y,/u, = 20, and p,,/p,, = 1 under equibiaxial
deformation. Clearly, the group velocities of the both shear waves strongly depend on the applied deformation and direction of wave

a n,v b n,v == 1=0095

] ..""?"..n.‘.-."“\;"'m, \\"»‘,‘.A...... A=13

ve
LTTN

v
Vi . .o
8 o2 iedeosecc®’
..oug..n.,.m...,-g" d .

d N .

i 7 i =g
R A v :
+ el + Sy . + nv
R v : 1
R 4 o

. \‘_ N
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Y O BT P e TSP N
e d . . S

Fig. 3. Energy curves for (a) out-of-plane and (b) in-plane shear waves in the laminate under equibiaxial deformation (v, = 0.1, u,/u, = 20, and p,/py, = 1). Scale is
0.2 per division, where group velocity is normalized by /py/f .
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propagation. In particular, an equibiaxial extension increases the group velocity of the out-of-plane shear wave propagating
perpendicular to the layers while it decreases the group velocity of the in-plane shear wave propagating in the same direction. An
equibiaxial contraction increases group velocities of both the out-of-plane and the in-plane shear waves propagating perpendicular
to the layers. Moreover, the energy curves of the in-plane shear waves have the cusps, and position of the cusps is highly tunable by
deformation (see Fig. 3(b)). According to Nayfeh (1995) these cusps correspond to regions of null energy. However, for the out-of-
plane shear wave the cusps are not observed (see Fig. 3(a)).

3.1.2. Compressible laminates

Next we present long wave estimates for the phase velocities of pressure and shear waves propagating in the direction
perpendicular to the layers in the finitely deformed laminate with compressible neo-Hookean and Gent phases. Recall (Boulanger
et al, 1994) that the phase velocities of shear and pressure waves in the finitely deformed neo-Hookean material for
Fg = /115e1 Qe + ﬂzgeg ® ey + /13563 ® e; and n = e; are the following:

e
T A2 + (1 + A%

G = /hg\/ﬁ and ¢f = \/—5 s e
Poe Pos 57)

When the wavelength is much larger than the period of the laminate, the sines can be replaced by their arguments and only second
order terms are retained from the cosines in Eq. (23), namely

. | wd: wd; wd; w’d?
sin ~— and cos|—|=~1- >
Cce Ce Ce 2¢; (58)

Under this assumption, substitution of (12) and (57) in (23) yields expressions for the phase velocities of shear and pressure waves
propagating perpendicular to the layers (n = m = ¢;) in the finitely deformed layered material with neo-Hookean phases:

Cow = II\ /2//70 and Z}va = /T] \ f/ﬁo s (59)
where
I'= @l + v/L)™ and  Ip = Ap(ogdse) + p(1 + A7) (60)

For the in-plane tension (27), 4 = 4 and 4;: = 1, while for the equibiaxial deformation (28) A = 43: = 4.
For the Gent material model, the phase velocities of shear and pressure waves are (Galich and Rudykh, 2015b)

G = g e Tne! O o) (61)

and

o \/ (L4 (= 2 J2 + B0 0 + 222)7%)
5 - )
Poe (62)

where 6: = 3 + Jne — ¥z: Fe. Hence, substitution of (12), (61) and (62) in (23) together with (58) yields expressions for the phase
velocities of shear and pressure waves propagating perpendicular to the layers (n = m = ;) in the finitely deformed layered material
with Gent phases, namely

Cow = II \ é/ﬁo and Epw = II \ G/ﬁo s (63)

where
-1 -1
(:):(ﬁ+&] and sz(ﬁ+& .
@a 6}7 Gu Gb (64)
where 6; = y.J,,:/0; and
_ 2 _
G:= p [/11 F+ [ng - ](,125,135)2 + B 072 (0 + 2135)].
JmE (65)

Fig. 4 shows a comparison of the long wave estimates (59) and (63) with the exact solution (23) for the waves propagating
perpendicular to the layers under equibiaxial deformation. Here and thereafter, we present the normalized frequency f, = fd° \/ﬁ(,_/ﬁ ,
where f= w/(2r). Remarkably, the long wave estimates (59) and (63) are in excellent agreement with the exact solution (23) for
wavelengths exceeding the effective period of the laminate, namely / > zd. For example, for / = 4d the differences in frequencies
between the long wave estimates and exact solution are less than 1% for both shear and pressure waves (see Fig. 4).

3.2. Band gap structure

Band gap is a frequency range where waves cannot propagate due to, for example, Bragg scattering (Kushwaha et al., 1993) or/
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Fig. 4. Comparison of the long wave estimates (59) and (63) with the exact solution (23) for the waves propagating perpendicular to the layers in the laminates with
neo-Hookean ((a) and (c)) and Gent ((b) and (d)) phases under equibiaxial deformation (1 = 1.5). v, = 0.2, p,/p;, = 100, py./po, = 1.5, Aalu, = 10, Aplpy, = 5, Jyp = 2.5,
and Jya/Jmp = 2. (a) and (b) correspond to shear waves and (c) and (d) — pressure waves.
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Fig. 5. Dispersion diagrams for shear (a) and pressure (b) waves in the laminate with v, = 0.3, u,/p;, = 100, Ay/u, = 100, Ap/p, = 10, and py,/py, = 1 under
0
equibiaxial tension, A = 1.5. The shaded areas correspond to the shear (gray) and pressure (blue) wave band gaps. Frequency is normalized as f, = %,/EO/;Z . (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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and local resonance (Auriault and Bonnet, 1985; Auriault, 1994; Liu et al., 2000; Auriault and Boutin, 2012). In case of layered
media with high contrast in the mechanical properties between the phases both Bragg scattering and inner resonance of stiffer layer
(Auriault and Boutin, 2012) participate in formation of band gaps (Khelif and Adibi, 2016). Mathematically, it corresponds to the
situation when wave number k becomes imaginary in the dispersion relation (23), i.e. within a band gap displacement and stress
amplitudes exponentially attenuate (see Egs. (17) and (20)). Fig. 5 illustrates the band gap structures of shear and pressure waves in
the finitely deformed laminate with v, = 0.3, /g, = 100, A /u, = 100, A/, = 10, and with identical densities of the phases,” i.e.
Poa’Po» = 1. The laminate is subjected to equibiaxial tension with the magnitude of the stretch ratio 4 = 1.5. The shaded gray and blue
areas correspond to the shear and pressure wave BGs, respectively. Clearly, the shear wave BGs appear earlier (i.e. at lower
frequencies) than the pressure wave BGs (compare Fig. 5(a) and (b)); thus, to induce complete BGs at the low-frequency range, one
needs to design laminates with pressure wave BGs at the low-frequency range. Next, we identify the key parameters that govern the
shear and pressure wave band gaps.

3.2.1. Incompressible laminate

Here we consider the influence of (a) microstructures, (b) deformations, and (c) elastic moduli on the band gap structures in
incompressible laminates. Recall that incompressible materials support only shear waves; consequently, only shear wave band gaps
(SBGs) are considered, while pressure wave BGs (PBG) will be considered in detail in the next section.

(a) Material geometry. First, we investigate the influence of the material geometry on SBG structure. Fig. 6(a) presents the width
of the first SBG as a function of the volume fraction of phase a. The first SBG has a maximal width for a certain volume fraction v,;
moreover, the maximal width of SBG with corresponding volume fraction of phase a strongly depends on the contrast in shear
modulus between the phases (compare Fig. 6(a) and (b)). Thus, for the contrast in shear modulus of y,/u, = 10, the maximal width of
the first SBG is Af, = 0.41 with v, = 0.76; while for the contrast in shear modulus of y,/u, = 1000, the SBG width significantly
increases up to Af, = 2.25, and the corresponding volume fraction shifts to v, = 0.97. It is clear that an increase in the shear modulus
contrast widens the maximal SBG width. Thus, wide SBGs can be achieved by composing laminates with thin soft layers embedded in
the stiff phase (v, = 0.03 in Fig. 6(b)). As expected SBGs disappear when v, = 0 or 1.

(b) Deformation. Next, we analyze the influence of deformation on SBGs. We start from the consideration of laminates with
phases characterized by weak stiffening, which can be described by neo-Hookean model (29). Substitution of the corresponding
phase velocities (57); into the dispersion relation (23), together with the deformation induced change in geometry (12), yields

_ N o o 1, M M
cos khd’ = cos[a)dj\/po"]cos(wd,f H)_Oh] - 1[ Poabe \/M ]sin[a)dj\/m]sin(wd;,’\/m].
Ha \/ Hy 2\ Post Poata Ha Hyp (66)

This result clearly shows that SBGs in layered materials with neo-Hookean phases do not depend on deformation. This is due to the
equal contribution of two competing effects induced by deformation: (i) the change in the phase properties (i.e. ¢f”/¢f = 4, where
cg” and ¢f are the phase velocities in the deformed and undeformed material) and (ii) change in the layer thicknesses (i.e.
d:/d? = J). Clearly, any deformation induced change in the geometry is fully compensated by the change in the phase velocity.

However, for laminates with phases exhibiting stronger stiffening (such as Gent phases), the deformation induced change in the
effective properties prevails over the geometry changes. The phase velocities of the shear waves in a deformed Gent material are
larger than in the identically deformed neo-Hookean material (i.e. cf/cg”H = \/Jue/0: > 1) while the changes in the geometry are the
same. Fig. 7 presents the relative changes in the phase velocities of the shear waves as functions of the stretch for the neo-Hookean
and Gent phases under in-plane tension. Clearly, for the contraction (1 < 1), the phase velocities of the shear waves in the Gent phase
increase more significantly than in the neo-Hookean phase. For the extension (1 > 1), the phase velocities of the shear waves in the
Gent phase decrease in the beginning; however, the phase velocity starts to grow as the stiffening effect becomes more pronounced
with an increase in deformation. Eventually, the phase velocity becomes larger than the one in the undeformed material. This
corresponds to a certain stretch ratio 1* < A% (see Fig. 7); the expressions for this stretch ratio are

I =N+ (67)

for the in-plane tension and

_ 1 Jo+ (10 + J)i
2= 2\/1 + Jy+ 9+ (10 + ) 68)

for the equibiaxial extension. Since in laminates with Gent phases the deformation induced change in material properties (i.e.
%G I¢f = Mg \|Jne/0:) is not fully compensated by the change in the geometry (i.e. d¢/d? = 4), the tunability of SBGs by deformation is
observed.

Fig. 8 illustrates the dependence of SBGs on in-plane ((a) and (c)) and equibiaxial ((b) and (d)) deformations for the layered
materials with Gent phases. The lock-up stretches for J,, = 2.5 are 1/ = 0.48 and 1/°* = 2.07 for the in-plane deformation; and
Alo% = 0.68 and 1°* = 1.64 for the equibiaxial deformation. We observe that SBGs shift towards higher frequencies and widen as the
lock-up stretch ratio is approached. In particular, for the laminate with v, = 0.3, p,/p, = 100, J,,, = 5, and J,,;, = 2.5 the first SBG
widens from Af, = 0.16 up to Af, = 0.49 and its lower boundary shifts from f, = 0.43 up to f, = 1.35 by application of the in-plane

3 Typical deformable polymers are characterized by low densities that change only slightly from polymer to polymer. Therefore, we present the results for laminates
with similar or identical phase densities; the values of the density contrast ratio are specified in each example.
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Fig. 6. First shear wave band gap vs. volume fraction of phase a for layered materials in undeformed state with (a) u,/u, = 10 and (b) u,/u, = 1000; py,/pg, = 1.
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Fig. 7. Relative change in the phase velocities of shear waves as functions of in-plane tension for laminates with v, = 0.97, /s, = 1000, Juq = 5, Jpp = 2.5, and

PoalPop = 1.

deformation of the magnitude 2 = 0.5 or 1 = 2 (see Fig. 8(a)). The equibiaxial deformation of magnitude 1 = 0.70 or 4 = 1.58 widens
the first SBG from Af, = 0.16 up to Af, = 0.42 and shifts its lower boundary from f, = 0.43 up to f, = 1.14 (see Fig. 8(b)). Fig. 8(c)
and (d) show the first SBG as a function of the stretch ratio for the in-plane (c) and equibiaxial (d) deformations for the laminate with
the volume fraction producing a maximal width of the first SBG in the undeformed laminate, namely v, = 0.97 and p,/u, = 1000.
Consistent with the previous observations the first SBG widens and shifts towards higher frequencies once the lock-up stretches are
attained. In particular, lower boundary of the first SBG shifts from f, = 0.33 up to f, = 1.00 and its width increases from Af, = 2.25
up to Af, = 2.73 in the laminate undergoing the in-plane contraction with 4 = 0.5 or extension with 4 =2 (Fig. 8(c)). Clearly,
equibiaxial deformation has a more pronounced effect on SBGs as compared to the in-plane deformation (compare Fig. 8(a) vs. (b)
and (c) vs. (d)). Remarkably, contraction (1 < 1) and extension (4 > 1) of the laminate with Gent phases influence SBGs in similar
ways, namely any homogeneous deformations considered here widen and shift up SBGs towards higher frequencies (see Fig. 8). This
happens because for both contraction (41 < 1) and extension (4 > 1), the stiffening leads to an increase in the phase velocities of the
Gent phases compared to the phase velocities of the neo-Hookean constituents, i.e. cgc/cg”” = Jue!0: > 1 (see Fig. 7), whereas the
deformation induced geometry changes are identical for laminates with weak and strong stiffening effects, i.e. d:/df = 4. For
example, the in-plane contraction of the magnitude 4 = 0.5 increases the phase velocities in the layers @ and b up to c¢/c? = 2.7 and
cflcf = 6.3, respectively, whereas the layer thicknesses increase up to d/d° = 2 only (see Fig. 7). Again, the in-plane extension of the
magnitude 1 = 2 decreases the phase velocity in the layer a down to cC/c’ = 0.7 and increases it up to ¢Z/cf = 1.6 in the layer b,
whereas the layer thicknesses decrease down to d/d° = 0.5 (see Fig. 7). Note that for the in-plane tension of magnitude 4 = 0.5 or
A = 2, the phase velocities in Gent phases increase by the same value compared to the phase velocities of the neo-Hookean phases,
namely cC/c™ 1,5 = cClcM 1, = 1.35 and ¢/ 1,05 = ¢Z/cf™1,=, = 3.16. This together with the identical deformation induced
change in the geometry leads to the identical width and position of the SBGs for these values of the stretch ratio.
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Fig. 8. Shear wave band gaps vs. in-plane ((a) and (c)) and equibiaxial ((b) and (d)) deformations for the layered materials with Gent phases, namely p,/po, = 1,
Jna =5, b = 2.5, va = 0.3, p,/p;, = 100 ((a) and (b)) and v, = 0.97, /iy, = 1000 ((c) and (d)).
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mb
Fig. 9. Shear wave band gaps as a function of locking parameter J,,,, for the layered material with v, = 0.3, J,, = 100, py./po, = 1, and p,/p, = 100 subjected to the

in-plane tension of the magnitude 1 = 2.
To illustrate the influence of the stiffening of the laminate constituents on the SBGs, we present SBGs as functions of locking

parameter J,,, for the layered material with v, = 0.3, J,, = 100, and g,/u, = 100 subjected to the in-plane tension of the magnitude
A =2 in Fig. 9. We observe that SBGs widen and shift towards higher frequencies with a decrease in the locking parameter J,,. In
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Fig. 10. Shear band gaps vs. shear modulus contrast for the layered material with v, = 0.9, py./po, = 1, and Juq = Jup = 1 in the undeformed state (a) and the one
subjected to the in-plane tension with 1 = 1.5 (b).

particular, the lower boundary of the first SBG shifts from f, = 0.44 up to f, = 1.35 and its width increases from Af, = 0.16 up to
Af, = 0.46 when locking parameter of phase b decreases from J,,, = 100 down to J,,;, = 2.5. This happens because the lock-up stretch
ratio (34) decreases together with J,,,, leading to the significant increase in the phase velocity of shear wave in the phase b (see Eq.
(61)).

(c¢) Shear modulus contrast. To illustrate the influence of the shear modulus contrast of the phases on SBGs, we present SBGs as
functions of the shear modulus contrast for the laminates with v, = 0.9 and J,,; = 1 in Fig. 10. The corresponding lock-up stretch ratio
is 4 = 1.62. The SBGs of the undeformed (4 = 1) laminate and the one subjected to the in-plane tension with 4 = 1.5 are presented in
Fig. 10(a) and (b), respectively. Fig. 10(a) shows that the first SBG rapidly widens with an increase in the contrast from 1 to ~100,
after that the upper boundary flattens, and the SBG width changes slowly with further increase in the shear modulus contrast. The
second and the following SBGs close at certain values of the shear modulus contrast. For example, the third SBG closes when
wm, =20 and p,/w, = 322; however, the SBG reopens again if the shear modulus contrast increases. For laminates with phases
exhibiting strong stiffening (such as Gent phases), these BGs shift towards higher frequencies for any shear modulus contrast with
application of deformation. In particular, the first SBG widens from Af, = 0.79 up to Af, = 1.44 and its lower boundary shifts from
f, =035 up to f, = 0.63 in the laminate with y /u, = 50 subjected to the in-plane extension of the magnitude 4 = 1.5 (Fig. 10(b)).

3.2.2. Compressible laminates

To analyze the pressure wave BGs (PBGs), we consider periodic layered materials with compressible phases to ensure the
existence of pressure waves. Fig. 11 shows pressure and shear wave BGs as functions of the volume fraction of phase a in the
undeformed and deformed laminates. Here and thereafter, gray, blue, and black colors correspond to the shear wave, pressure wave,
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Fig. 11. Band gaps vs. volume fraction of the phase a in the undeformed laminate (a) and the one subjected to the in-plane tension of the magnitude 4 = 1.5 (b) with
Halpy, = 100, Aglp, = 1000, Ap/w, = 10, and py,/pg, = 1. The gray, blue, and black colors correspond to the shear wave, pressure wave, and complete BGs, respectively.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 12. Band gaps vs. in-plane ((a) and (c)) and equibiaxial ((b) and (d)) deformation for laminates with v, = 0.1, u,/p;, = 100, Aa/p, = 1000, Ap/py, = 10, and
PoalPop = 1. (a) and (b) refer to the laminate with neo-Hookean phases and (c) and (d) refer to the laminate with Gent phases having J,,, = 5 and J,,» = 2.5.

and complete BGs, respectively. We refer to complete BGs when both pressure and shear waves cannot propagate. We find that the
first PBG has a maximal width for a certain volume fraction v, depending on the contrast in shear moduli and compressibility of each
phase. Thus, different complete BGs can be tailored by varying the initial material properties and geometry.

In the case of shear waves, the ratio of acoustic impedances z,/z, is independent of deformation, although the acoustic
impedances z; = p;c; for both phases are functions of the principal stretches. Substitution of the corresponding phase velocities
(57)1, geometry changes (12), and densities p; = J; ! poe into (23) together with the boundary conditions (25), producing relations
Aoa = Ayp and A3, = A3y, yields the dispersion relation (66). Consequently, the SBGs are not influenced by deformation in the laminates
with compressible neo-Hookean phases. Similarly to the laminates with incompressible neo-Hookean phases, the deformation
induced changes in the material properties are fully compensated by the changes in the geometry.

In the case of pressure waves, the dominant factor influencing PBGs is the deformation induced change in the geometry. This is
due to the fact that the phase velocities of pressure waves in neo-Hookean materials change very slowly with the deformation;
moreover, the change is negligible in the case of nearly incompressible materials (see Eq. (57)2). A comparison of the BGs in the
undeformed laminates (Fig. 11(a)) and the BGs in the laminates subjected to the in-plane tension, 1 = 1.5 (Fig. 11(b)), shows that
the applied deformation does not change the SBGs while it significantly influences the PBGs.

To clarify how the pressure wave and complete BGs depend on deformation in the laminates with compressible phases exhibiting
weak and strong stiffening, we present these BGs as functions of the applied stretch ratio in Fig. 12. Fig. 12(a) and (b) illustrate how
the in-plane (27) and equibiaxial deformations (28) of the layered material with neo-Hookean phases influence the BG structure. We
observe that PBGs narrow and shift towards lower frequencies in the laminate undergoing contraction while extension of the
laminate widens and shifts PBGs towards higher frequencies. In particular, the lower boundary of the first PBG shifts from f, = 1.65
up to f, = 3.17 and its width increases from Af, = 0.18 up to Af, = 0.34 in the laminate subjected to the in-plane extension of the
magnitude 1 =2 (see Fig. 12(a)). The equibiaxial deformation has a more pronounced effect on the PBGs, in particular, the
equibiaxial extension of the magnitude 4 = 1.6 shifts the lower boundary of the first PBG from f, = 1.65 up to f, = 4.04 and widens it
from Af, = 0.18 up to Af, = 0.44 (see Fig. 12(b)). Remarkably, complete BGs can be induced in a required frequency range by
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Fig. 13. Relative change in thicknesses of the layers (a) and phase velocities of pressure (b) waves as functions of equibiaxial deformation for the laminates with
va = 0.1, p/py, = 100, Aglp, = 1000, Aplpy, = 10, Jya = 5, Jp = 2.5, and py,/py, = 1. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

deformation while the undeformed laminates do not produce complete BGs in that range. For example, the laminate with
v = 0.1, p,/p, = 100, A,/u, = 1000 and A,/u, = 10 has no complete BGs (in the considered frequency range) in the undeformed state
while it has the complete BG of width Af, = 0.15 when subjected to the in-plane contraction of the stretch ratio magnitude 4 = 0.85
(see Fig. 12(a)). In contrast to the in-plane tension, for the equibiaxial deformation we have more “islands” of the complete BGs in
the same range of deformation, however, these “islands” are smaller (compare Fig. 12(a) and (b)).

Fig. 12(c) and (d) illustrate how the in-plane (27) and equibiaxial deformations (28) of the layered material with compressible
Gent phases influence the BG structure. We observe that in the laminate undergoing in-plane contraction PBGs shift towards lower
frequencies less than in laminates with neo-Hookean phases (compare Fig. 12(a) and (c)). In particular, the lower boundary of the
first PBG shifts from f, = 0.94 up to f, = 1.23 due to the stiffening of the laminate induced by the in-plane contraction of the
magnitude 4 = 0.5. Analogously, the equibiaxial contraction of the laminate with Gent phases shifts PBGs towards lower frequencies
less than in the laminate with neo-Hookean phases (compare Fig. 12(b) and (d)). Specifically, the lower boundary of the second PBG
shifts from f, = 1.86 up to f, = 2.39 because the laminate under the equibiaxial contraction of the magnitude 4 = 0.7 significantly
stiffens. Similar to the effect of contraction in the laminate with Gent phases, the extension induced stiffening shifts PBGs towards
higher frequencies compared to the laminates with neo-Hookean phases. In particular, the lower boundary of the first PBG shifts
from f, = 3.17 up to f, = 3.68 in the laminate with Gent phases undergoing the in-plane extension of the magnitude 4 = 2 (compare
Fig. 12(a) and (c)).

Next, let us consider the mechanisms governing the PBGs in the finitely deformed compressible laminates exhibiting weak and
strong stiffening. Fig. 13 presents the relative changes in the thicknesses of the layers (a), and the relative changes in the phase
velocities of pressure waves (b) in each layer as functions of the stretch ratio. The example is given for the laminates with neo-
Hookean and Gent phases subjected to equibiaxial deformation. The laminate parameters are v, = 0.1, p,/p, = 100, A,/u, = 1000,
Aplpy, = 10, J,,p = 5, and J,;, = 2.5. The corresponding dependence of the BGs on deformation is presented in Fig. 12(b) and (d). A
comparison of Fig. 12(b) and (d) together with Fig. 13 shows a correlation between the position of PBGs and changes in the geometry
and phase velocities of the layers. In particular, we observe that in the laminate with Gent phases undergoing equibiaxial contraction,
the phase velocity of the pressure wave in the highly compressible Gent phase increases while it decreases for the highly
compressible neo-Hookean phase (compare continuous blue and dotted black curves in Fig. 13(b)). For example, for the equibiaxial
contraction of the magnitude 4 = 0.7 the changes in the pressure wave velocities are ¢/cf = 1.11 and ¢//cf = 0.91 for the highly
compressible Gent and neo-Hookean phases, respectively. On the other hand, the layer thickness of the highly compressible Gent
phase increases less than for the neo-Hookean phase, namely d/d¢ = 1.53 and d/*/d¢ = 1.62 for the laminate subjected to the
equibiaxial contraction of 2 = 0.7 (compare continuous blue and dotted black curves in Fig. 13(a)). As a result, the PBGs in the
laminates with Gent phases shift towards lower frequencies less than in the laminate with neo-Hookean phases. For the equibiaxial
extension of the magnitude /1 = 1.6, the changes in the pressure wave velocities are cC/cf = 1.02 and ¢/"/c{ = 1.03 for the highly
compressible Gent and neo-Hookean phases, respectively (Fig. 13(b)); whereas the changes in the layer thicknesses are d¢/d¢ = 0.37
and dy¥/d¢ = 0.42 (Fig. 13(a)). Although the difference in the phase velocities and layer thicknesses between the Gent and neo-
Hookean phases is relatively small, the lower boundary of the first PBG shifts from f, = 4.04 in the laminate with neo-Hookean
phases up to f, = 4.50 in the laminate with Gent phases undergoing the equibiaxial extension of the magnitude 4 = 1.6 (see
Fig. 12(b) and (d)). This happens because of the nonlinear dependence of PBGs on the changes in the material properties and
geometry induced by deformation, especially in the case of the extreme deformations approaching the lock-up state (A = 1.64).

Finally, we consider the influence of compressibility of the laminate constituents on the BGs. Fig. 14 shows BGs as a function of
compressibility of the thin softer layers embedded in the nearly incompressible stiffer phase. The results for the undeformed
laminate are presented in Fig. 14(a) while the response of the laminate subjected to the equibiaxial compression (4 = 0.5) is shown in
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Fig. 14. Band gaps vs. compressibility of the phase b for the laminate with v, = 0.96, p,/u;, = 100, Ag/u, = 1000, and py,/pg, = 1 in the undeformed state (a) and the
one subjected to the equibiaxial compression, 2 = 0.5 (b).

Fig. 14(b). We observe complete BGs in low-frequency range when compressibility of softer phase increases (i.e. A,/u, decreases).
For example, for the undeformed laminate with A,/u, = 10 we observe the first complete BG of width Af, = 0.89 with the lower
boundary at f, = 1.25, while for A,/u, > 35 there are no complete BGs in the considered frequency range (see Fig. 14(a)).
Furthermore, the maximal width and position of the lowest complete BG vary depending on the applied deformation; thus, for the
laminate with A,/u, = 10 undergoing equibiaxial contraction (1 = 0.5), the lowest complete BG has width Af, = 0.61 with the lower
boundary at f, = 0.50 (see Fig. 14(b)). Note that an increase in compressibility of the thin layers results in a shift of PBGs towards
lower frequencies, producing complete BGs at the low-frequency range. Thus, the wide complete BGs can be realized by composing
laminates of a nearly incompressible matrix and highly compressible thin layers.

Fig. 15 shows BGs as functions of deformations for the laminates with both highly compressible phases exhibiting weak ((a) and
(c)) and strong ((b) and (d)) stiffening effects. Consistent with the observations in Fig. 14, complete BGs shift down towards lower
frequencies. Moreover, the position of complete BGs is highly tunable via deformation. In particular, in the undeformed laminate
with v, = 0.95, p,/u, = 100, A,/u, = 10, and A/, = 5, the lowest complete BG has the width Af, = 0.29 with the lower boundary at
f, = 0.92, while for the laminate under in-plane compression, 4 = 0.5, the lowest complete BG has the width Af, = 0.63 with the
lower boundary at f, = 0.57 (see Fig. 15(a)). In case of the equibiaxial compression, 4 = 0.5, the lowest complete BG has the width
Af, = 0.75 with the lower boundary at f, = 0.46 (see Fig. 15(c)). Consequently, the equibiaxial deformation has a more pronounced
influence on the position of complete BGs as compared to the effect of the in-plane deformation.

A comparison of Fig. 15(a) and (b) (and also Fig. 15(c) and (d)) shows that in the laminate with Gent phases the PBGs are wider
and they appear at higher frequencies compared to the PBGs in the laminates with neo-Hookean phases. This leads to the shifting of
complete BGs towards higher frequencies. In particular, the lower boundary of the first complete BG in the laminate undergoing the
in-plane contraction of the magnitude 1 = 0.5 shifts from f, = 0.57 up to f, = 0.71 (compare Fig. 15(a) and (b)). In the case of the
equibiaxial contraction of magnitude 1 = 0.7, the lower boundary of the first complete BG shifts from f, = 0.57 up to f, = 0.69
(compare Fig. 15(c) and (d)). Similarly to the laminates considered in Fig. 12, the transformations of the BGs correlate with the
changes in the thicknesses of the layers and phase velocities within each layer. In particular, an increase in the thicknesses of the
layers (d/d° > 1) shifts BGs towards lower frequencies whereas a decrease in the layer thicknesses (d/d° < 1) shifts BGs towards
higher frequencies. Once again, an increase in phase velocities (c¢/c® > 1) shifts BGs towards higher frequencies, and a decrease in
phase velocities (c/c® < 1) shifts BGs towards lower frequencies.

3.2.3. An example of band gap structures for possible realistic layered materials

In this section, we provide a calculation of the BG structure for composites made of silicon rubber (Elite Double 32, Zhermarck)
and one of a digital material used in multimaterial 3D printing (A85). Both of these materials can be described by the extended neo-
Hookean strain energy function (30). Table 1 summarizes the corresponding parameters for these deformable materials. The phase a
is made of the digital material A85, and the phase b is made of the silicon rubber Zhermarck Elite Double 32. Fig. 16 shows pressure
and shear wave BGs as functions of the volume fraction of phase a in the undeformed and deformed laminates. We observe that the
lowest complete BG has a maximal width for a certain volume fraction v, in the undeformed laminate. In particular, for the laminate
with v, = 0.87 the lowest complete BG has width Af, = 0.26 with the lower boundary at f, = 2.50, while for the laminate with v, = 0.1
the lowest complete BG has width Af, = 0.3 with the lower boundary at f, = 3.4. Consistent with previous observations in this paper,
an extension of the laminate does not change the position of SBGs and shifts up PBGs towards higher frequencies. For example, the
in-plane extension of the magnitude 1 = 1.3 shifts the lower boundary of the first PBG from f, = 2.50 up to f, = 3.23 in the laminate
with v, = 0.87 (compare Fig. 16(a) and (b)).

To clarify how the pressure wave and complete BGs depend on deformation in the laminates made of silicon rubber (Elite Double
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Fig. 15. Band gaps vs. stretch ratio for laminates subjected to ((a) and (b)) in-plane tension and ((¢) and (d)) equibiaxial deformations.
va = 0.95, p, /iy, = 100, Agly, = 10, Aplwy, =5, poulpop = 1, and Jpe = Jup = 2.5. (a) and (c) refer to laminate with neo-Hookean phases and (b) and (d) refer to

laminate with Gent phases.

32, Zhermarck) and the digital material (A85), we present BGs as functions of the applied stretch ratio in Fig. 17. Fig. 17(a) and (b)
illustrate how the in-plane (27) and equibiaxial deformations (28) of the layered material with v, = 0.3 influence the BG structure.
We observe that PBGs narrow and shift towards lower frequencies in the laminate undergoing contraction while an extension of the
laminate widens and shifts PBGs towards higher frequencies. In particular, the lower boundary of the first PBG shifts from f, = 3.05
down to f, = 2.45 and its width decreases from Af, = 1.33 down to Af, = 1.07 in the laminate subjected to the in-plane contraction of
the magnitude 4 = 0.8 (see Fig. 17(a)). The equibiaxial deformation has a more pronounced effect on the PBGs; in particular, the
equibiaxial contraction of the magnitude 4 = 0.8 shifts the lower boundary of the first PBG from f, = 3.05 down to f, = 1.98 and
narrows it from Af, = 1.33 down to Af, = 0.86 (see Fig. 17(b)). Remarkably, complete BGs can be induced in a required frequency
range by deformation while the undeformed laminate does not produce complete BGs in that range. For example, the considered
here laminate has no complete BGs (in the frequency range up to f, = 3) in the undeformed state while it has the complete BG of
width Af, = 0.49 when subjected to the in-plane contraction of the stretch ratio magnitude 1 = 0.83 (see Fig. 17(a)).

Fig. 17 also shows the Bragg limit frequency, f®2 = ¢,,/(2zd), and an estimate for the resonance frequency of stiffer layer,
f® =g,,/Q2nd,). Clearly, the first complete BG occurs in the vicinity of the resonance frequency of the stiffer layer; moreover, it
occurs above the Bragg limit. Hence, a composition of both Bragg scattering and inner resonance of stiffer layers participate in
formation of complete BGs. In other words, in layered media the mechanism forming complete BGs is based on the destructive

Table 1
Material parameters.

Material u, MPa A, MPa o> kg/m?
Elite Double 32 0.444 22.2 1050
Digital material (A85) 22 1100 1200
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interference of the scattered waves by the stiffer layers and inner resonances of these layers.

4. Conclusions

We considered elastic wave propagation in soft periodic layered media undergoing finite deformations. Firstly, based on an exact
analytical solution for finitely deformed laminates with alternating neo-Hookean phases, we derived explicit relations for phase (41)
and group velocities (55) and (56). Secondly, we obtained long wave estimates (59) and (63) for the phase velocities of pressure and
shear waves propagating perpendicular to the layers in the finitely deformed compressible laminates with neo-Hookean and Gent
phases. These estimates provide the important information on elastic wave propagation with wavelengths larger than microstructure
size, namely / > zd; moreover, these explicit expressions may provide estimates for transversely isotropic fiber composites. Thirdly,
we provided a detailed analysis of the band gap structures for the waves propagating perpendicular to the layers in the
incompressible and compressible layered materials. Specifically, we identified the key parameters and mechanisms influencing
the shear wave, pressure wave, and complete BGs. Based on the analysis, we revealed the advantageous compositions of the
laminates producing the wide BGs in the low-frequency range.

For incompressible laminates, we showed that (i) a small amount of a soft phase in a stiffer matrix produces wide SBGs; (ii) SBG
structure in layered materials with phases exhibiting weak stiffening effects is not influenced by deformation because deformation
induced changes in geometry and effective material properties compensate each other; (iii) contraction or extension of the laminate
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with stiffening in phases widens and shifts up SBGs towards higher frequencies due to the stronger effect of deformation induced
changes in the material properties (as compared to the geometry changes).

For compressible laminates, we showed that (i) wide complete BGs can be produced by composing periodic laminates with thin
highly compressible layers embedded in a nearly incompressible matrix; (ii) the dominant mechanism influencing PBGs is the
deformation induced change in the thicknesses of the layers; (iii) by application of deformation to the laminates with highly
compressible phases, complete BGs in the low-frequency range can be produced. These low-frequency range BGs are not accessible
for laminates with nearly incompressible phases.

In this work, we considered small amplitude motions (superimposed on finite deformations); therefore, the presented results
cannot be fully applied for finite amplitude elastic waves propagating in soft microstructured materials. This can be potentially an
interesting direction of future research. Another aspect is the influence of the direction of elastic wave propagation. We fully address
this aspect in the analysis of long waves considering any direction of wave propagation and any applied deformations. However, our
analysis of elastic wave band gaps focuses on the normal direction of wave propagation, and the consideration of oblique elastic
waves would require different techniques such as Bloch—Floquet numerical analysis or transfer matrix methods. Finally, we note that
a consideration of dissipation can potentially improve the accuracy of the predictions, especially for the composites with constituents
characterized by strong damping effects (Babaee et al., 2015).
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Shear Wave Propagation

and Band Gaps in Finitely
Deformed Dielectric Elastomer
Laminates: Long Wave
Estimates and Exact Solution

We analyze small amplitude shear waves (SWs) propagating in dielectric elastomer (DE)
laminates subjected to finite deformations and electrostatic excitations. First, we derive
long wave estimates for phase and group velocities of the shear waves propagating in
any direction in DE laminates subjected to any homogenous deformation in the presence
of an electric filed. To this end, we utilize a micromechanics-based energy potential for
layered media with incompressible phases described by neo-Hookean ideal DE model.
The long wave estimates reveal the significant influence of electric field on the shear
wave propagation. However, there exists a configuration, for which electric field does not
influence shear waves directly, and can only alter the shear waves through deformation.
We study this specific configuration in detail, and derive an exact solution for the steady-
state small amplitude waves propagating in the direction perpendicular to the finitely
deformed DE layers subjected to electrostatic excitation. In agreement with the long
wave estimate, the exact dispersion relation and the corresponding shear wave band
gaps (SBGs)—forbidden frequency regions—are not influenced by electric field. How-
ever, SBGs in DE laminates with highly nonlinear electroelastic phases still can be
manipulated by electric field through electrostatically induced deformation. In particular,
SBGs in DE laminates with electroelastic Gent phases widen and shift toward higher fre-
quencies under application of an electric field perpendicular to the layers. However, in
laminates with neo-Hookean ideal DE phases, SBGs are not influenced either by electric
field or by deformation. This is due to the competing mechanisms of two governing
factors: changes in geometry and material properties induced by deformation. In this
particular case, these two competing factors entirely cancel each other.
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1 Introduction has been revised recently by Dorfmann and Ogden [17], McMeek-
ing and Landis [18], and Suo et al. [19]. More recently, Cohen
et al. [20] proposed a model based on considerations of polymer
networks under electromechanical loadings. Motivated by poten-
tial enhancement of electromechanical coupling, which is typi-
cally rather weak in DEs, microstructured DEs have been
explored [21-23] showing significant potential of this approach.
We note that microstructured DEs may develop instabilities at
different length scales [24-28].

The analysis of small amplitude wave propagation in finitely
deformed nonlinear electroelastic materials in the presence of an
electric field in the frame of the quasi-electrostatic approximation
was presented by Dorfmann and Ogden [29]. This paper has been
followed by a number of works on elastic wave propagation in
finitely deformed homogenous and composite DEs [11-13,30].
Note that layered DEs are of specific importance since they may
be realized through various layer-by-layer material fabrication
techniques, which already allow manufacturing of deformable lay-
ered materials across length scales [31-33]. However, the existing
literature on elastic wave propagation in finitely deformed DE
laminates in the presence of an electric field reports some contra-

Dielectric elastomers (DEs) can develop large deformations
when excited by an external electric field [1]. Therefore, these
artificial muscles are of great interest for various applications,
such as soft robotics [2], various actuators [3,4], energy generators
[5,6], to name a few. It has been recently shown that large defor-
mations can significantly influence wave propagation even in rela-
tively simple deformable materials without electromechanical
coupling [7-10]. In turn, DEs offer a way to manipulate elastic
waves via application of an external electric field. Thus, for exam-
ple, the effect has been used to control wave propagation in
homogenous DEs [11-13]. Moreover, microstructured DEs hold
even greater potential for active control of elastic waves by an
electric field [14,15]. Hence, investigation of wave propagation in
composite DEs opens new possibilities in improving of small
length-scale devices, for example, micro-electromechanical sys-
tems, where an electric field is the preferred operated variable.

Following the work of Toupin [16], the theory of nonlinear
electroelasticity for homogeneous isotropic hyperelastic media
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dictory results. In particular, Shmuel and deBotton [30] consid-
ered shear wave band gap (SBGs) structures in DE laminates with
ideal dielectric neo-Hookean incompressible phases, and they
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reported that these SBGs alter under application of an external
electric field. However, our results clearly show that the SBGs in
the neo-Hookean DE laminates are not influenced either by elec-
tric field or by induced deformation. We note that our results
agree with the exact solution for the long waves in DE laminates.
Moreover, the derived dispersion relation reduces to the classical
result for linear elastic layered media [34] in the absence of an
electric field and deformation. We should note that Shmuel and
deBotton [35] have just published the corrigendum reporting that
the SBGs in the neo-Hookean DEs are shifted by electric field
toward higher frequencies. However, these new results by Shmuel
and deBotton [35] do not agree with the exact solution for long
waves and with the exact solution for any wavelengths as detailed
in the Appendix.

To shed light on the influence of electric field on shear waves in
DE laminates, we analyze small amplitude shear wave propagat-
ing in DE layered media comprised of two alternating isotropic
incompressible electroelastic phases. First, we derive the long
wave estimates for phase and group velocities of shear waves
propagating in any direction in DE laminates undergoing any
homogenous deformation in the presence of an electric field. To
this end, we make use of an exact solution for finitely deformed
DE laminates allowing us to express an effective energy potential
in terms of microstructure parameters and physical properties
of the constituents. These estimates reveal the significant
dependence of the shear wave characteristics on electric field
and deformation. However, we found that there is a unique
configuration—when elastic waves propagate perpendicular to the
layers—for which phase and group velocities are independent of
electric field, and these acoustic characteristics can be influenced
only through electrostatically induced deformations. This holds
true for any direction of an applied electric field. Again, for any
other direction of propagation, the phase and group velocities
explicitly depend on electric field. We further analyze this specific
configuration and derive the dispersion relation for the small
amplitude shear waves propagating perpendicular to finitely
deformed layers with electric field applied perpendicular to the
layers. The derived dispersion relation is shown to be of the same
form as the relation for hyperelastic laminates [36] undergoing
finite deformations in the absence of an electric field. Thus, shear
waves propagating perpendicular to the layers in DE laminates are
not affected by electric field directly, and they can be influenced
by electric field only through induced deformations. Note that this
result is in full agreement with the exact solution for long waves.
Finally, we analyze SBGs in DE laminates by making use of the
derived dispersion relation. In particular, we show that SBGs
widen and shift up toward higher frequencies in DE laminates
with ideal dielectric Gent phases subjected to an electric field
through the thickness of the layers. Once again, SBGs in the DE
laminates with neo-Hookean ideal dielectric phases do not depend
on electric field.

2 Theoretical Background

To describe finite deformations of a continuous electroelastic
body occupying Qp and €, domains in the reference and current
configurations, respectively, we introduce the deformation gradi-
ent F(X, 1) = 0x(X, t)/0X, where X and x are position vectors in
the reference and current configurations, respectively. Then, the
Jacobian J = detF > 0 defines the volume change of the body
with respect to the reference state.

2.1 Electrostatics. In this work, we adopt the so-called quasi-
electrostatic approximation assuming the absence of magnetic
fields and neglecting electromagnetic interactions. Thus, in the
absence of free body charges and currents, the equations of elec-
trostatics in the current configuration read as

divD =0 and curlE =0 (1)

091002-2 / Vol. 84, SEPTEMBER 2017

where D and E denote electric displacement and electric field
applied in the current configuration, respectively. Here and there-
after, the differential operators with the first low-case letter refer
to the current configuration, while the differential operators with
the first upper-case letter refer to the reference configuration.

In the reference configuration, the equations of electrostatics
read as

DivD; =0 and CurlE;, =0 2)
where
D,=JF"'-Dand E,=F -E ©)
are the Lagrangian counterparts of D and E, respectively.

2.2 Mechanical Balance Laws. In the absence of body
forces, the linear and angular momentum balance for an electroe-
lastic material are

divt = px, and 7 = o 4)

where 7 represents the fotal Cauchy stress tensor and p is the mass
density of the material in the current configuration.
In Lagrangian description, the balance equations (4) read as

DivP = pox, and P-F' =F . P" 3)
where
P=Jz-F7 and p, =Jp (6)

are the first Piola—Kirchhoff total stress tensor and the mass den-
sity of the material in the reference configuration, respectively.

2.3 Constitutive Equations. To model nonlinear behavior of
DEs, we consider an energy potential /(F, D), as introduced in
Dorfmann and Ogden [17]. The strain energy-density potential is
a function of deformation gradient F and Lagrangian counterpart
of electric displacement D;. Then, for an electroelastic material,
the first Piola—Kirchhoff total stress tensor and Lagrangian
counterpart of electric field are given by

%4

_ oy W
" OF

P -
oDy

and E; @)

For an incompressible material, /=1, and the constitutive equa-
tions (7) modify as

O e _ o
P= 3 pF and E; = oD, ®)

where p denotes an unknown Lagrange multiplier.

2.4 Incremental Equations. For an electroelastic material,
the incremental constitutive equations for the first Piola—Kirchhoff
stress and Lagrangian electric field read as

P=Co:F+M; D, and E,=F: M;+K; Dy (9
respectively. Here, the superposed dot represent incremental

changes in the corresponding variables; Cy, My, and K, are the
tensors of electroelastic moduli defined as

_ Py
" OFOF’

oy

_ Py
~ OFOD,

0D 0D,

0 My and Kj = (10)
For an incompressible material, the incremental equations (9) read
as
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P:CO:F+pF_T~FT~F_T—pF_T+M0-DL and an
EL:FZMo-‘l‘KO'DL
2.5 Incremental Motions Superimposed on Finite

Deformation in the Presence of an Electric Field. In the frame
of the updated Lagrangian formulation, the incremental forms of
the governing Eqgs. (2) and (5);, describing small motions super-
imposed on finite deformation, transform to

curlE;, = 0, and divP, = PX 4

divD,, =0, 12)

where
D,=J"'"F-D,, E,=FT.E;, and P, =J7'P-F' (13)

are the so-called push-forward versions of DL, EL, and P, respec-

tively. Identifying the field of incremental displacements as u = x

and then displacement gradient as H = gradu = F-F!, we
obtain the following updated incremental relations (9):

P,=C:H+M D, and E,=H: M+K -D,, (14)

where

Cirks = J ' CoyuF 1jF g,
K=JFT.K, F!

Mire = MojnFF,i  and s)

are the updated tensors of electroelastic moduli, possessing the
following symmetries:

Ciks = Crgiry, Mg =My, and K=K’  (16)

For an incompressible material, the incremental equations (14)
read as

P,=C:H+pH —pI+ M -D,, and

. . 17)
EL*:HZM'FK'DL*
moreover, the incompressibility assumption implies
trtH =divu =0 (18)

2.6 Plane Waves in Incompressible DEs Subjected to
Electromechanical Loading. We seek for solution of Eq. (12) in
the form of plane waves with constant polarizations [29]
and

u=gf(n-x—ct), Dy =dgn x—ct),

p=I(n-x—ct) (19
where f, g, and II are arbitrary twice continuously differentiable,
continuously differentiable, and continuous functions, respec-
tively; the unit vectors g and d represent polarization vectors of
mechanical and electrical displacements, respectively; the unit
vector n denotes the direction of wave propagation; and c is the
phase velocity of the wave.

Substitution of Egs. (17) and (19) into Eqgs. (12) and (18) yields

A-g=pc’g and g-n=0 (20)

where A is the so-called generalized acoustic tensor defining the

condition of propagation of plane elastic waves in an incompressi-

ble electroelastic solid. The generalized acoustic tensor for an

electroelastic material with an arbitrary energy potential y/(F,D;)
can be calculated as follows [37]:

Journal of Applied Mechanics

where

I=I-n®n
is the projection on the plane normal to n; K=1-K-I,
Q:i-Q-iandf{zi-R-i,where
and R=n-M

Oix = Cynjmy (23)

Note that the generalized acoustic tensor Ais symmetric. Recall
that an incompressible electroelastic material is strongly elliptic
(stable), if its generalized acoustic tensor A is positively defined,
ie, g-A-g>0 for any unit vectors n and g satisfying the
incompressibility constraint (/=1) n- g = 0 along an electrome-
chanical loading path defined through a combination of D, and F.

3 Analysis and Results

Consider periodic laminates made out of two isotropic incom-
pressible alternating ideal DE phases with volume fractions v(@
and v(® =1 — @, Here and thereafter, the fields and parameters
of the phases are denoted by superscripts (-)(“) and (-)(b>, respec-
tively. Geometrically, the layers are characterized by their thick-
nesses H@ = v@H and H?) =" H, where H is the period of
the undeformed laminate (see Fig. 1(a)). In the deformed lami-
nates (see Fig. 1(b)), the layer thicknesses change as follows:

B =1 g = P H®) and h=J,H  (24)
where 1, = v("Uv(za) +v® X(2h> and )éa"b) are the stretch ratios in the
direction e, for phases @ and b, respectively.

(a)
X2
(c) hy
|_'— - — 1
|
mT H, H : |
| |
H, | 0 I x,
|
|
vy
(b)
: e
| | 2
D | Meoh
(s ha
€
€3
Fig. 1 Schematic representation of the undeformed (a) and

subjected to the electromechanical load (b) periodic layered
material with alternating phases a and b. A unit cell (¢);
(e1,e2,€3) is the orthonormal basis.
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The macroscopically applied electromechanical loads are
expressed in terms of the average deformation gradient F and
Lagrangian electric displacement D, namely

F =v@F@ 4 y®OF®)  and D, =v@D ++®DP (25

The continuity of the displacements along the interface between
th(e)layers yields condition for the deformation gradients F@ and
F b

(F“ —F").q=0 (26)
and the continuity of the tractions across the interface between the
layers yields
(PY —PP).m=0 @7

where unit vector m denotes the initial lamination direction (see
Fig. 1(a)), and q is an arbitrary unit vector perpendicular to m. In
the absence of free charges at the interfaces, the jump conditions
for Lagrangian electric displacement and electric field are

MY -D)m=0 and (E-E"”)xm=0 (28)
In the current configuration, the interface jump conditions (27)
and (28) read as

(z@ — ). m =0,
(E@ —E®) xm=0

D@ —Dp®).m=0 and
(29)

3.1 Long Wave Estimates for DE Laminates Under
Electromechanical Loads. Let us consider DE laminates with
isotropic incompressible dielectric phases described by the neo-
Hookean ideal dielectric model, namely

) b 1 . 3 .
(FO.F© _3) 4+ —_pl.cO.pP

(
o _H
l// 26

¢
= 30

5 (30)
where 19 and &9 are the shear modulus and the electric permit-
tivity in the undeformed state, respectively; C = F’ - F is the right
Cauchy—Green tensor. Under the incompressibility assumption, a
closed-form exact solution for finitely deformed periodic layered
electroactive materials with neo-Hookean ideal dielectric phases
can be derived [21,24-26]. By utilizing the exact analytical solu-
tion, an effective free energy function can be constructed [37]

= = Bie & B—p - 1
Y (F,D.) == (F 3)77(m Cm-—— )
2 2 m-C'm
_ 2
1 - - = 1/1 1 D, -m
slp e (Lol Deml )
2¢ 2\¢ ¢/ m-C 'm
where C = F' - F is the average right Cauchy—Green tensor, and
@ S\
= @@ 00 g = <”()+VW> (32)
WO

™ (

and (33)

V(a) V(b) -
BACEAFT
The generalized acoustic tensor (21) corresponding to the free
energy function (31) takes the form

=T

AMF D) =AT+A0-F mo@-F' -m) (34
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where

Ay =R(n-B-n)+ (i —g)(n-F-m) (35)

. ((DL m’ 4 ((nL m)’f?

1
2y o? 3
(D, -m)(n-F-ﬁL)ﬁ>)

o

(36)

where B=F-F' is the average left Cauchy-Green tensor,
x=m-C ' m B=n-F ' -m andy=cc/c +p(1—2/¢).
One can show that the generalized acoustic tensor (34) has the fol-
lowing eigenvalues in the two-dimensional space normal to n:

ar=A, and ay = A, +Ay(a— %) (37

In general, we have two distinct shear waves propagating in
finitely deformed DE laminates in the presence of an electric field.
The corresponding phase velocities are

¢V =\/a;/p and ¢% =\/ay/p

(3%)

where p = v(@p@ 4+ v p®) is the average density of the lami-
nate. Remarkably, the first shear wave phase velocity EE\IV) is
explicitly independent of the electric field; moreover, it coincides
with the phase velocity of the corresponding shear wave propagat-

ing in finitely deformed laminate in the absence of an electric field

[36]. However, the second shear wave phase velocity Eizw) depends
explicitly on electric field.

Let us consider some particular cases, where for simplicity, we
set

m=e, and F=/e Qe +/le;,2¢e+ ;1393 ®es (39)
First, we study shear waves propagating perpendicular to layers,
i.e., n = e;. Regardless of the value and the direction of the
applied electric displacement, the phase velocities of both shear
waves are identical and independent of electric quantities, namely

o =) =@ = T\ /5 “0)
Thus, the phase velocities (40) depend on electric field only if
)»2 = /lg (DL).

Second, we apply an electric field along the
D; = D;\/fi¢ ey, and study shear waves propagating along the
layers. Thus, for wave propagation in the same direction as the
applied electric field (n = e;), the phase velocities of the shear

waves are distinct, and one of them depends on the electric field,
namely

layers,

e =2vu/p (Y =e) (41)

hs

and
c@= <;§ <ﬁ— 1) +Zf(1 +Di§<1 —3>))
I & &
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However, for wave propagation perpendicular to the electric field
(n = e3), the phase velocities of the shear waves are distinct and
independent of electric field, namely

43)

and

() _

Csw

+;§>§ (¥ =e) @4

Third, we apply an electric field perpendicular to the layers

(D, = D;\/ e &) and analyze shear wave propagation along the
layers (n = e; 3). In this case, the phase velocities of shear waves
are different, and the phase velocity of the so-called in-plane shear
wave (with polarization g®) = e;) depends explicitly on electric

field, i.e.,

el =disve/p (8" =e) (45)
and
o (2472 ’7__1—02(1—3> L =e)
Cow ( 1’3+A2(H L z F g e

(46)

Now, let us consider the example when deformation of DE lam-
inates is induced by an electric field applied perpendicular to the

layers, i.e.,
€, DL =DL\/‘I_JE €, and

W@ | )10) _ g

m

47

T =

Then, the symmetry of the problem in the plane (e, e;), the
incompressibility assumption, and the continuity condition for dis-
placements along interfaces between the layers (26) yield the
average deformation gradient in the form

F —}e2®e2+l 1/2( 92®e2) (48)

where in our case, D¥) = D,e, = ADpy\/ e e; and B = 2%,

®Rep + /l_l(I — e, ®e;). Hence
Tﬁ) = rg? = 1927 = pl© and (50)
T;c;) =192 + (N e 22D} —pt©
The continuity condition (29), and (47); yield
‘c(zaz) = r;g) =0 and v(“)‘c(lal) + v(”)fﬁ) =0 51

By solving the system of equations (51), we obtain an expression
for the induced stretch

=(1+D})"" (52)
In terms of the Lagrangian electric field
E.=E \/Eez (53)
&
where E; = /IZDL. Equation (52) reads as
E} = (1-77) (54)

Equation (54) yields only one physically relevant solution,
namely

= (1+ i —1) 1 55
(1 Vi) e (55)
where

2
n= 8V3EL \/ (9+ 3(27—256152))

\/9+\/3 27 — 256E6

(56)

Note that Eq. (54) yields expressions for the so-called limiting
electric field and the corresponding stretch induced by this field,
namely

lim — \/; ~ Jim —272/3 ~ .63, and 57
The total Cauchy stress and electric field within each phase are ) 57
Dim = /3 ~ 1.732
3 : oy~ 3 ) . .
& = OB 4 (8( )) D @D —plIT and EF /F Figure 2(a) shows the induced stretch (55) as the function of the
(49) dimensionless Lagrangian electric field. Remarkably, the limiting
(a) 1.0 (b) 1.0
0.8
~< 094 &
—Sh J:" EI :E;”"
s £0.6- -
?z 0.8 ;z
3 2 0.4
k= E]
0.7 0.2
A . : . . . ; 0.0 . : : :
00 01 02 03 04 05 06 E" 0 2 4 6 8 10
Lagrangian electric field, £, Eulerian electric field, £
Fig. 2 Induced stretch as function of dimensionless Lagrangian (a) and Eulerian (b) electric
fields
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induced stretch Aj, = 2-2/3 does not depend on composition of
the laminate and coincides with the limiting stretch for homogene-
ous DEs [38]. The induced stretch can be expressed as a function

of the Eulerian electric field, E = F - E, = E\/1i/¢ e, where
E = A7'E;. Thus, Eq. (54) reads as

Er =1 -2 (58)
Figure 2(b) shows the induced stretch as the function of the nor-
malized true or Eulerian electric field as described by Eq. (58).
Analogously to the case of homogeneous DEs [38], the limiting
value of electric field may be interpreted as the starting point of
thinning down without limit, after the critical value of electric
field is reached, E > E'™ = 2723 /3. Hence, in the continuation,
wle present our examples for electric fields ranging from O up to
E™.

For the considered electrostatically induced deformations (48)
and (52), the expressions for the phase velocities (40), (45), and
(46) read as

(1) n=e
Gw=Cll =@ =1+D}) "\ /p (59)
2) n=e;3
e =0+0)""u/p (&M =es) (60)
and
¢ =(1+D})" @ — e2) (61)

Note that if H(")/ﬂ(}’) =@ /e®) then & /& = ju /ii; hence, for
1@ /u®) = @ /¢) Eq. (61) reduces to

ey =40 i/ (8% =e)

Figure 3 shows the normalized phase velocities of the shear waves
(59)—(61) as functions of the dimensionless Lagrangian electric
displacement. We normalize the phase velocities by the corre-
sponding values in the absence of an electric field, i.e.,

(62)

_e8,/8 e
—e;8=8g.0=""
\-

==

C,
—_
—_
|
-]
\
\

®%cees, nN=e;o0=¢: —
" .....,,"sx.’"g.".ez, €, /8}7 =20

—_
(=]
1

o

Phase velocity, ¢_ /.
sw
= =
oo O
L 1 L 1
/
)

e
23
1

T T T T
0.0 0.3 0.6 0.9 1.2 1.5
Lagrangian electric displacement, D,

Fig. 3 The phase velocities of shear waves (59)—(61) as func-
tions of the dimensionless electric displacement for laminates
with v(2) =0.2 and ﬂ(")/y(b) =5. The phase velocities are nor-
malized by the corresponding values in the absence of electric
field.
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co = ESW|DL:0; therefore, all presented curves are valid for any

density contrasts p(">/ p®) between the layers; moreover, thanks
to the normalization the dash-dotted gray curve, corresponding to
the wave propagating perpendicular to the layers, is valid for any
composition of DE laminates. The phase velocities of both shear
waves propagating perpendicular to the layers coincide and
monotonically decrease with an increase in electric displacement;
in particular, the phase velocities decrease by ~37 % for D =
Diim (see the dash-dotted gray curve in Fig. 3).

To illustrate the influence of electric field and direction of wave
propagation on the characteristics of elastic waves in the layered
DEs, we consider wave propagation in the plane (e,e;), i.e.,
n = cos ¢ e; + sin ¢ e;. Thus, the expression for the phase veloc-
ities (38) together with Eqs. (48) and (52) reduces to

Eg\lv)(q)) = (1 +Di)_l/3 ((l +Dz) cos2¢p +% sinz(p) % (63)

and

c(o)=(+07) "

SwW
‘ <

By making use of the explicit relations (63) and (64), we construct
the polar diagrams of slownesses Sq (@) = 1/Co(¢). Figure 4
shows an example of the slowness curves for the so-called out-of-
plane (with polarization g = e3) and in-plane (with polarization
lying in the plane (e, e;)) shear waves in the DE laminates sub-
jected to an electric field applied perpendicular to the layers.
Remarkably, the slownesses of the in-plane shear waves increase
for any direction of wave propagation in DE laminates subjected
to an electric field, if contrast in electric permittivities is larger
than the contrast in shear moduli (see Fig. 4(d)).

The dispersion relations for long waves in the incompressible
DE laminates are derived from Eq. (38), and have the following
form:

—1\ -
c0s22¢ + sin*2¢ + D7 cos2 @ (é cosZgp + sin2<p) ) ﬁ
g p

==

(64)

oV =/bi/p and @2 = \/by/p (65)
where
by =p(k-B-k)+ (¢ —p)(k-F-m)’ (66)
and
_ 2 o\ |E— i (4B > 11
by = b+ (s —ﬁk)[ 2 (W‘ “\; s
= 2 = 2,0
x <(DL ‘Zm) —i<(DL'T) LYON B W%
o Vi o 4
(D - m)(ka- F- DL)ﬁk)):l 7

where k is the wave vector, k = |k| is the wave number, 5, =
k-F' -mandy, = ok’ /e + f2(1 —5/c).

Now, group velocity can be calculated as
Ve = Vg (68)

From Egs. (65) and (68), we obtain the explicit formulae for the
shear wave group velocities in homogenized DE laminates
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@) v,=0.2, u/uy =10, £/6, =any (B) v, =0.5, u/uy= 10, &/g, = any (c) v.= 0.5, u/ 11, =20, £,/&, = any

nz/c nz/E nz/a D, =0
3 Tess R c==-D =1
o
R =4
R 1
i Q
H s
H n,/c n/c k=3
2
H) @
: o2}
=
(@) Va=02, u/w =10, &/6,= 30 (e) () Va=0.2, u/pty =10, £/, =5
n,/c n/c —D,=0
3
=2
n/c n/c =
a
o2}
=

Fig.4 Slowness curves for the out-of-plane (a)—(c) and in-plane (d)—(f) shear waves propagating in the DE laminates with differ-
ent compositions subjected to electric field perpendicular to the layers. Scale is 0.4 per division, and slowness is normalized by

\/EI;‘). Note that the horizontal and vertical axes with the corresponding labels ni/¢c and n./c serve for showing the principal

directions and physical quantity presented on the polar plot only.

W BBt (u—p)n-F-mF-m

69
swW N (69)
and
v =—— (@B -n+ (g —p)n-F-mF m
pax

ff)—’” (2Dmﬁ<1 - 27/32) +Fp(28° —a)
&

o

L 2O oo
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where D,,=D;-m and F,p =n-F-D;. We note that, for
m=ce,and F = /e, @ e; + e, @ e; + A3e3 @ e3, the absolute
values of the group velocities coincide with the phase velocities
for the waves propagating along the principal directions in the DE
laminates subjected to the electric field along or perpendicular to
the layers.

To illustrate the influence of electric field and direction of wave
propagation on the energy propagation in DE laminates, we con-
sider wave propagation in the plane (e;,e;), i.e., n =cos@e;
+sin @ e;. Recall that the outer normal to the slowness curve
defines the direction of the energy flow [39]. Thus, by assigning
the absolute value of the group velocity (i.e., |Vsy|) to the normal
to the slowness curve for all possible propagation directions, we
construct the polar diagrams for the group velocity or the energy
curves [39,40]. In particular, the expression for the group veloc-
ities (69) and (70) together with Egs. (48) and (52) yields energy
curves shown in Fig. 5. Clearly, the group velocities of shear
waves (SWs) strongly depend on the propagation direction and
applied electric field. Application of electric field perpendicular to
the layers increases the group velocity of the out-of-plane SW
propagating along the layers and decreases it for SW propagating
perpendicular to the layers regardless of laminate composition
(see Figs. 5(a)-5(c)). While the group velocity of the in-plane SW
propagating along the layers can either decrease or increase with
application of electric field depending on the laminate composi-
tion (compare Figs. 5(d)-5(f)). Moreover, the energy curves of the
in-plane SWs have intersections, meaning that the absolute values
and directions of the group velocities coincide for two distinct
wave propagation directions. Remarkably, the position of these

SEPTEMBER 2017, Vol. 84 / 091002-7



@  va=02, us/p, =10, &/5 = any (b)

nv
2 IlZV

va=0.5, tt/1y = 10, &/, = any (c)

v,=0.2, u/1, =10, g/6,= 10
(e) NV

v, =0.5, u/1, = 20, g/ = any
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Fig.5 Energy curves for the out-of-plane (a)—(c) and in-plane (d)—(f) shear waves propagating in the DE laminates with different
compositions subjected to electric field perpendicular to the layers. Scale is 0.4 per division, where group velocity is normalized

by \/p/u. Note that the horizontal and vertical lines with the corresponding labels (n4v) and (n.v) serve for showing the principal
directions and physical quantity presented on the polar plot only.

intersections changes with a change in the magnitude of the
applied electric field. It is worth noting also that the energy curves
of plane waves presented here may serve as a tool to define the
wave fronts of impulsive point source excited waves in homoge-
nized laminates [40,41]. In this case, the intersections of the
energy curves correspond to the regions of null energy [40].

3.2 Band Gap Structure. In this section, we consider lami-
nates with incompressible electroelastic phases describing by the
following energy potential:

. . . p . 1
¢(C) (F(s)7 Déd) — l//iﬁs <15§)) + 5 @) I§C) (71)
gl¢
where [} =trtC=F:F is the first invariant of the right
Cauchy—Green deformation tensor C = F' . F,and Is=D;-C-D.
is the additional invariant accounting for the electromechanical cou-
pling. The tensors of electroelastic moduli (15) for energy potential
(71) are

¢ 5 p(e) (& ) pl&) ) (& [N GING
Cit =2(0us v + 289 B ) + 504070},

(72)

M) =

- @ © o 1
ijk m (511<D, + 6jkDI-C )7 KC = _51.1.

Y £©)
where lpﬁf) = 6!//(5)/0[55) and wgél) _ 81#55)/6[55),

We consider steady-state transversal small amplitude excita-
tions propagating perpendicular to the interface between the layers

091002-8 / Vol. 84, SEPTEMBER 2017

(along the x, direction, see Fig. 1(¢)) in the laminate subjected to
macroscopically applied electromechanical loads

F=)e ®e +he;De, +13e30e; and D, =D;y\/fic e,
(73)

Here, we use the displacement continuity along the interface
between the layers (26) producing A\ = 2\’ = 4, and " = 2{"
= /3, and the incompressibility assumption yielding )é”) = },(2”)

= /. Following Tiersten [42], we assume that the incremental

fields u®, D(Li), and p(‘5> depend on the coordinate x, and time ¢

only. Under these assumptions, substitution of Egs. (17), (18), and
(72) into Eq. (12) yields

62u(1§) _ ( (§)>2 82'4(15) (9]5(5) o q aZugi) _ <1(5)>2 aZugi)
or? W 8x% T 0x ’ Or W 8x§
(74)
where
¥ = 1, /2l//<f>/p<<r> (75)

Next, substitution of Egs. (18), (72), and (73) into Eq. (17)
yields
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Py = 222y

. (¢)
S0 1 [ e0u” @
Eni=13 (Dz o + D

5@ 2
P =0

() (¢)
plo _ 8“3 Dy [ po 9 5(0)
Py =23y t-o \P2 o +Dps |

. ©
S0 1 (&) Ougy £ (9)
EL*3 - 8(5) (DZ 6)(2 +DL*3

YD, —p¢ 76)

where D(;) = D, according to Eq. (29),.

The incremental jump conditions across the interface between
the layers (x, = 0) are
@) p(b) 5@ p5(b)

(@) 5(P)

P* _P*7 P* _P*7 P* :P*7
0 _s0 o _go po_pn
- (a . . (a (b . (a .
E=E,, E,3=Es Dphr=D,
Hence, substitution of Eq. (76) into Eq. (77) yields
g0 0 » O
1 (9xz =0 1 8)(2 X2:07
(a) (b)
yoda _ywlal 78)
8)(2 =0 0}(2 =0
1 1
(b) _ ;(a)
p P =DiDry» (8(}7) 8(")>
We seek solution for Eq. (74); in the form
uﬁ‘f) — A©)pitkDx—on) _,_B(Cf)ei(*k(i)«\‘rwl) (79)
where @ represents the angular frequency, and £ = w /c'©) is the

wave number. The perfect bonding between the layers implies

(@) (b)

o =y |y (80)

Then, the substitution of Eq. (79) into Eq. (80) yields
AW 4 B@ A B — g (81)

Next, the substitution of Eq. (79) into Eq. (78); yields
lil((l;l)) A — lf;l:)) B — %A(b) N %B(h) =0 (2)
Two additional conditions for constants A@, B@ A®) and

B® are obtained from the periodicity consideration. Hence, we
adjust the form of the solution (79) to be the steady-state wave
expression with the same wave number & for both phases

M(]i) — Ugf) (xZ)ei(kxz—{ut) (83)

where

U () = ADK I 4 pOeKn and k) — kO 2k (84)

According to Floquet theorem, functions U ié) (x2) must be peri-
odic with the period equal to the length of the unit cell (see

Fig. 1(c)), namely h = h(@) + p(®)

Journal of Applied Mechanics

U (=h) = U (")) (85)
Thus, substitution of Eq. (84) into Eq. (85) yields
e KN @) | QKR pla) _ KON g(b) _ iKWY p(b) _ )
(36)

Next, substituting Eq. (83) and Dii)l = d%g) (xp)e!*2=) into

Eq. (76),, we obtain

Egi)l (X27t) = 555) (x2) i(kxy— ()t)

£ () = (Dz e >e""<9”)+d55)<xz>)

@87

88

and
P hat) = P el
P () = 2)51,//15)(’(—‘; (49K _ pOo=Ka) 4 p,eld) )
(88)
where according to Floquet theorem
a a b a a b
PR = PP, & (=) = &),
a a b
A (=1) = d" (W)

Finally, substitution of Eq. (88) into Eq. (89) yields

)
l//l 711((")/1 “ A(a) _ w(la tK(‘“)h(“)B(a) _ lr//I

Vi ik®® 4 ()
clay € @€ b ¢

(b)
Y i) _ g (90)

¢

System of equations (81), (82), (86), and (90) has a nontrivial
solution if

o 1 -1 -1
W W
cla) cla) cb) cb)
det —iK p@ iK' pla iK®) pb) —ik\" =0
e et —e —e
lpga)e—il(ﬁ’)h(’) Wl ezK ) pla) 7@ iK® R Wl e—zK n®
cla) cla) c(b) c(b)

on
One can show that Eq. (91) together with Eq. (75) reduces to
wh'@ wh?)
cos kh = cos (c(—“)> cos (W
1 (a) ~(a) (b) .(b) h(a) h(b)
L Yo +p ¢ sin @ sin @ 92)
2\ p®ed) * placl@ cla) cb)
describing the dispersion relation » = w(k) with ¢(© and A
being functions of deformation, which can be induced by electric
field or otherwise, for example, purely mechanically. The
obtained dispersion relation fully agrees with the exact solution
for long waves (40) propagating perpendicular to the layers in
electroelastic laminates, clearly showing that shear wave propaga-

tion is independent of electric field for this configuration. We note
that the dispersion relation (92) is different from those presented
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by Shmuel and deBotton [30,35] as detailed in the Appendix.
Moreover, the dispersion relation (92) has the same form as the
classical result for purely elastic laminates [34], if no deformation
is applied. Recently, the dispersion relation by Rytov [34] has
been extended to account for finite deformations in purely
mechanical hyperelastic laminates [36]. Remarkably, the disper-
sion relation (92) is identical to the one considered in Galich et al.
[36] for the purely mechanical problem; the only difference,
which, however, does not affect the way how SBGs change, is
that here the deformation is induced by an electric field. Thus, the
analysis and conclusions of Galich et al. [36] can be fully applied
here. In particular, Galich et al. [36] showed that SBGs do not
depend on deformation in laminates with neo-Hookean phases.
This is due to the fact that the two main factors—changes in the
geometry and phase velocity induced by deformation—
completely cancel each other [36]. This is again in contradiction
with the conclusions of Shmuel and deBotton [30,35], and Shmuel
and Band [43]; these works utilized different dispersion relations,
but all arrived at the conclusions that SBGs are tunable by an elec-
tric field [30,35] or by deformation [43] in neo-Hookean ideal
dielectric or purely mechanical neo-Hookean laminates, respec-
tively. Once again, the SBGs do not depend either on deformation
or on electric field in the neo-Hookean ideal dielectric or purely
mechanical neo-Hookean laminates.

To achieve electric field (or deformation)-induced tunability of
the SBGs, one should consider laminates with phases exhibiting
stronger stiffening, for example, Arruda—Boyce [44] or Gent [45]
phases. To illustrate this, we consider laminates with electroelastic
phases describing by the energy potential (71) with Gent elastic
part [45]

o © 7 @ _
yO (FO) = _%mo - u) 93)

elas .],(7?

where J,(,f) is the dimensionless parameter defining the lock-up

stretch ratio, such that in the limit (I@ —3) — J'9, the strain

energy becomes unbounded. Recall that the stiffening effects
describing by the Gent model, which is an approximation of the
Arruda—Boyce model [44], refer to finite extensibility of polymer
chains. For DE laminates with electroelastic Gent phases sub-
jected to the electric field perpendicular to the layers (as defined
in Eq. (47)), the relation between the induced stretch and Lagran-
gian electric displacement is

D, ="

21 TE @) yla) TOy0) )
I (a) 3 + 1Y, , 13
Bo\2—GB+a)i+ 2 2= GB+aP)it 2
%94)

Substitution of Eq. (93) into Eq. (75) yields [8]

S /l\/ J’("é) ﬂ
¢ 3449 2 271 pl

Next, by making use of Egs. (94), (95), (24), and (92), SBG struc-
tures can be constructed for electroelastic laminates subjected to
the electric field perpendicular to the layers. Figures 6(a)—6(c)
show the SBGs as functions of the Lagrangian electric displace-
ment applied perpendicular to the layers for wave propagating
perpendicular to the layers in the DE laminates with the Gent elec-
troelastic phases. Thanks to the specific normalization of the

95)

Lagrangian electric displacement, namely D; = D1/ [i¢ e;, the
presented band gaps correspond to DE laminates with any contrast
in electric permittivities £ /() between the layers. The lock-up
stretch for J,, = 0.5 is Ajock =~ 0.65. Application of D;, = 3.5 leads
the contraction of the considered DE laminates down to 4 ~ 0.68.
Clearly, the application of the electric field perpendicular to the
layers widens and shifts SBGs up to the higher frequencies. In
particular, the application of the Lagrangian electric displacement
of Dy =3.5 to the laminate with v(* = 0.5 and x@/u® =10
shifts the lower boundary of the first SBG from f, = 0.41 up to
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Fig. 6 Shear wave band gaps as functions of dimensionless Lagrangian electric displacement for waves propagating perpen-
dicular to the layers. The band gap structures are true for any contrast in electric permittivities /() between the layers. The

locking parameters for Gent phases are J,(,f) = J,(,,b) = 0.5. The densities of the layers are identical, i.e., p®/p"® = 1. Frequency is

normalized as f, = (oH/2r)\/ plu.
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f» = 0.95 and widens it from Af, = 0.26 up to Af, = 0.62 (see
Fig. 6(b)). Once again, these changes in SBGs occur due to
electrostatically induced deformation. As a comparison, Figs.
6(d)-6(f) show the SBGs as functions of the Lagrangian electric
displacement applied perpendicular to the layers for the waves
propagating perpendicular to the layers in the DE laminates with
the neo-Hookean electroelastic phases. Recall that for the neo-
Hookean dielectric elastomer laminates, the normalized limiting
electric displacement is constant, i.e., DE“‘ = /3, while for the
Gent dielectric elastomer laminates, the limiting electric field
depends on the on the locking parameter J,. Note that for the
Gent DE laminates discussed in Fig. 6, the limiting electric fields
are higher than the ones needed to reach the lock-up stretches.
Finally, we note that the influence of stiffening effects on band
gap structures in finitely deformed incompressible and compressi-
ble layered materials was thoroughly analyzed by Galich et al.
[36]. The only difference is that here we induce deformation by
application of an electric field.

4 Conclusion

We considered shear wave propagation in electroelastic layered
media subjected to finite deformations and electric fields. First,
we derived the long wave estimates—the exact solution for the
long waves—for phase and group velocities of shear waves propa-
gating in the laminates with electroelastic neo-Hookean phases.
The derived formulae are expressed in terms of the volume frac-
tions and electroelastic constants of the phases. Moreover, these
long wave estimates are given for any direction of wave propaga-
tion, and for any applied electric field and homogenous finite
deformations. Furthermore, we have found that the shear wave
propagation perpendicular to the layers depends on electric field
only though the induced deformation.

Second, we derived the dispersion relations for the shear waves
propagating perpendicular to the layers in the laminates with
incompressible hyperelastic ideal dielectric phases, described by
the energy potential (71). Consistently with the long wave esti-
mates, the derived dispersion relation is independent of electric
field, and the dispersion relation has the same form as its analog
for the purely elastic laminates. The dispersion relation shows that
SBGs in the electroelastic laminates are tunable by an electric
field only through induced deformation. In particular, the applica-
tion of an electric field to the DE laminates with electroelastic
Gent phases widens and shifts SBGs toward higher frequencies.
However, SBGs do not depend on deformation (induced by an
electric field or mechanically) in DE laminates with electroelastic
neo-Hookean phases. Finally, we emphasize that consideration of
dissipation can potentially improve the accuracy of the predic-
tions, especially for the composites with constituents character-
ized by strong damping effects [46].
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Appendix: Comparison of Dispersion Relation, Exact
Solution for Long Waves, and Results by Shmuel and
deBotton

Figure 7 shows a comparison of the exact solution for long

waves (59), dispersion relation (92), and the results reported by
Shmuel and deBotton [30,35]. For clarity, we normalize the wave
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Fig. 7 Comparison of the exact solution for long waves (59),
dispersion relation (92), and results reported by Shmuel and
deBotton [30,35] for the shear waves propagating perpendicular
to the layers in the laminates with incompressible ideal DE
neo-Hookean phases subjected to electric field perpendicular
to layers, namely D, =1.27. The laminate is made of VHB-4910
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Fig. 8 Comparison of the exact solution for long waves (59), dis-
persion relation (92), and dispersion relation by Shmuel and
deBotton [35] for the waves propagating perpendicular to the
layers in the laminates with incompressible neo-Hookean phases
subjected to electric field perpendicular to layers, namely,

D, =0.37, v(2) = 0.8, u(2)/7u(8) = (2)/(b) = 20, and p(a)/(P) = 1

vector and frequency as in Shmuel and deBotton [30]. The DE
laminate is subjected to the electrostatic excitation of D, = 1.27
(corresponding to D = 1.5 in Shmuel and deBotton [30,35]). The
continuous black and dotted blue curves correspond to the exact
solution for long waves (59) and dispersion relation (92), respec-
tively. The dotted and dashed red curves refer to the results
reported by Shmuel and deBotton [30] (see Fig. 8(a) therein) and
the results presented in Shmuel and deBotton [35] (see Fig. 7(b)
therein), respectively. We observe that the curves for dispersion
relation (92) and exact solution for long waves (59) overlap, while
the dispersion curves from Shmuel and deBotton [30,35] signifi-
cantly differ from the exact solution for long waves.
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For completeness, we show a comparison of the exact solution
for long waves (59), dispersion relation (92), and dispersion rela-
tion reported by Shmuel and deBotton [35] for the DE laminates
with a more pronounced dispersion. In particular, the comparison
is shown for the DE laminates with incompressible neo-Hookean
phases with v(9) = 0.8, 1@ /u®) = £@ /¢®) =20, and p(@ /p") =1
in Fig. 8. The laminate is subjected to the electric field perpendicular
to the layers, namely, D; = 0.37 (corresponding to D =3 in the
notation of Shmuel and deBotton [35]). We observe that dispersion
relation (92) and the exact solution for long waves (59) are in excel-
lent agreement for the corresponding wavelengths, whereas the
results reported by Shmuel and deBotton [35] produce significantly
different results from the exact solution for long waves (59) even in
the long wave limit of k4 — 0. In particular, for this case, the phase
velocity predicted by the exact solution (59) significantly differs
from the phase velocity calculated from the dispersion relation by
Shmuel and deBotton [35] by a factor of 2, namely, ¢5P) ~ 27, .
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ABSTRACT

We investigate the propagation of shear waves in finitely deformed 3D fiber-reinforced composites. We
employ a micromechanics based approach and derive explicit expressions for the phase and group ve-
locities of the shear waves in the long wave limit. Thus, we obtain the important characteristics of the
shear waves in terms of the volume fractions and material properties of the constituents. We find that
the phase and group velocities significantly depend on the applied deformation and direction of wave
propagation. To account for interactions between the elastic waves and microstructure in finitely de-
formed 3D periodic fiber-reinforced materials, we employ the Bloch wave analysis superimposed on large
macroscopically applied homogeneous deformations, and we implement the technique into a finite el-
ement code. The Bloch wave numerical analysis reveals the essential dispersion phenomenon for the
shear waves propagating along the fibers in the finitely deformed 3D periodic fiber-reinforced materials.
We find that the appearance of the dispersion phenomenon and the corresponding wavelengths can be

tuned by material composition and deformation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nature actively exploits sophisticated microstructures to
achieve remarkable material properties and functionalities. In
particular, the fiber-reinforced deformable composites, possessing
a light weight, high strength and flexibility at the same time, are
widely present in nature (Saheb and Jog, 1999). However, natural
materials are biodegradable and poorly resistant to moisture, and
not always they can provide desirable properties; therefore, syn-
thetic composite materials are of a great interest. The mechanical
performance of composite materials can be tailored by designing
microstructures combining soft and stiff constituents. Recent
advances in the material fabrication techniques and 3D-printing
already allow realization of microstructured metamaterials with
various properties and functionalities (Babaee et al., 2013; Kolle
et al., 2013; Rudykh and Boyce, 2014a; Lin et al., 2014; Ge et al.,
2013; Bafekrpour et al, 2014; Rudykh et al, 2015; Celli and
Gonella, 2015; Srivastava, 2016; Golub et al., 2012; Fomenko et al.,
2014). Moreover, soft metamaterials can be reversibly deformed,
and, thus, enabling us to manipulate their effective properties via
deformation (Li et al., 2013; Slesarenko and Rudykh, 2016). Thus,
for example, elastic wave propagation in soft composite materials
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can be controlled by deformation (Bertoldi and Boyce, 2008b;
Bertoldi et al., 2008; Gei, 2008; Rudykh and Boyce, 2014b; Galich
et al., 2017; Babaee et al., 2016; Chen and Elbanna, 2016). Even
in relatively simple homogeneous hyperelastic materials, elastic
wave characteristics can be significantly transformed via defor-
mation (Dorfmann and Ogden, 2010; Galich and Rudykh, 2015b;
2015a; 2016). It is worth noting that many soft biological tissues
are found to possess fiber-matrix microstructures (Humphrey,
2002), and the soft tissues frequently experience large defor-
mations due to growth or other physiological processes. Hence,
investigation of elastic wave propagation in 3D fiber compos-
ites (FCs) undergoing finite deformations can be beneficial for
biomedical applications such as ultrasound testing.

Small amplitude elastic wave propagation in finitely deformed
homogeneous isotropic materials was pioneered by Biot (1940) on
the basis of the static nonlinear theory (Biot, 1939). Waves of
a finite amplitude propagating in a pre-stressed elastic medium
were investigated by John (1966), and Currie and Hayes (1969).
Boulanger and Hayes (1992) considered wave propagation in
finitely deformed incompressible Mooney-Rivlin materials and
derived explicit relations for wave velocities. Boulanger et al.
(1994) extended this work to a broader class of finitely deformed
compressible Hadamard materials and first obtained the explicit
expressions for the phase velocities of longitudinal and transver-
sal waves. Recently, Destrade and Ogden (2013) have revised and
generalized the problem of an infinitesimal wave propagation in
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the finitely deformed hyperelastic materials by application of the
invariant theory. More recently, Galich and Rudykh (2015b) have
investigated infinitesimal wave propagation in finitely deformed
compressible Gent materials, exhibiting pronounced stiffening ef-
fects, and obtained closed form expressions for the phase velocities
of longitudinal and transversal waves.

By employing the nonlinear elastic theory (Truesdell and
Noll, 1965) and a phenomenological approach, Scott and Hayes
(1976) considered small amplitude plane waves superimposed
on a homogeneous deformation in the so-called idealized fiber-
reinforced materials, assuming an incompressible matrix and in-
extensible fibers. Later, Scott (1991, 1992) extended this analysis
and considered infinitesimal vibrations of an arbitrary form su-
perimposed on a finite deformation for a broad class of elastic
anisotropic materials. The infinitesimal elastic wave propagation
in nearly incompressible and nearly inextensible fiber-reinforced
materials with unidirectional and orthogonal fibers was examined
by Rogerson and Scott (1994). More recently, Ogden and Singh
(2011) revisited the problem of infinitesimal wave propagation in
an incompressible transversely isotropic elastic solid in the pres-
ence of an initial stress. In their work, Ogden and Singh (2011) ex-
ploited the phenomenological theory of invariants and presented a
more general and transparent formulation of the theory for small
amplitude waves propagating in a deformed transversely isotropic
hyperelastic solid.

In this work, we employ a micromechanics based approach ac-
counting for the phase properties and their spatial distribution
to analyze the wave propagation in finitely deformed 3D FCs, as
opposite to previous works that employ phenomenological ap-
proach (Scott and Hayes, 1976; Scott, 1991, 1992; Rogerson and
Scott, 1994; Ogden and Singh, 2011), or numerically model the
composites in 2D settings (Rudykh and Boyce, 2014b; Bertoldi and
Boyce, 2008b), or do not consider finite deformations (Aberg and
Gudmundson, 1997; Kushwaha et al., 1993). Here, we derive ex-
plicit closed form expressions for phase and group velocities of
the shear waves for any direction of wave propagation in finitely
deformed 3D fiber-reinforced materials with neo-Hookean phases.
These explicit expressions provide important information on the
elastic wave propagation in the long wave limit. To account for
the interaction of the elastic waves with the composite microstruc-
ture, the Bloch wave analysis is implemented in the finite ele-
ment code, allowing us to analyze small amplitude motions su-
perimposed on finite macroscopically applied homogeneous defor-
mations. It should be noted that we analyze the finitely deformed
fibrous materials in fully 3D settings - both the deformation and
the direction of the wave propagation - which, to the best of our
knowledge, is not covered in the existing literature. We investi-
gate the role of the material composition and phase properties
in the dispersion of shear waves. We specifically focus on the in-
fluence of deformation on the dispersion of the shear waves. By
considering the waves propagating in the direction of fibers, we
find that the applied deformation strongly affects the long waves;
whereas the influence of the deformation is weaker for the ranges
of short wavelengths. The effect of deformation is found to be
more pronounced in FCs with moderate and large shear modu-
lus contrasts between the phases and with large volume fractions
of fibers. Finally, we compare the micromechanics based homog-
enization technique and the numerical Bloch wave analysis, thus,
bringing together the different length-scale analyses, and showing
the equivalence of these distinct approaches at certain ranges of
wavelengths.

2. Theoretical background

Consider a continuum body and identify each point in the un-
deformed configuration with its vector X. In the deformed body,

the new location of the corresponding points is defined by map-
ping function x = x(X, t). Hence, the deformation gradient is F =
0x/0X, and its determinant | = detF > 0. For a hyperelastic ma-
terial described by a strain energy function 1/(F), the first Piola-
Kirchhoff stress tensor can be calculated as follows

oY (F)
T (1)

For an incompressible material, ] = 1 and Eq. (1) modifies as

WE
P= b pF T, 2)

where p represents an unknown Lagrange multiplier. The corre-
sponding Cauchy stress tensor is related to the first Piola-Kirchhoff
stress tensor via the relation o = 1P - FT.

In the absence of body forces the equations of motion can be
written in the undeformed configuration as

P=

2
DivP = ,oo—x (3)

where pg is the initial density of the material and the operator
D?(+)/Dt? represents the material time derivative. If the deforma-
tion is applied quasi-statically, the right hand part of Eq. (3) can
be assumed to be zero, and the equilibrium equation is obtained
as

DivP = 0. (4)

Consider next infinitesimal motions superimposed on the equi-
librium state. The equations of the incremental motions are

. D?u
DivP = pg—, 5

Po b (5)

where P is the incremental change in the first Piola-Kirchhoff
stress tensor and u is the incremental displacement.

The linearized constitutive law can be written as

Py = AgijuaFu. (6)

where F = Grad u is the incremental change in the deformation
gradient, and the tensor of elastic moduli is defined as Agjqxg =
aZw/aﬁaaFkﬁ. Under substitution of Eq. (6) into Eq. (5) the incre-
mental motion equation takes the form

D?uy;

b (7)

Aoijiai,1j = Po

3. Long wave estimates for finitely deformed incompressible
fiber composites

To analyze small amplitude motions superimposed on a finite
deformation, we present equation of motion (7) in the updated La-
grangian formulation

0%u;
Ajjialii1j = pBTZI’ (8)

where A, =J 1 AgijuFpFy; and p =] 1pg is the density of the
deformed material.

We seek a solution for Eq. (8) in the form of plane waves with
constant polarization

u=gh(m -x—ct), (9)

where h is a twice continuously differentiable function and unit
vector g denotes the polarization; the unit vector n defines the
direction of wave propagation, and c is the phase velocity of the
wave.

Substituting (9) into (8), we obtain

Q(n) -g=pc’g, (10)
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Fig. 1. Schematic representation of the FC with random distribution of fibers. (e;,
e,, e3) is the orthonormal basis.

where

Qij = Ajjunjn (11)
is the acoustic tensor defining the condition of propagation of the
infinitesimal plane waves.

For incompressible materials Eq. (8) modifies as

. 02u;
Ajjialiij+Di = P Btzl’ (12)

together with the incompressibility constraint
Ujj = 0. (]3)

Substitution of (9) and p = poh’(n-x —ct), where pg is a scalar,
into (12) and (13) yields

Qn) - g=pc’g and g n=0, (14)

where Q =1-Q.1and I =1 - n®n is the projection onto the plane
normal to n.

Next, let us consider a FC made out of aligned fibers embedded
in a softer matrix with the volume fractions vf and vm =1 —vy.
Here and thereafter, the fields and parameters of the constituents
are denoted by the subscripts (+); and () for fibers and matrix,
respectively. In the reference configuration the volume fractions of
the phases can be calculated as

vle/Q/an(X)dX and vmzl/Q[Q(l—nf(X))dX, (15)

where 7y =1 if X is within the fiber phase and n; = 0 otherwise;
Q2 is the volume occupied by the composite in the reference state.
The macroscopic deformation gradient is defined as

F:1/Q/ F(X)dX. (16)
Q

The boundary conditions for Ff and Fp,, and for Ps and P, at the
interfaces between the fibers and matrix are

(Ff—Fn) - m=0 and (P;—Pp) w=0, (17)

where the unit vector m denotes the initial fiber directions (see
Fig. 1), and w is the arbitrary unit vector orthogonal to m.

In this work, we consider fiber-reinforced materials with incom-
pressible phases described by a neo-Hookean strain energy func-
tion (Ogden, 1997)

Wi = %(FE ‘F; —3), (18)

where (i is the initial shear modulus. For a FC with incompress-
ible neo-Hookean phases, an effective strain energy density func-
tion can be constructed (deBotton et al., 2006)

P =G EE-3)+ Lo a2 o3, (19)

where I, =m-C-m, and C=F"-F is the average right Cauchy-
Green deformation tensor;

14+ve) s+ Unpt
M =Vills~+VUnihm ( f) [

"Vmtty + (145 im

are the homogenized elastic moduli.
The acoustic tensor (14) corresponding to the strain energy
function (19) takes the form

and fd=pu (20)

Q. F) =qii+g;(1-F - m) e (I-F-m), (21)
where

qi=pa(m-B-n)+(a—a)(1->*)(n-F-m)° (22)
and

G2 =31,%%(i — i) (n-F-m)’, (23)

where B = F- F is the average left Cauchy-Green deformation ten-
sor. The acoustic tensor (21) has the following nontrivial eigenval-
ues with the eigenvectors lying in the plane normal to n

- 2
a;=q; and a2=q1+q2<14—(n-F-m) ) (24)

Thus, we have two distinct shear waves propagating in a finitely
deformed incompressible FC with the corresponding phase veloci-
ties

=(1) [ =(2) az
C. = - and C. = —_, 25
sw ,00 sw )00 ( )

where pg = Vspos + VmpPom is the average initial density of the FC.

The phase velocities of the shear waves (25) coincide only for
special cases of applied deformations and directions of wave prop-
agation. For instance, let us consider a uniaxially deformed FC with
the corresponding macroscopic deformation gradient

F=le; e+ A 12 (1-e;®e)), (26)

where A is the applied macroscopic stretch ratio. Then, for waves
propagating perpendicular to the fibers, i.e. m = e; and n = e, the
phase velocities of the shear waves coincide

Cow = &) = ¢@) = xlfao' (27)

The phase velocities also coincide for the waves propagating along
the fibers, i.e. n =m = e,,

_ _ _ L+ (i — L3
Cow = E) = E2) = A,/%. (28)

However, for an oblique propagation of the waves relative to the
fiber direction, for example, m=e, and n= (e; +€;)/+v2, the
phase velocities of the shear waves are distinct

) 20+ (A3 -1)a
(1) _ _
CSW - 2)\([50 (g - e3) (29)
and
) i+ (1 +223)
(2) _ _
CSW - 4)\”50 (g_ (e2 _e1)/\/j) (30)

Note that (28) yields an explicit expression for the critical stretch
ratio corresponding to the onset of macroscopic instability under
uniaxial contraction (Rudykh and deBotton, 2012), namely

o\ 1/3
xcr:< —Z> . (31)
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Fig. 2. Slowness curves for the out-of-plane (a) and in-plane (b) shear waves propagating in the FC with vy = 0.2, ps/ium = 10, and pos/pom = 1 under uniaxial tension (26).
Scale is 0.4 per division, and slowness is normalized by ,/fi/p,. Note that the horizontal and vertical axes with the corresponding labels n;/c and n,/c serve for showing

the principal directions and physical quantity presented on the polar plot only.

To illustrate the influence of the deformation and direction of
wave propagation on the characteristics of elastic waves in the
FCs, we consider wave propagation in the plane (eq, e,), i.e. n=
cosg eq+sing e,. By the use of the explicit relations (25) we
construct the polar diagrams of slowness Ssw(¢) = 1/Cw (), also
known in literature as slowness curves (Musgrave, 1970; Nayfeh,
1995). Fig. 2 shows an example of the slowness curves for the so-
called out-of-plane (with polarization g =e3) and in-plane (with
polarization lying in plane (e, e,)) shear waves in the FC under-
going uniaxial tension along the fibers. The examples are given for
the FC with vy = 0.2, uy/um = 10, and the fiber direction m = e;.
The continuous black curves correspond to the undeformed FC,
while the dash-dotted green and dotted blue curves are for the FC
under the uniaxial contraction (A = 0.85) and extension (A = 1.5),
respectively. Note that the critical stretch ratio for the consid-
ered FC undergoing uniaxial contraction is A = 0.80; therefore,
the presented slowness curves for the compressed (A = 0.85) FC
correspond to a macroscopically stable state. The slowness curves
clearly indicate the significant influence of the applied deforma-
tion on the shear wave propagation. Specifically, the contraction
along the fibers results in a significant decrease of the phase ve-
locities of the shear waves propagating in the direction of fibers;
while the phase velocities increase for the waves propagating per-
pendicular to the fibers since these directions experience exten-
sion. Note that the phase velocity of the in-plane shear wave in
the uniaxially deformed FC is maximal for certain directions of
wave propagation ng. To find these directions, we substitute (26),
Ny = CoSYy e +singy e;, and m = e, into (25),, and then solve
the extreme value problem for the phase velocity Es(vzv) as a func-
tion of @g:

)\’3

1
(o = = arccos +mz,z=0,1.

2 _L
3(1-%)
In the undeformed state g = +7, 137”. Moreover, these directions

differ from the principal directions in contrast to the out-of-plane
shear wave - the phase velocity of which has the maxima in

(32)

the directions of the principal axes. For example, in the uniaxially
stretched FC the phase velocity of the out-of-plane shear wave is
maximal for the wave propagation along the fibers, i.e. for n = +e,
(see Fig. 2 (a)).

The dispersion relations for the long waves in an incompress-
ible neo-Hookean FC are derived from (25) and have the following
form

o) = /’2 and @) = b (33)
Po Lo

where

by = (k- B-1) + (& — 1) (1 - 1;°?) (k- F- m)” (34)

and

by = by +30,%2(i — ) (k- E- m)2(14 — k2 (kF m)2>, (35)

where Kk is the wave vector and k = |K| is the wave number.
Hence, we can find the corresponding group velocity defined as

v, = Vio. (36)

Substitution of (33) into (36) yields explicit expressions for the
group velocities of the long waves propagating in the finitely de-
formed FC

o (AB-n+ @ - p)(1- %) (n-F-m)E-m)

= (37)
" v/ Pol1
and
=L (a ns
Loz
(i~ f)(n-F-m)[3,°2(n-F-m)’nt (38)

(1+2672(1-3"(n-F-m)”) )E-m]).
In particular, the group velocities of the shear waves coincide for

waves propagating perpendicular to the fibers (i.e. m = e, and n =
e;) in the uniaxially deformed FC
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Fig. 3. Energy curves for (a) - out-of-plane and (b) - in-plane shear waves propagating in the FC with vy = 0.2, ws/mum =10, and pgr/pom = 1 under uniaxial tension. Scale
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the principal directions and physical quantity presented on the polar plot only.

1 2 [l

€1. (39)

The group velocities also coincide for the waves propagating along
the fibers, i.e. n=m =e,,

[+ (- a)r-3
v —v® %ez,

To illustrate the derived results (37) and (38), we consider wave
propagation in the plane (e, e;), i.e. n=cos¢ e; +sing e,. Re-
call that the outer normal to the slowness curve shows the di-
rection of the energy flow (Musgrave, 1970; Nayfeh, 1995). Hence,
by assigning the absolute value of the group velocity (i.e. |Vsw|)
to the normal to the slowness curve for all possible propaga-
tion directions, the polar diagrams of group velocity or the en-
ergy curves (Musgrave, 1970; Nayfeh, 1995) are constructed. Fig. 3
shows an example of the energy curves for (a) out-of-plane and
(b) in-plane shear waves propagating in the uniaxially deformed
FC with vy =02, u¢/pum =10, and pys/pom = 1. The continuous
black curves correspond to the undeformed FC while the dash-
dotted green and dotted blue curves refer to the uniaxial contrac-
tion (A =0.85) and extension (A = 1.5), respectively. Clearly, the
group velocities of the shear waves strongly depend on the applied
deformation and direction of wave propagation. Moreover, the en-
ergy curve of the in-plane shear wave has intersections, and their
position can be manipulated by deformation (see Fig. 3 (b)). These
intersections of the energy curves mean that the absolute values
and directions of group velocity coincide for two different direc-
tions of wave propagation. For the out-of-plane shear wave the in-
tersections are not observed (see Fig. 3 (a)). It is worth mention-
ing also that the energy curves of plane waves coincide with the
wave fronts of impulsive point source excited waves in homoge-
neous anisotropic materials (Langenberg et al., 2010; Nayfeh, 1995).
In this case, these cusps of energy curves will correspond to the
regions of null energy (Nayfeh, 1995).

(40)

Next, let us consider slowness and energy curves near to, and
at the onset of instability point. Fig. 4 shows the slowness curves
of the shear waves propagating in the FC subjected to the uniax-
ial contraction of A = 0.81 (dash-dotted green) and A = 0.80 (dot-
ted red), while A, = 0.80. A comparison of Figs. 2 and 4 shows
that the slowness of both shear waves propagating along the fibers
dramatically increases (or phase velocity decreases) when the crit-
ical stretch is approached. In particular, in the FC contracted to A =
0.81, the slownesses of shear waves propagating in the direction of
fibers are 3.8 times larger than in the undeformed FC. Eventually,
the slownesses tend to infinity in the FC contracted to the critical
stretch ratio, i.e. at A = 0.80. This is due to the fact that the phase
velocities of the shear waves propagating along the fibers attain
zero value in the FC subjected to A = A (see (28)). Lastly, Fig. 5
shows the energy curves of the shear waves propagating in the FC
subjected to the uniaxial contraction of A =0.81 ((a) and (b)) and
A =0.80 ((c) and (d)). We observe that the energy curve of the
out-of-plane shear wave for the FC subjected to A degenerates
into the three dots (see Fig. 5 (c)). The dot in the center means that
the absolute value of the group velocity is zero for the wave prop-
agating in direction of fibers (see (40)); the other two dots mean
that the absolute value and direction of the group velocity do not
change with the wave propagation direction. For the in-plane shear
wave, the energy curve degenerates into the dot and two curved
triangles (see Fig. 5 (d)). The dot in the center corresponds to the
zero group velocity of the wave propagating along the fibers, while
the curved triangles refer to the curvature of the corresponding
slowness curve (see Fig. 4 (b)) in the vicinity of the wave prop-
agation directions perpendicular to the fibers (i.e. n = +eq).

4. Bloch wave analysis for wave propagation in 3D periodic FCs

To obtain the dispersion relations for finitely deformed 3D pe-
riodic FCs, we employ the Bloch wave analysis superimposed on
a finite deformation (Aberg and Gudmundson, 1997; Bertoldi and
Boyce, 2008b; 2008a; Rudykh and Boyce, 2014b). We implement
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Fig. 4. Slowness curves for the out-of-plane (a) and in-plane (b) shear waves propagating in the FC with vy =02, ws/jum =10, and pgs/0om = 1 under uniaxial ten-
sion (26) near the instability. Scale is 0.5 per division, and slowness is normalized by /i/0o.

the analysis in the finite element code. Fig. 6 shows an example
of the corresponding representative volume element (RVE) for a FC
with a square periodic unit cell. Geometrically, the fibers are char-
acterized by their diameters, namely d = 2a, /v;/7, where a is the
period of the FC (see Fig. 6). The periodic unit cell occupies a do-
main 2 in the undeformed configuration, namely

—h/2 <x; <h/2,
and —a/2 <x3<a/2.

—a/2 <x; <a/2, (41)

First, a solution for a finitely deformed state is obtained.
The macroscopic deformation gradient F = 1/Q Jo FdV is applied
through periodic boundary conditions imposed on the displace-
ments of the RVE faces such that
Up— Uy = (F-1)- (Xg— Xa) =H- (X3 — Xp), (42)
where A and B are the nodes on the opposite faces of the RVE
boundary, H is the average displacement gradient tensor, and U =
x(X) — X is the displacement field. The macroscopic first Piola-
Kirchhoff stress tensor and the corresponding Cauchy stress tensor
are calculated as P = 1/Q JoPdV and 0 = 1/R2 [, 0dV, respectively.
Rigid body motions are prevented by fixing the displacements of
a single node. Although the analysis is general and it can be ap-
plied for materials subjected to any macroscopically applied homo-
geneous deformation F, here the examples are given for a uniaxial
loading (26).

Second, the Bloch wave analysis is performed for the finitely
deformed state. The corresponding incremental change in the dis-
placement and the first Piola-Kirchhoff stress tensor can be ex-
pressed as

uX,t) = k(X)e" ™ and P=pe i, (43)

where w is the angular frequency. By substitution (43) in (5), we
obtain

DivP + pow?k = 0. (44)
According to the Floquet theorem (Kittel, 2004)
k(X +R) = k(X)e ™R, (45)

where R defines the distance between the nodes on the oppo-
site faces of the RVE in the reference configuration. The periodicity
conditions (45) are imposed in the finite element code through the
corresponding boundary conditions for the displacements of the
opposite faces (Slesarenko and Rudykh, 2017; Bertoldi and Boyce,
2008a; 2008b; Wang and Bertoldi, 2012). The dispersion relations
are obtained by solving the eigenvalue problem stemming from
Eqs. (43)-(45) for a range of the wave vectors K°.

We start from comparing the results of the Bloch wave numer-
ical analysis and the analytical estimates (33) for the long wave
limit. Fig. 7 presents the comparisons for the wave propagating
in the direction of fibers. The FCs are subjected to the uniaxial
tension (26) along the fiber direction of the magnitude A = 1.25.
Fig. 7 (a) and (b) show the comparison for FCs with v¢ = 0.25,
Ms/m =10 and ps/pum = 1000, respectively; while Fig. 7 (c) and
(d) show the comparison for FCs with vy = 0.01, p¢/um = 10 and
W s/m = 1000, respectively. The continuous black curves refer to
the numerical simulations while the dashed red curves correspond
to the long wave estimates (33). Here and thereafter, we consider
FCs with constituents having identical densities (i.e. pgs/Pom = 1),

and frequency is normalized as f, = fa,/po/ft, where f = w/(27).
Fig. 7 (a) and (c) show that the long wave estimates are in excel-
lent agreement with the results of numerical simulations up to the
wavelengths comparable with the period a of the unit cell for FCs
possessing a small amount of fibers and a moderate contrast in
the shear modulus between the constituents. However, for larger
contrasts in the shear moduli, the long wave estimates are in good
agreement with the Bloch wave analysis only for wavelengths sig-
nificantly exceeding the period of the unit cell, namely | 2 m2a
(see Fig. 7 (b) and (d)). Thus, the difference between the long wave
estimates (33) and Bloch wave analysis increases with an increase
in the volume fraction and shear modulus of fibers (i.e. the role of
the fibers becomes more significant).

Fig. 8 presents the dispersion curves for the periodic FCs
with vf=0.25 and (a) pus/m =10, (b) p¢/pm =100, and (c)
Ws/pm = 1000 undergoing uniaxial deformations along the fibers.
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Fig. 6. RVE for a 3D periodic FC with a square arrangement of fibers.

The dispersion curves presented in Fig. 8 (and also in Fig. 9) are
obtained by utilizing the Bloch wave analysis implemented in the
finite element code. Clearly, for the FC with the low shear mod-
ulus contrast between the fibers and matrix (e.g., us/pUm = 10),
the deformation slightly influences dispersion curves (Fig. 8 (a)).
However, the influence of deformation increases for the FCs with
moderate and high shear modulus contrasts (e.g., uy/um = 100
and jus/pum = 1000). Specifically, deformation considerably influ-
ences the dispersion of the waves with wavelengths exceeding the
characteristic length-scale of the FC (Fig. 8 (b) and (c)). For exam-
ple, for the wavenumber ka/(27) = 0.2, the uniaxial tension of the
magnitude A = 1.5 shifts the dispersion curve from f; = 0.29 up to
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Fig. 9. Dispersion curves for shear waves propagating in the direction of fibers in FCs with 1/, = 1000 in the undeformed state (a) and for the FCs subjected to the

uniaxial tension of magnitude A = 1.5 (b) and A =2 (c).

fn =0.55 as compared to the response of the undeformed FC with
vy =0.25 and p¢/pum = 100 (Fig. 8 (b)). Remarkably, the dispersion
curves for the short waves (i.e. | < 2a) are barely affected by the
uniaxial deformation (Fig. 8 (b) and (c)). Moreover, the dispersion
curves change more slowly with deformation after a certain level
of stretch is reached (compare dash-dotted red and dotted blue
curves in Fig. 8). This happens because the phase velocities (28) of
the long shear waves start to change slowly when a certain level
of deformation is achieved.

To clarify the influence of the deformation on the dispersion
phenomenon in FCs with various volume fractions of the fibers,
we present dispersion curves for FCs with us/um = 1000 in the
undeformed state (a) and for the FCs subjected to the uniaxial ten-
sion of magnitude A =1.5 (b) and A =2 (c) in Fig. 9. The con-
tinuous black, dotted blue, and dashed-dotted red curves corre-
spond to vy = 0.01, vy = 0.10, and v; = 0.25, respectively. We ob-
serve that the dispersion of shear waves in the fiber direction is
more pronounced for the periodic FCs with large volume fractions
of fibers (compare continuous black and dash-dotted red curves in
Fig. 9 (a)). Moreover, a uniaxial extension of the periodic FCs along
the fibers significantly affects dispersion curves (Fig. 9 (b) and (c));
however, an increase in the loading leads to a moderate change
in the dispersion curve after a certain level of deformation (com-
pare Fig. 9 (b) and (c)). For example, the frequency of the shear
wave with ka/(27) = 0.1 propagating in the FC with v; = 0.25 and
Ms/im = 1000 increases from f; = 0.21 in the undeformed FC up
to fn = 0.64 in the FC subjected to the uniaxial tension of the mag-
nitude A = 1.5 while it increases only up to f, = 0.66 in the FC
subjected to the uniaxial tension of the magnitude A = 2 (compare
dash-dotted red curves in Fig. 9). This is due to the fact that the
phase velocities (28) of long shear waves change more slowly after
a certain level of deformation is reached.

Finally, we consider the influence of the fiber arrangement
on the shear wave propagation in the direction of fibers. Fig. 10
shows an example of RVE for a FC with a rectangular periodic unit
cell. Geometrically, the fibers are characterized by their diameters,
namely d = 2, /abv/m (see Fig. 10). The periodic unit cell occupies
a domain €2 in the undeformed configuration, namely

—a/2 <x;<a/2, —h/2<x;<h/2,

(46)
—b/2 <x3 <b/2.

and

Fig. 11 presents a comparison of the dispersion curves for shear
waves propagating along the fibers in the FC with the square
and rectangular (b = 2a) arrangements of the fibers. The dispersion
curves of the shear waves vary in the FC with rectangular arrange-
ment of fibers, because we have two distinct characteristic lengths,
namely a and b, as opposite to the square arrangement. We com-

1.6 F |
square
.......... rectangular

04F  F .
’ long wave estimate
0.0 1 1 1 1
0.0 0.4 0.8 1.2 1.6

k(a+b)/(47) = (a+b)/(2])

Fig. 11. Dispersion curves for shear waves propagating in the direction of fibers
in FCs with vy =0.25 and jts/pm = 100 in the undeformed state with square and
rectangular (b = 2a) arrangements of fibers.

pare FCs with the same volume fractions of fibers (i.e. vy = 0.25);
as a result, the dispersion curves of the long shear waves (i.e.
I > 5(a+b)/2) coincide for both square and rectangular periodic
FCs. Consistently with the previous observations, a significant non-
linearity of dispersion curves is observed for the shear waves with
wavelengths being comparable to the characteristic lengths of the
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FC, namely | ~ (a + b). The dispersion curves for shorter waves (i.e.
I < (a+ b)/3) are affected only slightly by the fiber arrangement.

5. Concluding remarks

We considered the shear wave propagation in the 3D fiber-
reinforced composites undergoing finite deformations. First, we
derived the explicit closed form expressions for the phase and
group velocities of the shear waves propagating in the finitely de-
formed 3D FCs on the basis of a micromechanical approach ac-
counting for the material properties and distribution of the phases.
Hence, the derived explicit relations for the phase and group ve-
locities were expressed in terms of the actual mechanical prop-
erties of composite constituents and their volume fractions. By
utilizing these expressions, we constructed the slowness and en-
ergy curves revealing the strong influence of deformation on the
propagation of shear waves. In particular, the shear wave veloc-
ities were shown to vary considerably with the deformation and
direction of wave propagation. Moreover, the energy curve of the
in-plane shear wave was shown to have deformation tunable in-
tersections, meaning that the absolute values and directions of the
group velocities coincide for the different directions of wave prop-
agation. Thus, we are able to estimate characteristics of wave and
energy propagation in the finitely deformed 3D fiber composites
employing these explicit relations, which are applicable for any di-
rection of wave propagation and for any macroscopically applied
homogeneous pre-deformation. These important characteristics are
expressed in terms of the actual microstructure parameters, such
as volume fractions and phase material properties. This impor-
tant feature distinguishes our results from those derived from phe-
nomenological models, where the material parameters need to be
fitted, and they are not directly related to the microstructure pa-
rameters and material properties of the constituents.

Second, we examined the shear wave propagation in the finitely
deformed 3D periodic FCs by application of the Bloch wave ap-
proach in the finite element code. This allowed us to account for
the interactions of the elastic waves with the material microstruc-
ture. As a result, we found the dispersion phenomenon manifesting
in the strongly nonlinear dependence of the wave frequencies on
wavenumber. The dispersion and the corresponding wavelengths
of the shear waves in the 3D periodic FCs were found to be tun-
able by the change in the shear modulus contrast between the
constituents and volume fraction of the fibers. Specifically, an in-
crease in the shear modulus contrast and amount of fibers leads
to a more pronounced dispersion of shear waves propagating in
the direction of fibers, i.e. the dispersion curves exhibit a signifi-
cant nonlinearity. Moreover, the dispersion of shear waves is highly
sensitive to deformation. In particular, a moderate deformation sig-
nificantly increases the frequency of the long waves. However, the
influence of deformation for the short waves is relatively weak. We
found that the influence of deformation on the dispersion of shear
waves is more pronounced at the beginning of the loading due
to the fact that the phase velocities (28) of the long shear waves
change quickly up to a certain level of deformation and then the
phase velocities vary slowly with a further loading. Next, we com-
pared the results of the Bloch wave analysis and the long wave
estimates. We found that the long wave estimates for the phase
velocities (25) of shear waves accurately describe the dispersion
relations for the finitely deformed FCs with low shear modulus
contrast between the fibers and matrix (i.e. ¢ /m < 10) and small
volume fractions of the fibers (i.e. vy 5 0.25).

Finally, we analyzed the influence of the fiber arrangement on
the propagation of shear waves along the fibers. In particular, by
comparing dispersion curves of shear waves for FCs with square
and rectangular arrangements of fibers, we observed that (i) long
shear waves are independent of the fiber arrangement, (ii) shear

waves with wavelengths being comparable to the characteristic
lengths of the FC are significantly affected by the fiber arrange-
ment, and (iii) short shear waves are affected only slightly by the
fiber arrangement.
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In our paper (Galich et al., 2017), Figs. 7-9 show frequencies as functions of wavenumber K° (in the undeformed configuration); thus,
in Figs. 7-9, KO = |K°| must replace k = |k| (in the deformed configuration). Recall that the corresponding wave vectors in the undeformed
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Fig. 2. Dispersion curves for the shear waves propagating in the direction of fibers in FCs with vy =0.25 and (a) pg/pm = 10, (b) ps/pm = 100, and (c) pys/pm = 1000.
The FCs are subjected to the uniaxial tension of the magnitude A = 0.98 (dashed green curves), A =1 (continuous black curves), A = 1.5 (dotted blue curves), and A =2
(dash-dotted red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Dispersion curves for shear waves propagating in the direction of fibers in FCs with p/um = 1000 in the undeformed state (a) and for the FCs subjected to the
uniaxial tension of magnitude A = 1.5 (b) and A =2 (c).

and deformed configurations are related via K® = FT . k. Here, we present frequencies as functions of wavenumber k in the deformed
configuration. Figs. 1-3 correspond to Figs. 7, 8 and 9, respectively, in the original paper (Galich et al.,, 2017). Thus, the conclusion in
Galich et al. (2017) about the weak influence of the applied deformation on short shear waves (with wavelength [<2a) needs to be
corrected. As can be seen from Fig. 2, the applied uniaxial deformation influence shear waves in both long and short wave ranges. All
other conclusions in Galich et al. (2017) agree with the dispersion curves presented in Figs. 1-3.

Reference

Galich, PI., Slesarenko, V., Rudykh, S., 2017. Shear wave propagation in finitely deformed 3D fiber-reinforced composites. Int. J. Solids Struct. 110-111, 294-304.


http://refhub.elsevier.com/S0020-7683(17)30578-4/sbref0001
http://refhub.elsevier.com/S0020-7683(17)30578-4/sbref0001
http://refhub.elsevier.com/S0020-7683(17)30578-4/sbref0001
http://refhub.elsevier.com/S0020-7683(17)30578-4/sbref0001

Chapter 4

Conclusions and discussion

By employing rigorous analytical methods of non-linear mechanics (see Section 2.1),
I derived long wave estimates for important characteristics of elastic waves — phase
and group velocities — propagating in non-linear layered [19] and fibrous [25] com-
posites. Next, by combining Bloch-Floquet approach (see Section 2.2) and non-
linear constitutive models for each layer, I derived closed-form dispersion relations
for P- and S-waves propagating perpendicularly to the layers in the non-linear pe-
riodic laminates and found that BGs (forbidden frequency ranges, where waves
cannot propagate) can be initiated and shifted towards desirable low frequencies
in non-linear elastic laminates by mechanical loading [19]. In parallel, I explored
the influence of material stiffening on elastic wave propagation in the non-linear
isotropic materials [21] and laminates [19] comprised of these materials. Then, I
extended my analysis to the problem of wave propagation in non-linear electroe-

lastic isotropic materials [22] and laminates [23] composed of these materials.

84



4.1 Influence of stiffening on elastic wave propagation
in extremely deformed soft matter: from nearly in-
compressible to auxetic materials

In this paper, I derived closed-form expressions for phase velocities of elastic waves
propagating in the finitely deformed materials with pronounced stiffening effects.
I demonstrated that finite deformation can significantly influence elastic waves in
nearly incompressible, highly compressible and auxetic (with negative Poisson’s
ratio) materials. Moreover, I studied influence of propagation direction on the
phase velocities of elastic waves. I found that for nearly incompressible materi-
als S-wave velocities exhibit strong dependence on the direction of propagation
and pre-strain, whereas the P-wave velocity is barely affected until extreme lev-
els of deformation are reached. For highly compressible materials, I showed that
both P- and S-wave velocities significantly depend on applied deformation and
propagation direction. Furthermore, the dependence becomes stronger when the
stiffening effects become more pronounced. My findings can help to design or bet-
ter understand mechanics of deformation-tunable elastic metamaterials comprised

of materials with strong stiffening effects.

85



4.2 Manipulating pressure and shear waves in dielec-
tric elastomers via external electric stimuli

In this manuscript, I considered P- and S- elastic waves propagating in finitely
deformed DEs in the presence of an electric field. To allow consideration of P-
waves, I utilized the ideal and enriched material models accounting for the volu-
metric changes. I derived closed-form expressions for the phase velocities of elastic
waves propagating in DEs subjected to an electric field. I found that, for the ideal
DE model, the elastic wave propagation is explicitly independent of an applied
electric field, while it can be influenced through the deformation induced via an
electric field. However, characteristics of elastic waves explicitly depend on the
applied electric field in case of the proposed enriched material model. Specifically,
the phase velocity of the in-plane S-wave decreases upon application of an elec-
tric field. Then, I applied my findings to explore the phenomenon of disentangling
(decoupling) P- and S-waves in DEs by an electric field (see Fig. 1 in [22]). I showed
that the divergence angle between P- and S-waves strongly depends on the value
of the applied electric field and propagation direction. Moreover, I found that an
increase in the material compressibility weakens the decoupling of P- and S-waves
(see Fig. 4 in [22]). This is because the P-wave refracts in the same direction as the
S-wave from the initial propagation direction, while for nearly incompressible ma-
terials the change in the P-wave direction is negligible. The phenomenon can be
used to manipulate elastic waves by a bias electrostatic field, which can be benefi-
cial for small length-scale devices, such as micro-electromechanical systems, where

an electric field is the preferred control parameter.
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4.3 Elastic wave propagation in finitely deformed lay-
ered materials

In this work, I studied elastic wave propagation in finitely deformed bi-laminates.
Firstly, based on an exact analytical solution for finitely deformed laminates with
alternating neo-Hookean phases, I derived closed-form expressions for the phase
and group velocities of S-waves propagating in any direction in these laminates.
Secondly, I obtained long wave estimates and for the phase velocities of P- and
S-waves propagating perpendicularly to the layers in the finitely deformed com-
pressible bi-laminates with neo-Hookean and Gent layers. These estimates provide
the important information on elastic wave propagation with wavelengths suffi-
ciently larger than period of the laminate, namely I 2 3d. Thirdly, I performed a
detailed analysis of the BG structures for the waves propagating perpendicularly
to the layers in the incompressible and compressible laminates. Specifically, I iden-
tified the key parameters and mechanisms influencing the S-wave, P-wave, and
complete BGs and then revealed the advantageous compositions of the laminates
having the wide BGs in the low-frequency range.

Finally, I rigorously showed that SBGs in laminates comprised of layers exhibit-
ing weak stiffening effects (neo-Hookean) are independent of the applied defor-
mation because deformation induced changes in geometry and effective material
properties fully compensate each other. However, contraction or extension of the
laminate made of layers with strong stiffening effects (e.g., Gent) widens and shifts
SBGs towards higher frequencies due to the stronger effect of deformation induced

changes in the material properties (as compared to the geometry changes). Fur-
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thermore, I found that laminates with thin highly compressible layers embedded
in a nearly incompressible matrix possess wide complete BGs, and the dominant
mechanism influencing PBGs is the deformation induced change in the thicknesses

of the layers.

4.4 Shear wave propagation and band gaps in finitely
deformed dielectric elastomer laminates: long wave
estimates and exact solution

In this article, I investigated S-wave propagation in electroelastic bi-laminates sub-
jected to finite deformations and electric fields. I obtained the long wave estimates
— the exact solution for the waves with wavelength sufficiently larger than period
of the laminate — for phase and group velocities of S-waves propagating in the
bi-laminates with electroelastic ideal (neo-Hookean) layers. The derived closed-
form formulas are expressed in terms of the volume fractions and electroelastic
constants of the layers. Moreover, these long wave estimates can be used for any
direction of wave propagation, for any applied electric field, and for any homoge-
neous finite pre-deformations. Remarkably, the S-wave propagation perpendicu-
lar to the layers depends on electric field only though the induced deformation.
Next, I derived the dispersion relations for the S-waves propagating perpendic-
ular to the layers in the laminates with incompressible hyperelastic ideal dielectric
layers and general elastic part (that is function of the first strain invariant only,

e.g., neo-Hookean, Gent, Arruda-Boyce, Yeoh, to name a few). Consistently with
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the exact solution for long waves, the derived dispersion relation is independent
of electric field, and it coincides with its analogue for the purely elastic laminates.
This dispersion relation shows that SBGs in the electroelastic laminates are tunable
by an electric field only through induced deformation. In particular, the applica-
tion of an electric field to the DE laminates with electroelastic Gent phases widens
and shifts SBGs towards higher frequencies. However, SBGs are independent of
deformation (either it is induced by electrical or mechanical stimuli) in DE lami-

nates with electroelastic neo-Hookean layers.

4.5 Shear wave propagation in finitely deformed 3D
fiber-reinforced composites

In this paper, I considered the S-wave propagation in the finitely deformed 3D FCs.
Based on a micromechanical approach accounting for the constituent properties
and their distribution in the composite, I derived the closed-form expressions for
the phase and group velocities of the S-waves propagating in the finitely deformed
3D FCs. Hence, the expressions for the phase and group velocities are presented
in terms of the actual mechanical properties of composite constituents and their
volume fractions. Next, I constructed the slowness and energy curves revealing the
significant influence of deformation on the propagation of S-waves. In particular,
the S-wave velocities were shown to vary considerably with the deformation and
propagation direction. Moreover, the energy curve of the in-plane S-wave was

shown to have deformation tunable intersections, meaning that the absolute values
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and directions of the group velocities coincide for the different directions of wave
propagation. Thus, characteristics of wave and energy propagation in the finitely
deformed 3D FCs can be estimated via employing the derived relations, which
are applicable for any direction of wave propagation and for any macroscopically
applied homogeneous pre-deformation.

Finally, I examined the S-wave propagation in the finitely deformed 3D peri-
odic FCs by application of the Bloch-Floquet approach in the finite element code
(see Section 2.2). This allowed me to account for the interactions of the S-waves
with the composite microstructure, i.e. to calculate dispersion relations for S-
waves propagating along fibers. The dispersion and the corresponding wave-
lengths of the S-waves in the 3D periodic FCs were found to be tunable by the
change in the shear modulus contrast between the fibers and matrix and volume
fraction of the fibers. Specifically, an increase in the shear modulus contrast and
amount of fibers leads to a more pronounced dispersion of S-waves propagating
in the direction of fibers, i.e. the dispersion curves exhibit a significant nonlinear-
ity (highly sensitive to pre-deformation). Additionally, I analyzed the influence of
the fiber periodicity on the propagation of S-waves along the fibers. In particular,
by comparing dispersion curves of S-waves for FCs with square and rectangular
arrays of fibers, I observed that long S-waves are independent of the fiber distri-
bution, while S-waves with wavelengths being comparable to the characteristic

lengths of the FC are significantly affected by the spacial distribution of fibers.
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