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Abstract 

This thesis presents a study of elastic instabilities and small-amplitude elastic 

waves in microstructured soft composites undergoing large deformations. 

Macroscopic and microscopic instabilities in soft composites with periodic 

microstructures are detected through numerical Bloch-Floquet analysis, and 

experiments on 3D-printed samples. In this thesis, I investigated the instabilities in 

periodic microstructured soft systems including 

(i) Layered composites: I examined the role of phase compressibility on the onset 

of instability in compressible layered composites. I found that compressible layered 

composites require larger strains to trigger mechanical instabilities. 

(ii) 3D fiber composite: I studied the elastic instabilities in 3D fiber composites 

with various fiber distributions. In periodically distributed fiber composites with the 

square in-plane periodicity, I experimentally observed that an increase in fiber volume 

fraction can result in a transition of the instability-induced patterns from small 

wavelength wavy pattern to the long-wave mode. I found that the composites with 

rectangular fiber periodicity exhibit cooperative buckling mode developing in the 

direction, where the fibers are closer to each other. Moreover, I derived a closed-form 

expression to predict the dependence of buckled wavelength on shear modulus contrast 

for single fiber composite. 

(iii) Particulate composite: I investigated instability-induced domain formations 

and pattern transitions in particulate composites with stiff inclusions periodically 

embedded in a soft elastomeric matrix. I experimentally observed that the formation 
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of microstructures with antisymmetric domains, and their geometrically tailored 

evolution into cooperative patterns of inclusions rearranged in wavy chains. I found 

that the domain patterns are realized in the composites for which macroscopic 

instabilities are predicted. I showed that these switchable patterns can be tailored by 

tuning composite microstructures. 

(iv) Auxetic multiphase composite: I considered the instability phenomena in 

multiphase composites consisting of circular voids and stiff inclusions periodically 

distributed in a soft elastomer. I experimentally realized instability-induced pattern 

transformations in 3D-printed composites. I observed that composite microstructures 

rearrange into new morphologies, resulting in the closure of voids and giving rise to 

auxetic behaviors. I showed that distinct new patterns and auxetic behaviors can be 

tailored through altering the distribution of inclusions and loading direction. 

Furthermore, I illustrated an application of employing instability-induced pattern 

transformations to manipulate small-amplitude elastic wave propagation. I showed 

that the buckled patterns in multiphase composites open new band gaps in remarkable 

low-frequency ranges. I found that the instability-induced wavy patterns give rise to 

the tunability of the widths and locations of shear wave band gaps in neo-Hookean 

laminates. Finally, I examined the oblique shear wave propagation in the finitely 

deformed layered composites. I observed the closure of band gaps in layered 

composites when the propagation direction deviates – even slightly – from the normal 

(i.e., perpendicular to the layer) direction. 
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Chapter 1 

Preamble 

Soft composites can develop large deformations in response to various external 

stimuli [1–5], thus providing rich opportunities for the design of responsive and 

reconfigurable materials. Moreover, the performance of soft composites can be further 

empowered via the instability phenomenon giving rise to dramatic microstructural 

changes. This approach holds the potential for applications in vibration mitigation [6], 

flexible electronics [7], sensors [8], actuators [9], and adhesive systems [10]. 

Motivated by the fundamental understanding of the underlying phenomena, this thesis 

examines elastic instabilities in microstructured soft composites. In particular, the 

instability phenomena in (i) layered composites [11], (ii) 3D fiber composites [12], (iii) 

particulate composites [13] and (iv) multiphase composites [14,15] are investigated. 

Moreover, this thesis illustrates the potential applications of employing large 

deformations to manipulate small-amplitude elastic wave propagation in these soft 

materials [11,14,16]. 
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1.1 Elastic instability 

Elastic instability is historically associated with the failure that should be 

prevented in engineering designs [17]. Recently, however, the concept of harnessing 

elastic instabilities to enable novel materials and systems has emerged [18]. Thus, for 

example, instability-induced pattern transformations in periodic porous elastic 

structures have been utilized for the design of auxetic materials [19], acoustic switches 

[20], and soft robotics [21]. 

1.1.1 Hyperelastic fiber composites 

The study of elastic instabilities in periodic fiber composites was pioneered by 

Rosen [22], who derived an explicit formula to predict the buckling strain of linear 

layered composite. Triantafyllidis and Maker [23] investigated the instabilities in 

periodic layered composites with hyperelastic phases. They pointed out the instability 

can develop at the microscopic scale and macroscopic scale; here, the macroscopic 

scale refers to the length scale that is significantly larger than the characteristic size of 

the composite microstructure. Parnes and Chiskis [24] re-examined the instability 

analysis in linear elastic layered composites. They found that the buckling strain of 

dilute composites that experience the microscopic instability is constant, while for the 

non-dilute case (with macroscopic instability), the predicted buckling strain agrees 

with the result of Rosen [22]. Nestorovic and Triantafyllidis [25] investigated the 

interplay between macroscopic and microscopic instability of hyperelastic layered 

media subjected to combinations of shear and compression deformation. Geymonat et 
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al. [26] established a rigorous theoretical foundation for microscopic instability 

analysis in periodic composites with the help of Bloch wave analysis [27]. They also 

connected the specific case of the long-wave limit with the macroscopic loss of 

ellipticity analysis. Qiu and Pence [28], Merodio and Ogden [29–31] employed the 

loss of ellipticity analysis to examine the macroscopic instabilities in fiber-reinforced 

nonlinearly elastic solids under plane deformation. Merodio and Ogden [32,33] also 

showed that the loss of ellipticity may occur in the fiber-reinforced transversely 

isotropic material model even under tensile deformations. Moreover, Volokh [34] 

examined the loss of ellipticity in hyperelastic solids with energy limiters. 

Recently, Li et al. [35] experimentally realized the instability-induced wrinkles 

in multilayered composites under plan strain conditions via 3D-printed specimens. 

Slesarenko and Rudykh [36] showed that the wavy pattern in layered composite with 

viscoelastic constitutes can be tuned by varying the strain-rate. Slesarenko and Rudykh 

[37] examined the macroscopic and microscopic stabilities in periodic 3D fiber 

composites by means of the Bloch-Floquet finite-element-based analysis. More 

recently, Li et al. [11] examined the stability of compressible hyperelastic laminates. 

They found that the compressible laminates require larger strains to trigger the 

mechanical instability in comparison to the laminates with incompressible phases. 

Moreover, Li et al. [12] experimentally investigated the role of fiber distribution on 

the instabilities in 3D fiber composites. In periodically distributed fiber composites 

with square in-plane periodicity, they experimentally observed the transition of the 

instability-induced patterns from small wavelength wavy pattern to the long-wave 

mode. This transition happens with an increase in fiber volume fraction in 3D-printed 
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samples. They also found that the composites with rectangular fiber periodicity exhibit 

cooperative buckling mode developing in the direction, where the fibers are closer to 

each other. Very recently, Li et al. [13] reported the instability-induced domain 

formations and their pattern transitions in periodic particulate composites. Li et al. [13] 

observed the formation of antisymmetric domains in experiments, and they studied the 

evolution of instability-induced patterns into the cooperatively wavy patterns. The 

domain formations were observed in the composites for which macroscopic 

instabilities are predicted by the Bloch-Floquet analysis. 

1.1.2 Soft porous materials 

Elastic instabilities can also occur in soft porous materials subjected to large 

deformation, resulting in the formation of various patterns (as shown in Figure 1). 

Abeyaratne and Triantafyllidis [38] predicted macroscopic instabilities in periodic soft 

porous materials by the loss of ellipticity analysis. Mullin et al. [39] experimentally 

realized instability-induced pattern transformations in porous composites with a square 

array of circular voids periodically embedded in an elastomer subjected to a uniaxial 

compressive deformation. They observed that, upon the onset of the microscopic 

instability, the circular voids suddenly evolve into ellipses arranged in a mutually 

orthogonal configuration. It is worth noting that Triantafyllidis et al. [40] numerically 

calculated similar buckling modes in periodic inclusion composites when the 

inclusions are highly compressible, and the matrix is significantly stiffer than the 

inclusions. Moreover, these pattern transformations were also realized at micrometer 

length scale in polymer structures fabricated by interference lithography [41–43]. 
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Based on the realized pattern in the soft porous material with a square array of circular 

voids, various additional patterns were obtained through altering the distribution [19] 

and shape [44,45] of voids, and changing the loading direction [6]. 

Furthermore, Babaee et al. [46] investigated the pattern transformations in 

structure with holes arranged on the spherical shell, as well as the associated auxetic 

behaviors. Shim [47] studied the structural evolution in Buckliball induced by buckling 

under pressure loading. Florijn et al. [48,49] proposed a bi-void system comprising of 

larger and smaller circular voids; they showed that the composite stress-strain behavior 

can be designed to be monotonic, nonmonotonic, and hysteretic through altering the 

size of the holes and lateral confinement. Recently, Overvelde et al. [50] realized the 

checkerboard pattern in soft metamaterial comprising a square array of circular voids 

triggered by equibiaxial tensile deformation. More recently, Li et al. [14] proposed the 

design of multiphase composites with stiff inclusions and voids distributed 

periodically in a soft matrix. They experimentally illustrated that the anisotropic 

property of the composite can be used to achieve distinct new patterns. These distinct 

patterns are characterized by significantly different auxetic behaviors in the 

postbuckling regime. They also investigated the role of inclusion distribution on the 

behavior of the proposed transformative multiphase composite, and showed that the 

tailored positioning of the stiff inclusions can be exploited to expand the set of 

admissible switchable patterns [15]. Very recently, Li et al. [51] showed that the 

porous structure with proper positioning of stiff inclusions can enhance the robustness 

of the development of the buckled patterns. 
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Figure 1. Instability-induced pattern formations in periodic porous materials. (a) Macroscopic 

and microscopic instabilities in inclusion composites (matrix-to-inclusion modulus ratio equal 

to 50) with a square distribution of inclusions, the inset illustrates the eigenmode of the 

microscopic instability for the composite undergoing equibiaxial compression deformation 

(Adapted from Reference [40]). (b) Pattern formation in the composite with a square array of 

circular voids embedded in a soft matrix (Adapted from Reference [39]). (c-e) Multiple 

patterns in a porous elastomeric structure comprising of a triangular array of circular voids 

(Adapted from Reference [6]). (f, g) Distinct patterns in multiphase composites (Adapted from 

Reference [14] (f) and Reference [15] (g)). 
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1.2 Elastic wave propagation in soft materials 

In addition to investigating the elastic instabilities, this thesis explores the 

potential application of the elastic instability phenomena for the control of elastic 

waves. 

1.2.1 Homogeneous materials 

The study of small amplitude elastic wave propagation in finitely deformed 

homogeneous isotropic materials was pioneered by Biot [52], who investigated the 

influence of initial stress on elastic wave propagation. Hayes and Rivlin [53] examined 

the propagation of plane waves in deformed isotropic elastic materials and connected 

the eigenvalue of the secular equation determined wave propagation velocity with 

material instability. Then, Currie and Hayes [54] pointed out incompressible Mooney-

Rivlin material can sustain two shear waves with polarization directions orthogonal to 

each other, and the corresponding propagation velocities were obtained by Boulanger 

and Hayes [55]. Later, Boulanger et al. [56] extended these results to a more general 

class of compressible Hadamard materials, and derived the explicit formulas to 

calculate the phase velocities of pressure and shear waves. Recently, Galich and 

Rudykh [57] studied the elastic wave propagation in Gent material with significant 

stiffening effect under large deformations. They showed that phase velocities of shear 

and pressure waves significant depend on the propagation direction and applied 

deformation in highly compressible materials. The dependence of the shear wave 



 

11 
 

velocity on deformation was utilized to decouple the entangled shear and pressure 

waves in isotropic hyperelastic material [58,59]. 

1.2.2 Periodic composites 

Propagation of small amplitude elastic waves in periodic composite materials is 

characterized by its dispersion relations (frequency vs. wavenumber). Remarkably, 

periodic composites with certain microstructures possess the so-called stop bands (as 

shown in Figure 2), i.e., the frequency ranges where the waves cannot propagate. For 

example, Kushwaha et al. [60] calculated the dispersion relation of small amplitude 

elastic waves in periodic linear elastic composites (without pre-stress nor deformation). 

They reported the existence of the omnidirectional band gaps, in which the out-of-

plane shear (transverse) wave cannot propagate in all directions. It is worth noting that 

Kushwaha et al. [60] identified the omnidirectional band gaps through examining the 

full area of the irreducible Brillouin zone (IBZ). It is very common in the current 

literature, to report the omnidirectional band gaps based on the limited scanning of the 

edges of the irreducible Brillouin zone only [6,20,61,62]. The limited IBZ edge 

scanning, however, does not guarantee that the detected band gaps are omnidirectional 

[63]. Rytov [64] studied the elastic waves propagating in layered composites with 

linear phases (without pre-stress nor pre-strain), and derived the dispersion relations 

for shear and pressure waves propagating perpendicular and parallel to the layers. 

Galich et al. [65] extended Rytov’s solutions [64] to the finitely deformed layered 

composite with hyperelastic phases. They showed that shear wave band gaps in the 

composites with neo-Hookean phases are independent of applied deformation. The 
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locations and widths of pressure wave band gaps can be significantly tuned by 

deformations. Li et al. [16] investigated the oblique shear wave propagation in the 

finitely deformed layered composites. They found that band gaps close suddenly when 

the propagation direction deviates – even slightly – from the normal (i.e., 

perpendicular to the layer) direction. For shear waves traveling along the layer 

direction, Li et al. [16] showed that the dispersion curves of oblique shear waves 

possess two linear (a) short and (b) longwave ranges. The applied tensile deformation 

along layer direction shifts the dispersion curves towards higher frequencies in linear 

short wave ranges. Moreover, Slesarenko et al. [66] revealed the existence of negative 

group velocity in the soft composites in the marginally stable regime near elastic 

instabilities. 

The tunability of elastic waves in periodic soft composites can be further 

amplified via instability-induced microstructure transformations. This concept was 

first illustrated by Bertoldi and Boyce [67,68]; they showed that the locations and 

widths of the band-gaps can be tuned by the instability-induced pattern transformations 

in periodically structured elastomeric materials. Wang et al. [69] investigated the role 

of deformation-induced changes in microstructures and local material properties on 

the response of the tunable band gaps in the structure with a square array of circular 

voids embedded in a soft elastomer. They found that the tunability of band gaps in this 

particular structure is mainly contributed by deformation-induced structural changes. 

The band gaps in soft composites with periodically distributed circular voids can be 

also enriched through different pattern transformations, achieved by altering the 

loading direction [6] or the distribution of voids [20]. Li et al. [14] investigated the  
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Figure 2. Dispersion diagrams of periodic composites: (a) Particulate composites (Adapted 

from Reference [60]), (b) Laminate composites (Adapted from Reference [16]), (c, d) Porous 

materials (Adapted from Reference [69]). (e) Dispersion diagrams and transmittance spectra 

of multiphase composites (Adapted from Reference [14]). (f) Evolution of band gaps as a 

function of the applied strain for multiphase composites (Adapted from Reference [14]). 
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elastic wave propagation in multiphase composite consisting of stiff inclusions and 

voids periodically distributed in a soft matrix. They showed that the instability induced 

microstructure switches give rise to the opening of the new band gap in remarkable 

low-frequency ranges. Moreover, Li et al. [11] showed that instability-induced wavy 

patterns in neo-Hookean laminates give rise to the tunability of the widths and 

locations of shear wave band gaps (that are not tunable by the applied deformation 

along the layer direction in neo-Hookean laminate in the stable regime [65]). 

1.3 Methodology 

1.3.1 Nonlinear elasticity 

Consider a continuum body and identify each point in the undeformed 

configuration with its position vector 𝐗. When the body is deformed, the new location 

𝐱 is defined by the mapping function 

𝐱 = 𝛘(𝐗, 𝑡),                                                        (1) 

so the deformation gradient is 

𝐅 = 𝜕𝐱/𝜕𝐗,                                                          (2) 

and its determinant is 

𝐽 ≡ det⁡(𝐅).                                                          (3) 

Physically, 𝐽 is the volume ratio between the representative element in the deformed 

and undeformed configurations, thus 𝐽 > 0. 
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Consider a hyperelastic material whose constitutive behavior is described in 

terms of strain energy density function 𝑊(𝐅) such that the first Piola-Kirchhoff stress 

tensor is given by 

𝐏 =
𝜕𝑊(𝐅)

𝜕𝐅
.                                                           (4) 

For incompressible materials, Eq. (4) is modified as 

𝐏 =
𝜕𝑊(𝐅)

𝜕𝐅
− 𝑝𝐅−T,                                                    (5) 

where 𝑝 is the Lagrange multiplier defined by incompressibility constraint det(𝐅) =

1. 

In the absence of body forces, the equations of motion can be written in the 

undeformed configuration as 

Div⁡𝐏 = 𝜌0
𝐷2𝛘

𝐷𝑡2⁡,                                                        (6) 

where Div(•) represents the divergence operator in the undeformed configuration, 

𝐷(•)/𝐷𝑡 is the material time derivative, and 𝜌0 denotes the initial material density. 

When deformation is applied quasi-statically, Eq. (6) reads 

Div⁡𝐏 = 𝟎.                                                             (7) 

1.3.2 Small amplitude motions superimposed on large deformation 

Consider small amplitude motions superimposed on a deformed equilibrium state 

[70]. The equations of the incremental motion are 

Div⁡𝐏̇ = 𝜌0
𝐷2⁡𝐮̇

𝐷𝑡2 ⁡,                                                       (8) 
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where 𝐏̇ is an incremental change in the first Piola-Kirchhoff stress tensor and 𝐮̇ is an 

incremental displacement. The incremental change in the deformation gradient is 

given by 

𝐅̇ = Grad⁡𝐮̇,                                                         (9) 

where Grad⁡(•) represents the gradient operator in the undeformed configuration. 

The linearized constitutive law can be expressed as 

𝑃̇𝑖𝑗 = 𝒜0𝑖𝑗𝑘𝑙𝐹̇𝑘𝑙,                                                     (10) 

where 𝒜0𝑖𝑗𝑘𝑙 = 𝜕2𝑊 𝜕𝐹𝑖𝑗⁄ 𝜕𝐹𝑘𝑙 is the tensor of elastic moduli. Substitution of Eq. (9) 

and (10) into Eq. (8) yields 

𝒜0𝑖𝑗𝑘𝑙
𝜕2𝑢̇𝑘

𝜕𝑋𝑗𝜕𝑋𝑙
= 𝜌0

𝐷2𝑢̇𝑖

𝐷𝑡2 .                                                 (11) 

In the updated Lagrangian formulation, Eq. (11) reads 

𝒜𝑖𝑗𝑘𝑙
𝜕2𝑢̇𝑘

𝜕𝑥𝑗𝜕𝑥𝑙
= 𝜌

𝜕2𝑢̇𝑖

𝜕𝑡2 ,                                                 (12) 

where 𝒜𝑖𝑝𝑘𝑞 = 𝐽−1𝒜0𝑖𝑗𝑘𝑙𝐹𝑝𝑗𝐹𝑞𝑙 and 𝜌 = 𝐽−1𝜌0. 

1.3.3 Bloch-Floquet analysis for elastic waves in finitely deformed 

periodic composites 

To investigate small-amplitude elastic waves propagating in finitely deformed 

periodic composites, the Bloch-Floquet techniques superimposed on the deformed 

state is utilized to obtain the corresponding dispersion relations [27,68]. This approach 

is implemented in the finite element code COMSOL. In particular, the analysis is 

performed in two steps: 

Step 1: Quasi-static analysis to obtain the deformed state 
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To obtain the static response of periodic structural composites under macroscopic 

large deformation, periodic displacement boundary conditions are imposed on the 

edges of the unit cell to obtain the deformed state; the periodic boundary conditions 

are 

𝐮𝐵 − 𝐮𝐴 = (𝐅̅ − 𝟏)(𝐗𝐵 − 𝐗𝐴),                                       (13) 

where A and B are the paired nodes periodically located at the opposite edges of the 

unit cell; 𝐮 = 𝐱(𝐗) − 𝐗  is the displacement field; 𝐅̅  is the applied macroscopic 

deformation gradient. Based on this defined periodic boundary conditions, the 

deformed state is obtained through solving the equilibrium equation in the absence of 

body force stemming from Eq. (7). 

Step 2: Bloch wave analysis superimposed on deformed state 

Consider small amplitude waves superimposed on finitely deformed state, the 

corresponding incremental motions can be described as 

𝐮̇(𝐗, 𝑡⁡) = 𝐮̃(𝐗)𝑒−𝑖𝜔𝑡,                                       (14) 

where 𝐮̃ and 𝜔 denote the magnitude and angular frequency of the wave, respectively. 

Based on the linearized constitutive Eq. (10), the incremental first Piola-

Kirchhoff stress can be given by 

𝐏̇(𝐗, 𝑡⁡) = 𝐏̃(𝐗)𝑒−𝑖𝜔𝑡.                                       (15) 

Substitution of  Eq. (14) and Eq. (15) into Eq. (8) yields 

Div⁡𝐏̃ + 𝜌0𝜔
2𝐮̃ = 𝟎,                                         (16) 

Moreover, according to the Bloch’s theorem, small amplitude elastic waves 

propagation in periodic structures must satisfy the Bloch-Floquet conditions [27] 

𝐮̃(𝐗 + 𝐑) = 𝐮̃(𝐗)𝑒−𝑖𝐊⋅𝐑,                                   (17) 
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where 𝐑 defines the distance between the paired nodes on the opposite edges of the 

unit cell; 𝐊  is the wave vector. Thus, based on the Bloch-Floquet displacement 

boundary conditions superimposed on the edges of the deformed unit cell (defined by 

Eq. (17)), the dispersion relation for finitely deformed periodic composite is obtained 

through solving the eigenvalue problem stemming from Eq. (16) for a range of wave 

vectors 𝐊. 

1.3.4 Bloch-Floquet instability analysis and post-buckling analysis 

Elastic instabilities in infinite periodic composites subjected to large 

deformations can occur at the microscopic levels, as well as macroscopic levels. The 

detection of microscopic instability can be performed by employing Bloch wave 

analysis superimposed on deformed primitive unit cell [26,68,71]. Through gradually 

increasing the applied averaged macroscopic deformation (defined in Eq. (13)), and 

solving the eigenvalue problem for the unit cell with defined Bloch-Floquet conditions 

(defined in Eq. (17)) superimposed on each deformation level for a range of 

wavenumbers 𝐊 , the microscopic instability is detected when a non-trivial zero 

eigenvalue is first identified at a non-zero wavenumber along the loading path, thus 

the corresponding applied deformation level and non-zero wavenumber are identified 

as the critical strain 𝜀𝑐𝑟 and critical wavenumber 𝐊𝑐𝑟 [26,68]. In the limit of long-wave 

mode or macroscopic instability, it can be detected by performing the loss of ellipticity 

analysis based on the homogenized moduli of periodic composites, or alternatively, it 

can also be detected by Bloch wave analysis when the identified critical wavenumber 

𝐊𝑐𝑟 → 𝟎 [26]. 
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Postbuckling analysis is carried out to capture the response of the composite after 

the onset of instability, thus enlarged unit cell needs to be constructed based on the 

critical wavenumber 𝐊𝑐𝑟 obtained by Bloch-Floquet instability analysis. To the trigger 

the bifurcation mode, the initial composite geometry is disturbed by a small amplitude 

imperfection in the form of the buckling mode. Then, periodic displacement boundary 

conditions are imposed on the enlarged unit cell to apply the averaged macroscopic 

deformation. 
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Chapter 2 

Microscopic instabilities and elastic wave propagation in 

finitely deformed laminates with compressible hyperelastic 

phases 

The elastic instability and wave propagation in compressible layered composites 

undergoing large deformations are investigated. We find that the compressible 

laminates require larger strains to trigger mechanical instabilities, thus resulting in 

lower amplitudes of instability induced wavy patterns in compressible laminates as 

compared to incompressible layered materials. Moreover, we show that instability-

induced wavy patterns give rise to the tunability of the widths and locations of shear 

and pressure wave band gaps. 

  

                                                      
 Based on the published paper: Li J, Slesarenko V, Rudykh S. Microscopic instabilities and elastic wave 

propagation in finitely deformed laminates with compressible hyperelastic phases. Eur J Mech - A/Solids 

2019;73:126–36. 
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2.1 Introduction 

Design of microstructured metamaterials for manipulating elastic wave 

propagation has drawn considerable attention [72–85]. These new materials can 

potentially serve for enabling various applications, such as wave guide [86], vibration 

damper [87], cloaking [88], and subwavelength imaging [89,90]. Recently, soft 

metamaterials with reconfigurable microstructures in response to external stimuli, such 

as mechanical load [65,91–94], electric and/or magnetic field [95–101], attracted 

significant interest for tuning elastic wave propagation. Moreover, the elastic 

instability induced buckling phenomena, giving rise to a sudden change in 

microstructure, have been demonstrated to be greatly instrumental for the design of 

switchable phononic crystals. Thus, Bertoldi and Boyce [67,68] introduced the concept 

of instability assisted elastic wave band gaps (BGs) control in soft elastomeric 

materials with periodically distributed circular voids [6,62,69]. Rudykh and Boyce 

[102] showed that the elastic instability induced wrinkling of interfacial layers could 

be utilized to control the BGs in deformable layered composites (LCs). In this work, 

we analyze the phenomena with a specific focus on the influence of the constituent 

compressibility on the instabilities and elastic wave BGs of finitely deformed neo-

Hookean laminates in the postbuckling regime. 

The important work on the stability of layered and fiber composites by Rosen 

[22], considered stiff layers embedded in a soft matrix as elastic beams on an elastic 

foundation, and derived an explicit expression to predict the critical buckling strain. 

Parnes and Chiskis [24] revisited the instability analysis in linear elastic LCs, and they 
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found that the buckling strain of dilute composites that experienced microscopic 

instability was constant, while for the macroscopic case, the buckling strain agreed 

with the results of Rosen [22]. Triantafyllidis and Maker [23] analyzed the onset of 

instability in finitely deformed periodic layered composites. They demonstrated the 

existence of the microscopic and macroscopic (or long wave) instabilities by 

employing the Bloch-Floquet analysis [26], along with the loss of ellipticity analysis 

that is typically used to detect the onset of macroscopic instability [29,30,103]. 

Nestorovic and Triantafyllidis [25] investigated the interplay between macroscopic 

and microscopic instability of hyperelastic layered media subjected to combinations 

of shear and compression deformation. Micromechanics based homogenization was 

utilized to predict the macroscopic instability of transversely isotropic fiber 

composites with hyperelastic phases [104,105]. Gao and Li [106] showed that the 

wavy patterns of the interfacial layer could be tuned by the interphase between the 

interfacial layer and soft matrix. Recently, Slesarenko and Rudykh [37] implemented 

the Bloch-Floquet technique into the finite element based code and examined the 

macroscopic and microscopic instability of periodic hyperelastic 3D fiber composites. 

More recently, Galich et al [107] focused on the influence of the periodic fiber 

distribution on instabilities and shear wave propagation in the hyperelastic 3D fiber 

composites. Furthermore, the microscopic and macroscopic instability phenomena of 

multi-layered composites under plane strain conditions were observed in experiments 

via 3D-printed layered materials [35]. Slesarenko and Rudykh [36] experimentally 

showed that the wavy patterns in LCs with visco-hyperelastic constitutes could be 

tuned by the applied strain rate. Li et al. [12] experimentally realized the instability 
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development in periodic 3D fiber composites. Through these studies, the role of stiff 

fiber reinforcement on the stability of composites has been well understood; in 

particular, the composites with stronger reinforcement (with higher shear modulus 

contrasts or with larger fiber volume fractions) are more prone to instabilities. 

However, the role of phase compressibility on the instability development and post-

buckling behavior of hyperelastic laminates has not been examined.  

In the first part of this chapter, we will focus on the influence of phase 

compressibility on the onset of instability and critical wavelengths that define the 

postbuckling patterns of the microstructure. We note that it is possible to use the 

estimates for the onset of instability and critical wavelengths based on the linear 

elasticity theory [35,102]; this, however, does not fully account for the nonlinear 

effects of finite deformations. To take into account these effects, we perform the 

instability analysis superimposed on finite deformations. The obtained information 

about the critical wavelengths is further used in the analysis presented in the second 

part of this chapter, where the elastic waves in the postbuckling regime are analyzed. 

Rytov [64] derived explicit dispersion relations for elastic waves propagating 

perpendicular to the layers showing the existence of the elastic wave BGs (or stop 

bands) in LC frequency spectrum. Wu et al. [108], and Fomenko et al. [109] 

investigated the elastic wave BGs of layered media with functionally graded materials. 

Recently, Srivastava [84] predicted the appearance of negative refraction at the 

interface between layered composite media and homogeneous material. More recently, 

Slesarenko et al. [66] showed that that negative group velocity can be induced by 

deformation in hyperelastic composites in the stable regime near elastic instabilities. 
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Galich et al. [65] obtained explicit expressions for shear and pressure long waves in 

finitely deformed LCs with isotropic hyperelastic phases. Moreover, based on the 

analysis by Rytov [64], Galich et al. [65] extended the classical results to the class of 

finitely deformed hyperelastic laminates. In particular, Galich et al. [65] show that the 

shear wave BGs are independent of the applied deformation in neo-Hookean laminates. 

In addition, the results of Galich et al. [65] demonstrate that the pressure wave BGs 

can be tuned by deformation, mostly via the change in the thickness of the layers. In 

this work, we examine the elastic wave propagation in finitely deformed neo-Hookean 

laminates in the postbuckling regime, and we specifically focus on the influence of 

material compressibility. 

2.2 Simulations 

We consider periodic layered composites consisted of two alternating 

hyperelastic phases with initial volume fractions 𝑣𝑎 = 𝑑𝑎 𝑑⁄  and 𝑣𝑏 = 1 − 𝑣𝑎  (see 

Figure 3(a)). Here and thereafter, the quantities corresponding to phase a and phase b 

are denoted by subscripts (•)𝑎  and (•)𝑏 , respectively. The constitutive behavior of 

each phase is defined through the extended neo-Hookean strain energy density 

function 

𝑊(𝐅𝜉) =
𝜇𝜉

2
(𝐅𝜉: 𝐅𝜉 − 3) − 𝜇𝜉 ln(𝐽𝜉) + (

𝐾𝜉

2
−

𝜇𝜉

3
) (𝐽𝜉 − 1)2,             (18) 

where 𝜇𝜉 is the initial shear modulus, 𝐾𝜉 is the bulk modulus, subscript 𝜉 stands for a 

or b. The compressibility of the material is defined by the ratio 𝐾𝜉 𝜇𝜉⁄ . 
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Figure 3. (a) Periodic LCs, (b) Deformed unit cell, (c) Small amplitude wave propagation in 

the deformed unit cell. 

In order to detect the onset of instability of LCs, and obtain the corresponding 

critical stretch ratio 𝜆𝑐𝑟 and critical wavelength 𝑙𝑐𝑟 (or critical wavenumber 𝑘𝑐𝑟), the 

Bloch-Floquet analysis is used (for details, see Slesarenko and Rudykh [37]; 

Triantafyllidis and Maker [23]). The microscopic instability is associated with the 

existence of bifurcation at a non-zero critical wavenumber 𝑘𝑐𝑟 , which defines the 

buckling mode of the structure through the critical wavelength 𝑙𝑐𝑟 = 2π/𝑘𝑐𝑟 . The 

specific case of so-called long wave mode, 𝑘𝑐𝑟 → 0, can be detected by the loss of 

ellipticity analysis for the effective elastic modulus tensor. The obtained information 

about the critical wavelengths is used in the subsequent postbuckling analysis (and 

elastic wave propagation in the postbuckling regime). A unit cell with height ℎ = 𝑙𝑐𝑟 

is constructed in the finite element model, and small amplitude imperfections are 

introduced in the form of 𝑋1 = A0 cos(
2π𝑋2

ℎ
) imposed on the initial geometry of the 

stiffer layer (see Figure 3(b)). In particular, through checking different weights (A0 𝑑𝑎⁄ ) 

of the imperfections, we find that A0 𝑑𝑎⁄ = 10−3 is proper to trigger bifurcation and 

enough precise to capture the development of the instability induced wavy patterns. 

The periodic boundary conditions of displacement are imposed on the unit cell, and 
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the mechanical loading is applied in terms of average deformation gradient, which is 

used in the displacement imposed periodic boundary conditions on the unit cell (see 

Figure 3(b)). The obtained numerical solution for the finitely deformed state is used in 

the subsequent small amplitude wave propagation analysis. This has been done by 

employing the Bloch wave numerical analysis (implemented in the finite element code, 

for details, see Bertoldi and Boyce [68]; Galich et al. [110]; Slesarenko and Rudykh 

[37]; Li et al. [16]). Thus, the dispersion curves for elastic waves propagating in finitely 

deformed compressible LCs are obtained. 

2.3 Results and discussion 

2.3.1 Instabilities in finitely deformed compressible layered composite 

We start from consideration of the influence of compressibility on the onset of 

instability and the corresponding critical wavelengths. Figure 4 shows the dependence 

of critical stretch ratio 𝜆𝑐𝑟  (a, c) and critical wavenumber 𝑘̃𝑐𝑟  (b, d) on the 

compressibility of LCs with neo-Hookean phases. Both phases are characterized by 

identical compressibility (𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 𝐾/𝜇).  The critical wavenumber is 

normalized as 𝑘̃𝑐𝑟 = 𝑘𝑐𝑟𝑑/(2π). For completeness, we show also the linear elastic 

material estimates denoted by the short-dashed black (Rosen, [22]) and by dotted blue 

curves (Parnes and Chiskis, [24])1. The circular points denote the numerical results for 

LCs with neo-Hookean phases. Hollow and solid symbols correspond to microscopic 

                                                      
1 The compressibility of linear elastic material is related to that of neo-Hookean material by Poisson’s ratio 𝜈 =

3𝐾 𝜇⁄ −2

6𝐾 𝜇⁄ +2
. 
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and macroscopic instabilities, respectively. Note that we also add the curves 

connecting the symbols, and these curves do not represent the actual data, but indicate 

the trends in the dependencies only. 

 

Figure 4. Dependence of critical stretch ratio 𝜆𝑐𝑟 (a, c) and critical wavenumber 𝑘̃𝑐𝑟⁡(b, d) on 

the compressibility of LCs with 𝑣𝑎 = 0.09, 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ . Hollow symbols correspond to 

microscopic instabilities, while solid symbols correspond to macroscopic instabilities. 

Compressible LCs are observed to be more stable; in particular, the critical stretch 

ratio increases with a decrease in compressibility (an increase in 𝐾/𝜇), see Figure 4(a, 

c). This stabilizing effect may be due to the additional freedom in accommodating 

deformation in compressible LCs as compared to the constrained incompressible LCs. 
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The linear estimates and nonlinear analysis predict similar trends of the dependence of 

critical stretch on compressibility. However, the nonlinear analysis predicts earlier 

onsets of instabilities. Moreover, for composites with lower stiffness ratio, significant 

differences in linear and nonlinear predictions of critical wavenumber are observed 

(see Figure 4(d)). The LCs with lower shear modulus contrasts require larger 

deformation for the onset of instability; therefore, the nonlinear behavior (not 

accounted in the linear estimates) becomes more prominent. 

Remarkably, compressible LCs are found to develop instabilities on microscopic 

length-scales, while LCs with higher incompressibility (larger 𝐾/𝜇) buckle in the long 

wave mode. For example, in LC with 𝜇𝑎 𝜇𝑏⁄ = 100, we observe a switch in buckling 

modes from microscopic instability to macroscopic instability indicated by the void 

(microscopic) and filled (macroscopic) red circles in Figure 4(a, b). Similar transitions 

from microscopic to macroscopic instability modes in incompressible fiber composites 

happen when the shear moduli contrast is increased beyond a certain threshold value 

[37]. For compressible LCs, the observed macro-to-micro mode switch (at certain 

threshold compressibility value) may be attributed to the compressibility-induced 

reduction in the effective stiffness ratio between the phases; thus, leading to the 

development of microscopic instabilities. Finally, we note that the critical stretch ratio 

of neo-Hookean LCs attains the analytical estimation for incompressible neo-Hookean 

LCs [23] as the incompressibility parameter is increased. 



 

29 
 

 

Figure 5. Dependence of critical stretch ratio 𝜆𝑐𝑟 (a) and critical wavenumber 𝑘̃𝑐𝑟⁡(b) on the 

compressibility of LCs with 𝜇𝑎 𝜇𝑏⁄ = 100⁡. The black points correspond to LCs with identical 

compressibility; the red points correspond to LCs with nearly incompressible (𝐾𝑏 𝜇𝑏⁄ = 103) 

soft matrix. 

Next, we examine the influence of compressibility on instabilities in LCs with 

different volume fractions. Figure 5 shows the critical stretch ratio 𝜆𝑐𝑟  (a) and 

normalized critical wavenumber 𝑘̃𝑐𝑟 (b) as functions of compressibility for LCs with 

𝜇𝑎 𝜇𝑏⁄ = 100. The square, triangle, and circle symbols correspond to the LCs with 

𝑣𝑎 = 0.04, 0.07,⁡and 0.09, respectively. The black points correspond to the results of 

LCs with identical phase compressibility, while the red points correspond to LCs with 

nearly incompressible matrix ( 𝐾𝑏 𝜇𝑏⁄ = 103 ), and stiffer layers with varying 

compressibility. Note that we consider the range of 𝐾/𝜇 ≥ 2/3, such that the initial 

Poisson’s ratio is positive [111]. Figure 5(a) shows that the critical stretch ratio 

increases with a decrease in compressibility (an increase in 𝐾/𝜇). Note that LCs with 

𝐾/𝜇 ≳ 50, critical stretch changes only slightly with an increase in 𝐾/𝜇. However, 

for LCs with 𝐾/𝜇 ≲ 10, a decrease in compressibility (an increase in 𝐾/𝜇) results in 

a pronounced increase in critical stretch. For example, when compressibility of LC 

(with identical phase compressibility) is changed from 𝐾 𝜇⁄ = 50 to 103, the critical 
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stretch of LC with 𝑣𝑎 = 0.04 increases from 𝜆𝑐𝑟 = 0.9627 to only 0.9628; whereas, a 

decrease in compressibility from 𝐾 𝜇⁄ = 2/3 to 10 leads to an increase in critical 

stretch from 𝜆𝑐𝑟 = 0.9475 to 0.9616. Figure 5(b) shows the dependence of critical 

wavenumber 𝑘̃𝑐𝑟  on the ratio of 𝐾/𝜇 . We observe that the critical wavenumber 

decreases with a decrease in compressibility (i.e. increase in 𝐾/𝜇), the effect is more 

pronounced at the range of 𝐾/𝜇 ≲ 10. We note that the LC with 𝑣𝑎 = 0.09 exhibits a 

transition from finite wavelength mode to long wave instability mode at 𝐾/𝜇 ≈ 3.5 

for LCs with identical phase compressibility, 𝐾/𝜇 ≈ 1.1  for LCs with nearly 

incompressible matrix and varying stiff layer compressibility, corresponding to a 

switch from microscopic instability to macroscopic instability. 

For LCs with nearly incompressible matrix (𝐾𝑏 𝜇𝑏⁄ = 103), the influence of the 

stiffer layer compressibility on critical stretch ratio and wavenumber is more 

pronounced as compared to LC with identical phase compressibility (compare the red 

symbols with the black symbols in Figure 5(a, b)). For example, for LC with 𝑣𝑎 =

0.07, the change in compressibility of the stiffer layer from 𝐾𝑎 𝜇𝑎⁄ = 103 to 2/3, leads 

to the changes in critical stretch ratio from 𝜆𝑐𝑟 = 0.965  to 0.941, and critical 

wavenumber from 𝑘̃𝑐𝑟 = 0.64 to 1.00. For LCs with identical phase compressibility, 

the same change in compressibility decreases the critical stretch ratio from 𝜆𝑐𝑟 =

0.965 to 0.948, and increases the critical wavenumber from 𝑘̃𝑐𝑟 = 0.64 to 0.90. One 

of the factors for the observed differences can be attributed to the change in the volume 

fraction of the stiffer layer under compression. For LCs with identical compressibility 

(𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ ), the volume fraction of the stiffer layer is constant under contraction 

deformation (before the onset of instability). However, for LCs with nearly 
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incompressible soft matrix and compressible stiff layers, the stiffer layer volume 

decreases under contraction deformation and the volume of the matrix remains 

constant. Thus, the volume fraction of the stiffer layer (in the deformed state) decreases. 

As a result, LCs with more compressible stiffer layers (with lower 𝐾𝑎 𝜇𝑎⁄ ) buckle at 

large strain levels, and develop wavy patterns of smaller wavelengths as compared to 

LCs with identical phase compressibility. However, the dependence of the wavelength 

on the stiffer layer compressibility changes for LCs with larger volume fractions, for 

which LCs may exhibit long wave instabilities (depending on the compressibility). 

For LCs with identical phase compressibility, an increase in stiff layer volume 

fraction results in significant decrease in critical strain (𝜀𝑐𝑟 = 1 − 𝜆𝑐𝑟 ) and critical 

wavenumber. For example, for LC with nearly incompressible phases (𝐾𝑎 𝜇𝑎⁄ =

𝐾𝑏 𝜇𝑏⁄ = 103), an increase in stiff layer volume fraction from 𝑣𝑎 = 0.04 to 0.09 leads 

to an earlier onset of instabilities at 𝜀𝑐𝑟 = 0.029  (𝜀𝑐𝑟 = 0.037⁡for⁡𝑣𝑎 = 0.04) , and 

leads to a switch in the instability mode from finite size 𝑘̃𝑐𝑟 = 1.45 (for 𝑣𝑎 = 0.04) to 

long wave mode (𝑘̃𝑐𝑟 → 0 for 𝑣𝑎 = 0.09). 

Next we investigate the influence of compressibility on instabilities in LCs with 

different shear modulus contrasts. Figure 6 shows the dependence of critical stretch 

ratio (a, c, e) and critical wavenumber (b, d, f) on compressibility. The circular, square, 

and triangle symbols correspond to the results of LCs with shear modulus contrasts 

𝜇𝑎 𝜇𝑏⁄ = 20, 100, and 500, respectively. The black and red points correspond to LCs 

with identical phase compressibility, and to LCs with nearly incompressible matrix 

and varying stiffer layer compressibility, respectively. In agreement with the previous 

results, here we observe that the critical stretch ratio increases with a decrease in 
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compressibility (i.e. increase in 𝐾/𝜇), and the critical wavenumber decreases with a 

decrease in compressibility (i.e. increase in 𝐾/𝜇). We observe that the critical strain 

for LC with lower shear modulus contrast is more sensitive to a change in 

compressibility. The compressibility has a more significant effect on the critical 

wavenumber of LC with higher shear modulus contrast. For instance, for LC with 

𝜇𝑎 𝜇𝑏⁄ = 20, the change of compressibility from 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 103 to 2/3, leads 

to the changes in critical strain from 𝜀𝑐𝑟 = 0.105 to 0.163, and critical wavenumber 

from 𝑘̃𝑐𝑟 = 2.18 to 2.57; thus the critical strain and wavenumber increase 55.24% and 

17.89%, respectively. For LC with 𝜇𝑎 𝜇𝑏⁄ = 500 , the corresponding change in 

compressibility (from 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 103 to 2/3) leads to an increase in critical 

strain and wavenumber by 36.80% and 31.62%, respectively. 

 

Figure 6. Dependence of critical stretch ratio 𝜆𝑐𝑟 ((a), (c), and (e)) and critical wavenumber 

𝑘̃𝑐𝑟⁡((b), (d), and (f)) on the compressibility of LCs with 𝑣𝑎 = 0.04. 
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In addition, we also observe that an increase in the stiffer layer compressibility 

leads to a more significant increase in critical strain and wavenumber as compared to 

LC with identical phase compressibility in a wide range of shear modulus contrasts. 

This effect increases with an increase in shear modulus contrast (compare red and 

black symbols in Figure 6). For instance, for the case of 𝜇𝑎 𝜇𝑏⁄ = 500, the critical 

strain and wavenumber for LC with identical phase compressibility 𝐾 𝜇⁄ = 2/3 are 

𝜀𝑐𝑟 = 0.017  and 𝑘̃𝑐𝑟 = 0.96 ; and the critical strain and wavenumber for LC with 

𝐾𝑎 𝜇𝑎⁄ = 2/3, 𝐾𝑏 𝜇𝑏⁄ = 103  are 𝜀𝑐𝑟 = 0.020  and 𝑘̃𝑐𝑟 = 1.08 , increased by 17.65% 

and 12.5%, respectively (compared to LC with 𝐾 𝜇⁄ = 2/3). Whereas for the case of 

𝜇𝑎 𝜇𝑏⁄ = 20, the critical strain and wavenumber for LC with 𝐾𝑏 𝜇𝑏⁄ = 103, 𝐾𝑎 𝜇𝑎⁄ =

2/3  increase by approximately 8% and 5%, respectively, when compared to the 

corresponding LC with identical phase compressibility 𝐾 𝜇⁄ = 2/3. 

LCs with stiffer layers (higher shear modulus contrasts) are more prone to 

instabilities, and develop buckling modes at smaller wavenumbers (larger wavelength). 

For example, for LC with nearly incompressible phases, namely, 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ =

103, the composite with 𝜇𝑎 𝜇𝑏⁄ = 20 and 100 buckles at 𝜀𝑐𝑟 = 0.106 to 0.037, and 

develops wavy pattern at 𝑘̃𝑐𝑟 = 2.18 to 1.45, respectively. 

To summarize, LCs with stronger role of stiffer layers are more prone to 

instabilities and develop buckling modes with larger wavelengths. Compressible LCs 

are found to be more stable thanks to the additional freedom in accommodating 

deformation as compared to the constrained incompressible LCs. There are 

compressibility-controlled switches in the LC buckling modes from macroscopic to 

microscopic instabilities. These switches may be a result of the reduction in effective 
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stiffness ratio between the phases arising from the deformation of compressible LC. 

Moreover, LCs with nearly incompressible matrix are more stable than the LCs with 

identical phase compressibility. This stabilizing effect can be attributed to a decrease 

in the compressible stiffer layer volume fraction (while the volume of nearly 

incompressible matrix remains almost constant). 

2.3.2 Elastic waves in finitely deformed compressible layered 

composite 

Next, we consider elastic waves propagating in finitely deformed LCs in the 

direction perpendicular to the layers. For this case, Galich et al. [65] extended the 

results of Rytov [64] to account for the effect of finite deformation on elastic wave 

propagation. The explicit results for neo-Hookean LCs by Galich et al. [65] clearly 

show that band gaps (BG) – frequency ranges where waves cannot propagate – of shear 

waves do not depend on deformation. This is because the deformation induced changes 

in geometries and local material properties compensate each other. However, once the 

deformation exceeds the critical stretch ratio, the stiffer layers develop wavy patterns 

and deformation becomes inhomogeneous in the phases. Therefore, the analytical 

solution – that assumes that the layers remain flat and deformation is homogeneous in 

each layer – reaches the limits of applicability. To overcome this limit and analyze the 

influence of compressibility on elastic wave propagation in finitely deformed 

compressible LCs, we make use of the finite element Bloch wave analysis 

superimposed on large deformations [67,68]. 
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We start with illustrating the dispersion curves of the undeformed and deformed 

(𝜆 = 0.9) LCs. The dispersion curves shown in Figure 7 are for LC with 𝑣𝑎 = 0.04,

𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1,𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 1. The continuous curves correspond 

to shear waves, while the dashed curves are for pressure waves. The shaded grey and 

blue areas correspond to the shear wave band gaps (SBGs) and pressure wave band 

gaps (PBGs), respectively. Frequency is normalized as 𝑓𝑛 =
𝜔𝑑

2𝜋
√𝜌0̅̅ ̅ 𝜇⁄ , where 𝜔 is the 

angular frequency, 𝜌0̅̅ ̅ = 𝜌0𝑎𝑣𝑎 + 𝜌0𝑏𝑣𝑏 ,  𝜇 = (
𝑣𝑎

𝜇𝑎
+

𝑣𝑏

𝜇𝑏
)
−1

. We note that the 

numerical results are in perfect agreement with the theoretical results [64,65] for the 

range of deformations, where the LCs remain stable. In the buckled deformed state at 

𝜆 = 0.9 (𝜆𝑐𝑟 = 0.9514), the first SBG widens from Δ𝑓𝑛 = 0.020 (in the undeformed 

state) to 0.024, and its upper boundary shifts from 𝑓𝑛 = 0.510 to 0.524, the first PBG 

widens from Δ𝑓𝑛 = 0.031 (in the undeformed state) to 0.032 and its upper boundary 

shifts from 𝑓𝑛 = 0.779 to 0.767. 

 
Figure 7. Dispersion relations for shear (black continuous curves) and pressure (black dashed 

curves) waves in LC with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1,𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 1  in 

undeformed (a) and deformed (b) states. The shaded areas correspond to the shear (grey) and 

pressure (blue) wave BGs. 
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Figure 8. Dependence of SBG (a) and wrinkle amplitude (b) on applied deformation for LC 

with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, ⁡𝜌𝑎 𝜌𝑏⁄ = 1,⁡𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 103. 

Next, we investigate the influence of deformation on the BG structure of nearly 

incompressible LCs. Figure 8 shows evolutions of the first SBG (a) and wrinkle 

amplitude (b) as functions of deformation. The wrinkle amplitude is normalized as 

Ã =
A

𝑑𝑎
 . The LC with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1  consists of nearly 

incompressible phases ( 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 103 ), and it experiences microscopic 

instability at 𝜆𝑐𝑟 = 0.963 with the critical wavenumber 𝑘̃𝑐𝑟 = 1.45. To highlight the 

effect of instability induced wavy patterns on SBG, we show the results for the buckled 

LC and the flat LC (n which the wavy patterns are suppressed) under the same 
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deformation. The analytical results [65] for the first SBG of LC with flat layers are 

located at lower frequency boundary 𝑓𝑛 = 0.490  and width Δ𝑓𝑛 = 0.020 , which is 

independent of deformation. Before the onset of instability (𝜆𝑐𝑟 = 0.963), the wavy 

pattern amplitude is negligible (see Figure 8(b)), and LCs produce identical SBGs (see 

Figure 8(a)). After the onset of instability, the LC develops wavy patterns, and the 

amplitude of wrinkles rapidly increases with an increase in deformation (see Figure 

8(b)). The appearance of the wavy patterns shifts up the location of SBG and expands 

its width. The effect is more significant for the upper frequency boundary of the BG. 

For example, the deformation of 𝜆 = 0.9 widens the SBG from Δ𝑓𝑛 = 0.020 to 0.029 

and shifts its upper frequency boundary from 𝑓𝑛 = 0.510 to 0.520. We note that for 

the considered nearly incompressible LC (𝐾 𝜇⁄ = 103), PBGs are located at relatively 

high frequency ranges (compared to the first SBG). For example, according to the 

calculation that based on the results of Galich et al. [65], the lower boundary of the 

first SBG for considered LC in the undeformed state is 𝑓𝑛 = 0.490  (with Δ𝑓𝑛 =

0.020), while the lower boundary of the corresponding first PBG is 𝑓𝑛 = 15.51 (with 

Δ𝑓𝑛 = 0.63). The numerical investigation of PBGs in LCs with nearly incompressible 

phases requires a large number of calculated eigenfrequencies and is not considered 

here. 

To illustrate the influence of deformation in compressible LCs, we show SBG (a), 

PBG (b), and wrinkle amplitude (c) as functions of deformation in Figure 9. The results 

are given for the LC with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1,𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ =

1.  The considered LC experiences microscopic instability at 𝜆𝑐𝑟 = 0.951  with the 

critical wavenumber⁡𝑘̃𝑐𝑟 = 1.60. For the SBG (shown in Figure 9(a)), we observe that 
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the appearance of the wavy patterns leads to widening of the SBG. Moreover, the SBG 

is shifted towards higher frequency range after the applied deformation attains the 

critical stretch level; a further increase in strain level (decrease in stretch ratio) leads 

to an increase in the width of the SBG. In particular, the applied deformation of 𝜆 =

0.9  widens the SBG from Δ𝑓𝑛 = 0.020  to 0.023  and shifts its upper frequency 

boundary from 𝑓𝑛 = 0.510 to⁡0.514. Thus, for highly compressible LCs, the influence 

of instability induced wavy patterns on the widths of SBGs is weaker than the one in 

nearly incompressible LCs (shown in Figure 8(a)). This happens because an increase 

in compressibility (decrease in 𝐾 𝜇⁄ ) leads to a decrease in wavy pattern amplitude. 

For example, the amplitudes in LCs with nearly incompressible (𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ =

103) and highly compressible phases (𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 1) at the deformation of 𝜆 =

0.9 are Ã = 1.36 and 1.10, respectively. 

For PBG (shown in Figure 9(b)), the LCs with wavy patterns and flat layers 

produce almost identical PBGs for the range of deformation prior to the onset of 

instability ( 𝜆𝑐𝑟 = 0.951 ). After the onset of instability, however, the instability 

induced wavy patterns widen the PBG and shift it towards higher frequency range. 

This effect is more significant on the upper frequency boundary of PBG. For example, 

compared to the LC with flat layers, the PBG of LC with wavy patterns widens from 

Δ𝑓𝑛 = 0.030  to 0.032 and its upper frequency boundary shifts from 𝑓𝑛 = 0.764  to 

0.767 at the deformation of 𝜆 = 0.9. This is similar to the previous results for SBGs 

(see Figure 8(a), Figure 9(a)). 
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Figure 9. Dependence of SBG (a), PBG (b), and wrinkle amplitude (c) on applied deformation 

for LC with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1,𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 1. 
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Figure 10. Dependence of SBG (a), PBG (b), and wrinkle amplitude (c) on the compressibility 

of LCs with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1 under deformation of 𝜆 = 0.9. 

Figure 10 shows the dependence of SBG (a), PBG (b), and wrinkle amplitude (c) 

on the compressibility parameter 𝐾 𝜇⁄  . The results are given for LCs with 𝑣𝑎 =

0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1  subjected to a contraction deformation of 𝜆 = 0.9 . 

For LCs with flat layers, we observe that compressibility does not affect the SBGs (see 

Figure 10(a)) – in full agreement with the analytical results2 of Galich et al. [65]. For 

LCs with wavy patterns, however, we observe that the SBGs are widened and the SBG 

locations are shifted towards higher frequency ranges. This effect increases with a 

decrease in compressibility (i.e. increase in 𝐾 𝜇⁄  ). For example, when the 

compressibility changes from 𝐾 𝜇⁄ = 0.67  to 103 , the width of SBG of LC with 

                                                      
2 The change in geometry induced by deformation is fully compensated by the corresponding change in material 

properties in neo-Hookean laminates with compressible and incompressible phases. 
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identical compressibility increases from Δ𝑓𝑛 = 0.023 to 0.029. This is due to the fact 

that an increase in 𝐾 𝜇⁄  leads to an increase in wrinkle amplitude (see Figure 10(c)). 

Moreover, we note that LCs with identical phase compressibility show larger wrinkle 

amplitudes as compared to LCs with nearly incompressible matrix (see Figure 10(c)). 

However, LCs with nearly incompressible matrix show more significant widening of 

SBGs (Figure 10(a)). This indicates that the tunability of the SBG is governed by a 

complicated interplay of the local material property and geometry changes; these 

effects are discussed below along with the illustrations in Figure 10. 

For PBGs in highly compressible LCs, we observe that the instability induced 

wavy patterns expand the widths and shift their locations to higher frequency ranges 

(as compared to the LCs with flat layers). For example, for LC with 𝐾 𝜇⁄ = 0.67, the 

appearance of wavy patterns expands the width of PBG from Δ𝑓𝑛 = 0.028 to 0.031 

and shifts its upper frequency boundary from 𝑓𝑛 = 0.721 to 0.724. Whereas with the 

decrease of compressibility (i.e. increase in 𝐾 𝜇⁄ ), the effect of wavy patterns on PBG 

gradually changes from expanding the BG width and shifting its location to higher 

frequency range, to narrowing the BG width and shifting its location to lower 

frequency range (see Figure 10(b)). For example, for LC with 𝐾 𝜇⁄ = 10, the wavy 

patterns narrow the width of PBG from Δ𝑓𝑛 = 0.062  to 0.058,  and shift its upper 

frequency boundary from 𝑓𝑛 = 1.565  to 1.559 . For the considered cases, the 

transition point at which the effect of wavy patterns on PBGs changes from expanding 

to narrowing the BG widths is at 𝐾 𝜇⁄ ≈ 4. We note that for the considered LCs with 

nearly incompressible soft matrix (𝐾𝑏 𝜇𝑏⁄ = 103), PBGs are located at relatively high 

frequency ranges (compared to the first SBG). Thus, numerical investigation of PBGs 
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in LCs with nearly incompressible soft matrix requires a large number of calculated 

eigenfrequencies and is not considered here. 

 

Figure 11. Dependence of BG on the compressibility of LCs with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100,

𝜌𝑎 𝜌𝑏⁄ = 1 in the undeformed (a) and deformed (b) states. 

Next, we examine the so-called complete BGs where neither shear nor pressure 

waves can propagate. Figure 11 shows the dependence of SBG and PBG on the 

compressibility for LCs with 𝑣𝑎 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1  in the 

undeformed and deformed buckled (𝜆 = 0.9 shown in Figure 11(b)) states. The shaded 

gray, blue, and black areas correspond to the shear wave, pressure wave, and complete 

BGs, respectively. In the undeformed state, the compressibility has no influence on 

SBGs. In the buckled deformed state, however, the locations of SBGs shift slightly, 

but the locations of PBGs are significantly shifted towards lower frequency ranges; 

this is similar to the observations in Figure 9 and Figure 10. Consequently, deformation 

can induce complete BG in a specific frequency range while the undeformed LCs do 

not produce complete BG in that frequency range. For example, for LC with 𝐾 𝜇⁄ =

3.5, we observe the complete BG in the frequency range from 𝑓𝑛 = 1.002 to 1.028, 
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but there is no complete BG in this frequency range for the same LC in the undeformed 

state. 

 

Figure 12. Dependence of SBGs (a) and PBGs (b) on deformation in LCs with 𝑣𝑓 =

0.04, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1,𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 5. 

Finally, we examine the influence of deformation induced geometrical changes 

on band gaps. To this end, we analyze the evolution of BGs in stress-free 

configurations with the corresponding geometrical changes; and we compare these to 

the results for the deformed configurations (accounting for both geometrical and local 

material property changes). Figure 12 shows the SBGs (a) and PBGs (b) of the 

deformed LC and stress-free LC (with the corresponding geometrical change only) as 

functions of stretch ratio. The results are given for LC with 𝑣𝑓 = 0.04, 𝜇𝑎 𝜇𝑏⁄ = 100,

𝜌𝑎 𝜌𝑏⁄ = 1, 𝐾𝑎 𝜇𝑎⁄ = 𝐾𝑏 𝜇𝑏⁄ = 5. The LC experiences the microscopic instability at 

𝜆𝑐𝑟 = 0.960 with the critical wavenumber 𝑘̃𝑐𝑟 = 1.48. Prior to the onset of instability 

(𝜆𝑐𝑟 = 0.960), the geometrical changes shift the SBG towards lower frequencies (see 

Figure 12(a)). This effect, however, is fully compensated by the corresponding 

deformation induced changes in local material properties (Galich et al, 2017a). Thus, 

the SBG of the deformed LC is independent of the applied deformation in the stable 



 

44 
 

regime. However, upon the onset of instability, the SBG widens as the applied 

deformation is further increased. At this post-buckling regime, the corresponding SBG 

of the stress-free LC also widens with deformation. However, the width of the actual 

SBG (in the deformed LC) is smaller than that of the stress-free LC. Moreover, the 

actual SBG is shifted towards higher frequencies, whereas the geometrical changes 

push the SBG down towards lower frequencies. Thus, the instability induced changes 

in local material properties start prevailing over the geometrical changes in their 

influence on the SBG. 

Next, we consider PBGs in the deformed and stress-free LCs. The PBGs are 

shifted towards lower frequencies. The location of the PBG of the deformed LC is 

lower than that of the stress-free LC (see Figure 12(b)). Therefore, we can conclude 

that both geometrical and local material changes shift down the location of PBG. 

Compared to the PBG in the undeformed state (the corresponding PBG width is Δ𝑓𝑛 =

0.051), the PBGs of the stress-free and deformed LCs are Δ𝑓𝑛 = 0.053 and 0.045 (at 

𝜆 = 0.9 ), respectively. Thus, the deformation induced changes in local material 

property narrow the width of PBG. We note that the geometrical changes play a more 

significant role in affecting the location of PBG. For example, applied deformation of 

𝜆 = 0.9 shifts the lower frequency boundary of the PBG of stress-free unit cell from 

𝑓𝑛 = 1.233  (undeformed state) to 1.150, whereas the same deformation shifts the 

lower frequency boundary of the PBG of the deformed unit cell from 𝑓𝑛 = 1.233 

(undeformed state) only to 1.137. 

In summary, the instability induced wavy patterns results in tunability of the 

widths and locations of SBGs (that are not tunable by deformation in LCs with neo-
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Hookean phases in the stable regime); this tunability, however, is not significant in 

comparison to the tunability of the PBGs (mainly through deformation induced 

changes in layer thickness), leading to the tunability of complete BGs (where neither 

shear nor pressure wave can propagate) by deformation. 

2.4 Summary 

We have examined the elastic instability and wave propagation in finitely 

deformed LCs with compressible neo-Hookean phases. The LCs with stronger role of 

stiffer layers (higher stiffness ratio and/or stiffer layer volume fraction) buckle earlier 

and develop buckling modes at smaller wavenumbers (larger wavelengths). 

Compressible LCs, however, are more stable and develop wavy patterns at smaller 

wavelengths. This stabilizing effect of compressibility may be attributed to the 

additional freedom to accommodate deformation as compared to the constrained 

incompressible LCs. We also observed the compressibility-controlled switches in the 

LC buckling modes from macroscopic to microscopic instabilities. These switches 

may be because applied deformation on compressible LC leads to a reduction in 

effective stiffness ratio between the phases. Moreover, LCs with identical phase 

compressibility are more prone to the onset of instabilities as compared to the 

composites with nearly incompressible matrix, this happens because the contraction 

deformation results in a decrease in the stiffer layer volume fraction for LCs with 

nearly incompressible matrix. 

Next, we have examined the elastic wave propagation in finitely deformed LCs 

in the direction perpendicular to the layers. We have found that the instability induced 
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wavy patterns lead to the widening of the SBG (mostly driven by the deformation 

induced geometrical changes), and shifts it towards higher frequency range (mostly 

driven by the deformation induced changes in local material property). Deformation 

significantly shifts the location of PBG to lower frequencies – mainly through the 

corresponding deformation induced changes in layer thickness – in addition to some 

tunability in the width of the PBG. 
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Chapter 3 

Instabilities and pattern formations in 3D fiber composites 

We investigate elastic instabilities and pattern formations in 3D-printed 

deformable fiber composites. We experimentally realize the instability induced 

patterns in the deformable 3D systems of periodically distributed fibers embedded in 

a soft matrix. We observe that the fiber composites exhibit significant softening upon 

achieving the critical strain at which the stiff fibers cooperatively buckle into wavy 

patterns. For periodic fiber composites, we show that the critical wavenumber and 

critical strain decrease with an increase in fiber volume fraction, and an increase in the 

periodicity aspect ratio leads to a decrease in critical wavenumber and critical strain. 

For single fiber in a soft matrix system, we observe that the critical wavelength has a 

linear dependence on fiber diameter. An explicit formula is derived to estimate the 

dependence of critical wavelength on shear modulus contrast, and further verified by 

experimental data and numerical simulations. 

  

                                                      
 Based on the published paper: Li J, Slesarenko V, Galich PI, Rudykh S. Instabilities and pattern formations in 

3D-printed deformable fiber composites. Compos Part B Eng 2018;148:114–22. 
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3.1 Introduction 

Elastic stiff fibers embedded in a soft matrix are ubiquitous in natural and 

synthetic systems, e.g., microtubules in living cell [112,113], fibrous biological tissues 

[114,115], and fiber-reinforced polymer composites [116–119]. It is well known that 

an isolated fiber experiences classical Euler buckling, when subjected to axial 

compressive loads. However, for stiff fibers embedded in a soft matrix, the presence 

of soft matrix significantly decreases the critical wavelength and increases the critical 

strain [113,120,121]. This mechanical phenomenon has drawn considerable attention, 

due to its importance in fiber composite designs [37,122–124], functional material 

designs [106,125], and biological systems [114,126]. 

The buckling behavior of a single stiff circular wire embedded in an elastic matrix 

was firstly theoretically investigated by Herrmann et al. [127], which considered the 

elastic matrix as a three-dimensional continuous body and proposed two foundation 

model to investigate the buckling behavior of the stiff wire: (a) exact foundation model 

that considered the displacement and force continuity requirements between the elastic 

matrix and the stiff wire, (b) approximate foundation model that only considered the 

displacement and force in radial direction and neglected the shear deformation 

between the elastic matrix and the stiff wire. For the approximate mode, Herrmann et 

al. [127] derived an explicit expression to estimate the stiffness of the matrix. Later, 

Brangwynne et al. [113] employed Herrmann’s approximate foundation model to 

elucidate their experimental observations on the buckling of microtubules in living 

cells, and derived an expression to approximate the value of matrix stiffness. Recently, 
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Su et al. [128] studied the buckling behavior of a slender Nitinol rod embedded in a 

soft elastomeric matrix. Planar wavy patterns and non-planar coiled buckling modes 

were experimentally observed; these experimental observations were interpreted based 

on consideration of the two lowest buckling modes. Zhao et al. [121] examined the 

buckling of finite length elastic fiber in a soft matrix; the authors derived a formula to 

connect the overall strain and the strain state in stiff fiber. This formula showed that 

the buckling of stiff fiber could be significantly tuned by the slenderness ratio of the 

fiber. More recently, Chen et al. [129] examined the buckling of stiff wire in a soft 

matrix, and numerically showed that the stiff wire buckled in 2D sinusoidal 

configuration first, then gradually transited the configuration from 2D sinusoidal into 

3D helical mode. In many studies, Winkler foundation model [130] is used to provide 

analytical linear elasticity based estimates for buckling of a single fiber in matrix. 

However, the accuracy of this model in a wide range of shear modulus contrast is not 

examined. Here, we first experimentally observe the buckling process of a stiff fiber 

embedded in a soft matrix under an axial compressive load by 3D printer fabricated 

specimens, and show the dependence of the critical wavelength on the stiff fiber 

diameter. Then, based on the Wrinker foundation model, we mathematically derive a 

new estimation for the effective stiffness, and give an explicit formula to calculate the 

critical wavelength of the stiff fiber in this system. The accuracy of this formula is 

verified by experimental data and numerical simulations. 

The pioneering work on the stability analysis of layered and fiber composites was 

laid by Rosen [22], who derived an explicit expression to predict the buckling strain 

of layered composite with linear elastic material. Triantafyllidis and Maker [23] 
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investigated microscopic and macroscopic instabilities in periodic layered composites 

with hyperelastic phases. Geymonant et al [26] established a rigorous theoretical 

foundation for microscopic instability analysis in periodic composites, connecting the 

specific case of long wave limit and the macroscopic loss of ellipticity analysis. The 

loss of ellipticity analysis has been used to study macroscopic instability in fiber-

reinforced hyperelastic solids based on phenomenological models [29–31,103]. An 

alternative approach of micromechanics based homogenization was utilized to 

estimate the macroscopic instabilities in transversely isotropic hyperelastic fiber 

composite [104,105]. Recently, Greco et al. [131] investigated the influence of matrix 

or fiber/matrix interface microcracks on the failure behaviors of periodic fiber-

reinforced composites under biaxial loading conditions. By making use of the Bloch-

Floquet analysis superimposed on large deformations, Slesarenko and Rudykh [37] 

analyzed the interplay between macroscopic and microscopic instabilities in periodic 

hyperelastic 3D fiber composites subjected to an axial compressive load. Moreover, 

the buckling modes with wavy patterns in periodic layered composites under 

compressive loads were observed in experiments[35,36]. However, to the best of our 

knowledge, instabilities of deformable periodic 3D fiber composite have not been 

experimentally investigated. In this chapter, we study the buckling behavior of 

periodic 3D fiber composites with square and rectangular arrangements of periodic 

fibers; to this end we utilize a multimaterial 3D printer, and fabricate and mechanically 

test the periodic composite specimens. The experimentally obtained critical 

wavelengths and critical strains are compared with numerical results by Bloch-Floquet 

analysis.  
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3.2 Experiments and simulations 

To experimentally observe the buckling process of fiber composite subjected to 

uniaxial compression along the fibers, we fabricated the specimens composed of stiff 

fibers embedded in an elastomeric soft matrix by using the multi-material 3D printer 

Object Connex 260-3. The soft matrix was printed in TangoPlus (TP) with the initial 

shear modulus 𝐺 ≈ 0.23 MPa, the stiffer fiber was printed in a digital material (DM) 

with the initial shear modulus 𝐺 ≈ 240 MPa; the digital material is a mixture of the 

two base material (TangoPlus and VeroWhite). Here, we considered two cases: single 

stiff fiber embedded in a soft matrix (Case A); periodic fiber composites with square 

and rectangle arrangements (Case B). All the specimens were printed in the shape of 

rectangular blocks to provide a clearer visualization of the buckled fiber shapes and 

pattern formations through the nearly transparent soft matrix material. Guided by the 

theoretical and numerical predictions of the buckling wavelength of the stiff fiber and 

considering the resolution of the multi-material 3D printer, the samples composed of 

a centrally located single DM fiber embedded in TP matrix (case A) were printed in 

dimensions 20 × 20 × 40 mm (length × width × height) and in stiff fiber diameters 

ranging from d=0.5 to 1.0 mm; the samples composed of 36 periodically distributed 

fibers embedded TP matrix (case B) were printed in dimensions 30 × 30 × 40 mm 

(length × width × height) and in stiff fiber volume fractions ranging from 𝑐𝑓=0.01 to 

0.025, except for the sample with 𝑐𝑓=0.025, whose height was printed in 50 mm. For 

the composites with periodically distributed fibers, to reduce the influence of boundary 
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effects on the buckling behavior of stiff fibers, the samples were printed with a 

boundary TP material layer of the thickness 𝑡=5 mm. 

 

Figure 13. Experimental setup (a) and typical buckled configurations (b). 

The uniaxial compression tests were carried out using Shimadzu EZ-LX testing 

machine (maximum load 2 kN). Figure 13 shows the experimental setup of the uniaxial 

compression of 3D-printed samples (a), and an illustration of the buckled 

configurations of the sample (b). To reduce the influence of material viscoelasticity on 

the observed behavior of the composite, the tests were performed at a low strain rate 

of 4×10-4 s-1. Upon achieving the critical compression level, the stiffer fibers start 

developing the buckling shape; the process was captured by two digital cameras 

(located in front and on the side of the tested samples, as shown in Figure 13(a)). An 

example of the single fiber buckling induced configuration obtained from these 

orthogonal views is shown in Figure 13(b). 
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3.3 Results and discussion 

3.3.1 Buckling of a single stiff fiber embedded in a soft matrix 

We start with the investigation of the buckling of a single stiff fiber embedded in 

a soft matrix subjected to axial compressive load. The sketch of this system is shown 

in Figure 14. 𝐸  and 𝑣  refer to the Young’s elastic modulus and Poisson’s ratio, 

respectively. Subscripts (•)𝑓 and (•)𝑚 refer to the properties of the stiff fiber and soft 

matrix, respectively; 𝑑 refers to the diameter of the stiff fiber. Figure 15 illustrates the 

development process of instability induced wavy patterns (a) and stress-strain curves 

(b) for DM fibers with diameters 𝑑 =0.50, 0.71, and 1.00 mm. Since the DM fiber 

buckles almost in the planar configuration, only the view to record the main buckling 

shape is shown. We observe that the stiff fiber develops wavy patterns, and the critical 

wavelength and the amplitude of the wavy pattern increase with an increase in stiff 

fiber diameter (see Figure 15(a)). Figure 15(b) shows the corresponding stress–strain 

curves. Due to the stiff fiber buckling, we observe that the stress–strain curves exhibit 

softening near to the buckling point. This effect is more significant for the composite 

with larger stiff fiber diameter (see the dotted black curve in Figure 15(b)). Similar 

stress softening phenomenon has been observed in the bulging buckling mode of 

cylindrical shells under inflation [132,133]. In addition, we note that the composite 

strength increases with an increase in stiff fiber diameter in pre-buckling and 

postbuckling regimes. 
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Figure 14. Sketch of an elastic stiff fiber embedded in a soft matrix subjected to axial 

compressive load. 

 

Figure 15. Development of instability induced wavy patterns (a) and stress-strain curves (b) 

for a single stiff fiber embedded in a soft matrix. 

Next, to clarify the quantitative relation between the critical wavelength and stiff 

fiber diameter, we plot the critical wavelengths for all tested specimens as a function 
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of stiff fiber diameter in Figure 16. Interestingly, the critical wavelength has a good 

linear dependence on the stiff fiber diameter, which will be explained by theoretical 

analysis in the following discussions. 

 

Figure 16. Dependence of critical wavelength 𝑙𝑐𝑟 on stiff fiber diameter. 

Here, a theoretical analysis is performed to investigate the buckling mechanisms 

observed in the experiments. We note that the Winkler foundation model has been 

frequently utilized to investigate buckling of a single stiff fiber embedded in soft 

matrix [113,120,121,128]. However, previous works were mostly focused on the 

systems with high shear modulus contrast (the ratio of stiff fiber to soft matrix shear 

modulus is larger than 105). Here, we study buckling of the 3D printed system with 

shear modulus contrast of approximately 103. We employ the Winkler foundation 

model, and derive an explicit expression for an accurate approximation for the model, 

and we further examine the accuracy of model to predict the buckling of single stiff 

fiber embedded in soft matrix in a wide shear modulus contrast. 
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Considering the system as a thin and stiff beam supported by a soft matrix, the 

governing equation for a stiff fiber is given by [134] 

𝐸𝑓𝐼𝑓
𝜕4𝑢

𝜕𝑧4 + 𝐸𝑓𝑆𝑓𝜀
𝜕2𝑢

𝜕𝑧2 + 𝐾𝑢 = 0,                                        (19) 

where 𝐼𝑓 and 𝑆𝑓 are the area moment of inertia and cross-sectional area of the stiff fiber, 

respectively; 𝜀 is the applied axial strain. 𝑢(𝑧) = 𝐴cos(𝑘𝑧) is the buckling mode with 

𝐴  and 𝑘 = 2𝜋 𝑙⁄  being the amplitude and wavenumber, respectively; 𝑙  is the 

wavelength and 𝐾 is the effective stiffness of soft matrix, which can be expressed as 

[127] 

𝐾 =
16𝜋𝐺𝑚(1−𝜈𝑚)

2(3−4𝜈𝑚)𝐾0(𝑘𝑟)+𝐾1(𝑘𝑟)𝑘𝑟
,                                          (20) 

where 𝐾0 and 𝐾1 are the modified Bessel functions of the second kind. 

Substituting 𝑢(𝑧) and Eq. (20) into Eq. (19) yields 

𝜀 =
(𝑘̃)2

4
+

1

𝐸𝑓(𝑘̃)2
16𝐺𝑚(1−𝜈𝑚)

2(3−4𝜈𝑚)𝐾0(𝑘̃)+𝐾1(𝑘̃)𝑘̃
,                                    (21) 

where 𝑘̃ = 𝑘𝑟 is the normalized wavenumber. The critical strain 𝜀𝑐𝑟 corresponding to 

the onset of buckling can be obtained by minimizing Eq. (21) with respect to 𝑘̃; thus, 

the critical normalized wavenumber 𝑘̃𝑐𝑟  depends on the material property of the 

system only. It also indicates that the critical wavelength has a linear dependence on 

stiff fiber diameter. This observation agrees well with our experimental results (see 

Figure 16). 

Assuming the soft matrix to be incompressible (𝜈𝑚 =0.5), Eq. (20) can be 

approximated (see Appendix A for details) as 

𝐾 =
4𝜋𝐺𝑚

−ln⁡(
𝑒
𝛾−

1
2

2
𝑘̃)

,                                                       (22) 
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where ⁡𝛾=0.577 is the Euler’s constant. We note that the form of Eq. (22) is consistent 

with the simplified stiffness for incompressible materials obtained by Zhao et al.[121], 

Brangwynne et al.[113], and Su et al.[128]. However, the coefficient under the 

logarithm in the denominator is different. We note that the difference is due to the fact 

that we account for the second term (i.e. 𝐾1(𝑘̃)𝑘̃) in the denominator; this allows us to 

obtain a more accurate agreement with the exact value of the effective stiffness term 

for a wider range of shear modulus contrasts. The different approaches for the 

approximation of Eq. (20) are discussed in Appendix A. 

Then, substitution of Eq. (22) into Eq. (21) yields 

𝜀 =
(𝑘̃)2

4
+

1

𝐸𝑓(𝑘̃)2
4𝐺𝑚

−ln⁡(
𝑒
𝛾−

1
2

2
𝑘̃)

.                                               (23) 

By minimizing Eq. (23) with respect to 𝑘̃, the critical wavenumber can be expressed 

as  

𝑘̃𝑐𝑟 = (
4𝐺𝑚

(1+𝜈𝑓)𝐺𝑓
)
1/4

[
 
 
 
 1+2ln⁡(

𝑒
𝛾−

1
2

2
𝑘̃𝑐𝑟)

−ln2(
𝑒
𝛾−

1
2

2
𝑘̃𝑐𝑟)

]
 
 
 
 
1/4

,                                (24) 

since the right-hand side of Eq. (24) changes very slowly with 𝑘̃𝑐𝑟, Eq. (24) can be 

approximated as 

log(𝑘̃𝑐𝑟) = −0.265 log (
𝐺𝑓

𝐺𝑚
) + 0.265 log (

4

1+𝜈𝑓
).                          (25) 
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Figure 17. Normalized critical wavenumber 𝑘̃𝑐𝑟  as a function of shear modulus contrast 

𝐺𝑓 𝐺𝑚⁄ . 

Figure 17 shows the dependence of the normalized critical wavenumber on shear 

modulus contrast. We observe that the approximate expression given by Eq. (25) 

agrees well with the numerical solution of Eq. (19) (compare the dashed red line with 

the continuous black line in Figure 17), and the theoretical prediction for critical 

wavenumber shows good accordance with the experimental observations in a wide 

range of shear modulus contrast. We note that an increase in Poisson’s ratio of the stiff 

fiber material leads to a slight increase in the normalized critical wavenumber 

(compare the dashed blue line with the dashed red line in Figure 17). 

In addition, we perform the standard linear buckling analysis through the finite 

element numerical procedure implemented in COMSOL 5.2a; thus, we obtain 
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numerically the dependence of normalized critical wavenumber on shear modulus 

contrast3. Figure 17 presents a comparison of the critical wavenumbers obtained by 

numerical simulations and theoretical analysis (compare the black circular points with 

black continuous curve), which additionally demonstrates that the obtained Eq. (25) 

provides an accurate prediction for the critical wavelength of a stiff fiber embedded in 

a soft matrix within a wide range of shear modulus contrast (102 < 𝐺𝑓 𝐺𝑚⁄ < 108). 

3.3.2 Buckling of composites with periodically distributed fibers 

Next, we investigate the instability induced pattern formations in composites with 

fibers periodically distributed in soft matrix. In particular, we study (a) symmetric case 

of square arrangement of periodically distributed fibers, and (b) case of rectangular 

arrangements of periodically distributed fibers. We present the experimental results 

for onset of instabilities in the periodic 3D-printed fiber composites and compare them 

with the numerical results. In order to numerically identify onset of instabilities and 

corresponding critical wavelengths, we employ Bloch-Floquet analysis, which is 

implemented by means of finite element code COMSOL. In the numerical analysis, 

we consider TP (soft matrix material) and DM (stiff fiber material) as nearly 

incompressible neo-Hookean materials (𝛬 𝐺⁄ = 1000 , where 𝛬  is the first Lame 

constant) with shear modulus contrast 𝐺𝑓 𝐺𝑚⁄ = 1000. First, we apply macroscopic 

                                                      
3 In the numerical model, the soft matrix and stiff fiber are considered as linear elastic material; the geometry of 

the numerical model is considered as square brick. Considering the computational cost and accuracy, the height of 

the model is set as 𝐻 = 10𝑙𝑐𝑟 (𝑙𝑐𝑟 is estimated by Formula (25))); we note, however, that the choice of the height 

H in the numerical model may affect the critical wavelength. The side length of the square cross section of the 

model is set as 𝑊 = 150𝑟 to diminish the effect of the finite size of the sample on critical wavelength. 
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deformation by using the periodic displacement boundary conditions imposed on the 

faces of the unit cell. Once the deformed state is obtained, Bloch-Floquet conditions 

are imposed on the faces of the unit cell via 𝐮(𝐗 + 𝐑) = 𝐮(𝐗)𝑒−𝑖𝐊⋅𝐑, where 𝐗 and 𝐮 

denote the position vector and displacement vector, respectively; 𝐊 and 𝐑 denote the 

Bloch wave vector and spatial periodicity in the reference configuration. The 

corresponding eigenvalue problem with the Bloch-Floquet boundary conditions is 

solved numerically until a non-trivial zero eigenvalue is detected at a certain 

deformation level. The corresponding compressive strain and wavenumber are 

identified as the critical strain 𝜀𝑐𝑟 and critical wavenumber 𝑘𝑐𝑟 , respectively. For more 

detailed and illustrative description of the numerical instabilities analysis readers are 

referred to Slesarenko and Rudykh [37]. Note that we distinguish the microscopic and 

macroscopic (or long wave) instabilities. The microscopic instabilities are associated 

with onset of instabilities at a finite critical wavelength (𝑙𝑐𝑟 = 2π/𝑘𝑐𝑟, or non-zero 

critical wavenumber 𝑘𝑐𝑟,). The macroscopic (or long wave) instabilities are associated 

with the specific case of 𝑘𝑐𝑟 →0, when critical wavelength significantly exceeds the 

microstructure characteristic size. In this case the onset of macroscopic instabilities 

can be determined by evaluating the effective tensor of elastic moduli and applying 

the loss of ellipticity condition [26]. 

Case A. Square arrangement of periodically distributed fibers 

Figure 18 illustrates the development of instability induced wavy patterns (a) and 

the dependence of critical wavenumber on stiff fiber volume fraction (b) for periodic 

fiber composite with square arrangement. The representative volume element is shown 
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in the inset of Figure 18. We observe that the composites with stiff fiber volume 

fractions 𝑐𝑓=0.01 and 0.015 develop wavy patterns at smaller length scales (typically 

attributed to microscopic instabilities), while the composite with 𝑐𝑓=0.025 buckles in 

long wave mode (macroscopic instability). The periodic composite with 𝑐𝑓=0.02 can 

be arguably assigned to be at the transition zone between the composites that develop 

microscopic and macroscopic instabilities. Thus, we experimentally observe the 

transition of the instability induced patterns from small wavelength wavy pattern to 

long wave mode, as the fiber volume fraction increases. For completeness, we show 

the dependence of the critical wavenumber on stiff fiber volume fraction obtained 

through the Bloch-Floquet numerical analysis superimposed on the deformed state in 

Figure 18. Here and thereafter, the hollow and solid symbols correspond to the 

microscopic and macroscopic instabilities, respectively. The circles and triangles 

denote the numerical and experimental results for periodic fiber composite, 

respectively; the dashed blue line corresponds to the theoretical result of single fiber 

composite obtained by Eq. (25). We observe a remarkable agreement of the 

experimental observations and numerical simulation results. Both experimental 

observations and numerical simulations show that the critical wavenumber decreases 

with an increase in stiff fiber volume fraction. When the stiff fiber volume fraction 

exceeds a certain threshold value (𝑐𝑓 ≈0.02 for 𝐺𝑓 𝐺𝑚⁄ = 1000), the fiber composites 

start developing instabilities in the long wave mode upon achieving the critical level 

of compressive deformation. The interactions between stiff fibers weaken with a 

decrease in stiff fiber volume fraction, therefore, we observe that the critical 

wavenumber of periodic fiber composite in the dilute limit attains the value 



 

62 
 

corresponding to single fiber system (compare the circular points with dashed blue line 

in Figure 16(b)). 

 

Figure 18. Development of wavy patterns in fiber composites with square arrangement (a); 

dependence of critical wavenumber on fiber volume fraction (b). The dotted horizontal line in 

(b) corresponds to the single fiber analytical result (Eq. (25)). 

 

Figure 19. Experimental stress-strain curves for fiber composites with square arrangement (a), 

and dependence of the critical strain on fiber volume fraction (b). The dotted horizontal line 

in (b) corresponds to the single fiber analytical result (Eq. (23)). 
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Figure 19 shows the experimental stress-strain curves (a), and the dependence of 

the critical strain (b) for periodic fiber composites with square arrangement. As 

expected, the stress-strain curves (see Figure 19(a)), show that the fiber composites 

exhibit softening upon achieving the critical strain at which the stiff fibers buckle into 

wavy patterns. The critical strain is observed to decrease with an increase in stiff fiber 

volume fraction as shown in Figure 19(b). Similar to the observation for critical 

wavenumber, the critical strain for periodic fiber composites at low stiff fiber volume 

fraction approaches the critical strain of single fiber system (denoted by the horizontal 

dotted line in Figure 17(b)). 

Case B. Square arrangement of periodically distributed fibers 

Next, we investigate the influence of fiber arrangements on the buckling behavior 

of the periodic fiber composites. In particular, we consider fiber composite with 

rectangular periodic unit cell. The representative volume element, characterized by 

aspect ratio 𝜂 = 𝑏/𝑎, is shown in the inset of Figure 20. Note that while the aspect 

ratio is varied, the fiber volume fraction is kept fixed at the value 𝑐𝑓=0.01. In our 

experiments, the fiber diameter was identical for all composite specimens with 

different aspect ratios; we also kept fixed the dimensions of the considered specimens 

and the number of stiff fiber. The development of the wavy pattern in fiber composites 

with rectangle arrangement is shown in Figure 20 (a). Similarly to the previously 

discussed case of periodic square arrangements, the periodic composites with 

rectangular arrangements of periodic fibers develop wavy patterns, and the amplitude 

of the wavy pattern significantly increases with an increase in compressive load. 
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However, a change in the periodicity aspect ratio leads to certain cooperative buckling 

behavior of the fibers such that the wavy patterns develop in the direction, where fibers 

are close to each other (see the cases for 𝜂=4, 9 in Figure 20(a)). Figure 20(b) presents 

the dependence of critical wavenumbers on aspect ratio. We find that experimental and 

numerical results show good accordance, especially in the range of high aspect ratio. 

We also observe that the critical wavenumber decreases with an increase in aspect ratio, 

and this effect is more significant in the range of small aspect ratio. 

 

Figure 20. Development of wavy patterns in fiber composites with rectangle arrangement (a); 

dependence of critical wavenumber on the periodicity aspect ratio (b). 

Figure 21 presents the experimental stress-strain curves (a), and the dependence 

of critical strain (b) for periodic fiber composites with rectangle arrangement. Similar 

to the observation for fiber composite with square arrangement, we observe that the 

buckling of the stiff fiber decreases the load capacity of fiber composite (see Figure 

21(a)). In the stable regime, the stiffness of the composites with different periodicity 

aspect ratios is nearly identical. However, the onset of buckling and the postbuckling 
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behavior changes significantly with a change in the periodicity aspect ratio. Figure 

21(b) shows the dependence of the critical strain on aspect ratio. We observe that the 

critical strain decreases with an increase in aspect ratio; thus, the composites with 

higher aspect ratio require lower levels of compressive deformation to trigger buckling. 

 

Figure 21. Experimental stress – strain curves for fiber composites with rectangle arrangement 

(a), and dependence of the critical strain on the periodicity aspect ratio (b). 

3.4 Summary 

We have examined the elastic buckling of single stiff fiber and periodically 

distributed stiff fiber embedded in a soft matrix subjected to axial compressive loads. 

First, we experimentally observed the buckling process of a single fiber embedded in 

soft matrix. We have found that the critical wavelength and the amplitude of the wavy 

pattern increase with an increase in fiber diameter, and the critical wavelength has a 

linear dependence on the stiff fiber diameter. Then, based on the Winker foundation 

model, we derived an explicit expression to predict the buckling wavelength, and 

further verified the derived expression in a wide range of shear modulus contrast by 

comparing to experimental data and numerical simulations. 
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Next, we investigated the elastic buckling of composites with periodically 

distributed fibers. We experimentally observed the transition of the instability induced 

patterns from small wavelength wavy pattern to long wave mode, along with the 

increase of fiber volume fraction. For fiber composites with periodic square 

arrangement, both experimental and numerical results have shown that the critical 

wavenumber and critical strain decrease with an increase in fiber volume fraction. For 

fiber composites with rectangular arrangements, we have observed that the stiff fibers 

develop a cooperative buckle mode in the direction, where the fibers are close to each 

other; and an increase in aspect ratio leads to a significant decrease in critical 

wavenumber and critical strain. Thus, various out-of-plane postbuckling wavy patterns 

can be tailored through the design of in-plane fiber arrangements. These findings may 

be used in the design of reconfigurable functional materials, potentially extending the 

ideas to electro- [135,136] and magnetoactive [137–140] composite materials, and 

tunable acoustic metamaterials [65,68,98], and other bistable and 4D-printed 

functional materials [141–143]. 
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Chapter 4 

Domain formations and pattern transitions via instabilities 

in soft particulate composites 

Experimental observations of domain formations and pattern transitions in soft 

particulate composites under large deformations are investigated. The system of stiff 

inclusions periodically distributed in soft elastomeric matrix experiences dramatic 

microstructure changes upon the development of elastic instabilities. In the 

experiments, the formation of microstructures with antisymmetric domains and their 

geometrically tailored evolution into a variety of patterns of cooperative particle 

rearrangements are observed. Through experimental and numerical analyses, it is 

shown that these patterns can be tailored by tuning the initial microstructural 

periodicity and concentration of the inclusions. Thus, these fully determined new 

patterns can be achieved by fine tuning of the initial microstructure. 

  

                                                      
 Based on the published paper: Li J, Pallicity TD, Slesarenko V, Goshkoderia A, Rudykh S. Domain Formations 

and Pattern Transitions via Instabilities in Soft Heterogeneous Materials. Adv Mater 2019;31:1807309. 
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4.1 Introduction 

Soft materials can develop large deformations in response to various external 

stimuli, such as mechanical loading [1], electrical [2,144] and magnetic fields 

[3,145,146], heat [4,143], and light [5,147], thus providing rich opportunities for the 

design of responsive and reconfigurable functional materials with novel and unusual 

properties [72,148,149]. Moreover, the performance of soft materials can be further 

empowered via the instability phenomenon giving rise to dramatic structural changes 

[18]. This approach enables diverse applications including flexible electronics [7,150–

153], optical [154] and acoustic [62,155,156] switches, auxetic materials [14], surface 

pattern control [157], and soft robotics [9,158]. The instability-induced microstructure 

transformations discovered in the soft system with periodic voids [39,71] have led to 

the development of programmable mechanical metamaterials [48,49], switchable 

auxetic materials [19,45,46,159], color displayers [160], wave absorbers [6,20,68,69], 

and actuators [21]. To predict the onset of elastic instabilities and associated 

microstructure transformations in soft materials, the nonlinear elasticity framework of 

small perturbations superimposed on large deformations is employed [70]. Based on 

the homogenized material response, macroscopic instability or so-called long wave 

instability can be predicted [30,31]. The macroscopic instability corresponds to a 

special limit in the Bloch-Floquet analysis [23,26] that allows detecting the onset of 

instability and corresponding mode at different wavelengths. This approach has been 

successfully used to theoretically predict instability-induced microstructure 

transformations in various soft systems that have been realized in experiments 
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[19,39,45,46,159]. Furthermore, recent development in advanced material fabrication 

techniques, such as 3D printing [161], interference lithography [43], allows the 

realization of pre-designed soft microstructures at various length-scales, and extending 

applications of these intrinsic pattern transformations in reconfigurable materials. 

Here we report our experimental observations of the formation of anti-symmetric 

domain, and its geometrically tailored evolution into a variety of patterns with 

cooperative particle rearrangements in soft composites under large deformations. We 

study the system of stiff inclusions periodically distributed in a soft elastomeric matrix 

experiencing dramatic microstructure transformations upon the development of elastic 

instabilities. We experimentally realize the instability-induced modes of 

transformative microstructures from domain formations to cooperative new patterns 

of particles rearranged in wavy chains, depending on the initial microstructural 

periodicity and concentration of the inclusions. The numerical Bloch-Floquet 

instability analysis is employed to investigate the effect of geometrical parameters and 

material compositions on the composite buckling behaviors giving rise to the 

formations of various patterns. 

4.2 Experiments and simulations 

Soft composite samples with stiff circular inclusions periodically distributed in a 

soft elastomeric matrix were fabricated with an Object Connex 260-3 3D printer. A 

schematic illustration of the composite microstructure is shown in Figure 22(a). The 

geometric parameters are defined through periodicity aspect ratio 𝜂 = 𝑤 ℎ⁄ , and 

inclusion spacing ratio 𝜉 = 𝑑 ℎ⁄ ; where 𝑤 and ℎ denote the unit cell width and height, 
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respectively; 𝑑  is the diameter of the inclusions. The soft matrix was printed in 

TangoBlack Plus resin (shear modulus 𝜇𝑚 =⁡0.2 MPa), the stiff circular inclusions 

were printed in VeroWhite resin (shear modulus 𝜇𝑖 =⁡600 MPa). We first examine the 

behavior of the soft composites with large spacing ratio and small periodicity aspect 

ratio, where the domain formations or long wave modes are predicted. In particular, 

the specimens with ⁡𝜉 = 0.8, 𝜂 = 1.5; 𝜉 = 0.8, 𝜂 = 1.0; and 𝜉 = 0.9, 𝜂 = 1.5 were 

tested experimentally. Next, the effect of periodicity aspect ratio and the inclusion 

spacing ratio on the composite behaviors was experimentally investigated separately. 

Two series of specimens were fabricated: (A) the composites with fixed spacing ratio 

𝜉 = 0.8, and varying periodicity aspect ratio 𝜂 =1.5, 4, 8, 24 and (B) the composites 

with fixed aspect ratio 𝜂 = 3, and inclusion spacing ratio 𝜉 = 0.7, 0.8, 0.9, 0.95. The 

in-plane dimensions of the specimens were 60⁡×⁡90 mm (width⁡×⁡height), and the out-

plane thickness of the specimens was 𝑡 =⁡5 mm. The unit cell height (defined in Figure 

22(a)) for all specimens was fixed as ℎ = ⁡2.5 mm. To diminish the influence of 

boundary effects on buckling behaviors of the composites, all specimens were printed 

with a TangoBlack Plus resin boundary layer of 25-mm width. 

The uniaxial compression tests were performed using a Shimadzu EZ-LX testing 

machine. The deformation in the thickness direction was prevented by placing the 

specimens in a transparent parallel fixture to maintain the plane strain conditions. The 

specimens were compressed in Y direction at a constant velocity of 1 mm/minute. 

During the test, the compression force and displacement were recorded by the data 

acquisition system; the deformation processes were captured by the high-resolution 

charge-coupled device (CCD) camera. Multiple samples with identical material 
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properties and geometries were printed and tested to ensure that the observed 

phenomenon is independent of the individual tests. 

Simulations are performed by means of the finite element code (COMSOL 5.2a). 

The soft matrix and stiff inclusions are modeled as nearly incompressible neo-

Hookean materials. The plane-strain conditions are imposed in the simulations. To 

detect the onset of instabilities in the periodic particulate soft composite and the 

associated critical strain 𝜀𝑐𝑟  and critical wavenumber 𝑘𝑐𝑟 , we conduct the Bloch-

Floquet analysis superimposed on the deformed state [37,68]. The primitive unit cell 

(as shown in Figure 22(a)) is constructed, and the corresponding displacement 

boundary conditions are imposed on the unit cell edges. The analysis is performed in 

two steps: (1) first, we apply the averaged macroscopic deformation through imposing 

the corresponding periodic displacement boundary conditions on the unit cell edges to 

obtain the deformed state; (2) we superimpose the Bloch-Floquet boundary conditions 

on the unit cell edges, and solve the corresponding eigenvalue problem for a range of 

wavenumbers. These steps are repeated until a non-trivial zero eigenvalue is detected 

at a certain applied deformation level. Then, the corresponding critical strain and 

wavenumber are identified. Note that the macroscopic instabilities are detected when 

𝑘𝑐𝑟 → 0⁡[26]. A more detailed description of the simulations can be found in Appendix 

B. 

4.3 Results and discussion 

First, we examine the behavior of the soft composite configurations giving rise to 

domain formations; these microstructural configurations correspond to the soft 
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composites with large particle spacing ratio and small periodicity aspect ratio. Figure 

22(c-e) shows the instability-induced patterns in soft composites with 𝜉 = 0.8, 𝜂 =

1.5 (c); 𝜉 = 0.8, 𝜂 = 1.0 (d); 𝜉 = 0.9, 𝜂 = 1.5 (e) at applied strain levels 𝜀 = 0.15 

(c), 0.11 (d), 0.08 (e). Corresponding critical strains in the composites are 𝜀𝑐𝑟 = 0.088 

(c), 0.089 (d), 0.038 (e), respectively. Figure 22(c, d) shows that the composites with 

aspect ratio 𝜂 = 1.0 , 1.5 (with fixed particle spacing ratio 𝜉 = 0.8 ) form anti-

symmetric domains upon the development of instabilities. Interestingly, similar 

domains or twin patterns were also observed in different systems such as martensitic 

phase transformations [162,163], liquid crystals [164,165], nematic elastomers 

[166,167], stiff thin films bonded on a soft substrate [168–170]. The observed domains 

(marked by the dashed green lines) consist of approximately five unit cells; the 

particles within the domain align in straight lines with the orientations (or directors) 

marked by red arrows. The domain orientation changes with the applied deformation 

as illustrated in Figure 22(b) showing the experimentally observed domain orientation 

evolutions. Prior to the onset of instability, the inclusions are aligned in the vertical 

straight lines corresponding to the zero domain orientation angle. When the applied 

deformation exceeds the critical strain, the domains start forming, and the orientation 

angle rapidly increases with an increase in compressive strain. Finally, we note that 

the increase in particle spacing ratio leads to the transformation of the instability-

induced pattern into cooperative particle rearrangements as wavy chains (see Figure 

22(e)) for the soft composite with 𝜂 = 1.5 , 𝜉 = 0.9). The period of wavy chains 

consists of approximately 20 inclusions. 
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Figure 22. (a) Schematic composite microstructure with stiff circular inclusions periodically 

distributed in a soft matrix, the primitive unit cell is highlighted in light navy color. (b) The 

dependence of domain orientation angle on the applied strain. Experimental images of 

instability-induced domain formations (c, d), and periodic wavy particle chains (e); the results 

are given for the composites with 𝜉 = 0.8 , 𝜂 = 1.5  (c), 𝜉 = 0.8 , 𝜂 = 1.0  (d), ⁡𝜉 = 0.9 , 𝜂 =

1.5 (e) at strains 𝜀 = 0.15 (c), 0.11 (d), 0.08 (e). 
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Figure 23. Deformation sequences of the composites with varying periodicity aspect ratios 

loaded at different deformation levels. The inclusion spacing ratio is fixed as 𝜉 = 0.8. 

To identify the key parameters dictating the instability-induced pattern evolutions, 

we analyze the soft composite behaviors with varying initial microstructure 

geometrical parameters. First, we examine the role of the periodicity aspect ratio on 

the soft composite behavior, while keeping the inclusion spacing ratio fixed. Figure 23 

shows the deformation sequences of the composites with various periodicity aspect 



 

75 
 

ratios at different deformation levels. The results are given for the composites with 

periodicity aspect ratio 𝜂 = 1.5, 4, 8, 24 (from the left to the right columns); the 

inclusion spacing ratio is fixed 𝜉 = 0.8. We observe that the composite microstructure 

experiences a rapid change upon exceeding the critical strain. For the composite with 

relatively small periodicity ratio 𝜂 = 1.5  (see Figure 23(a)), we observe that the 

development of instability results in the stiff inclusions rearranged into anti-symmetric 

domains, similar to the one shown in Figure 22(d). We find that the director orientation 

(denoted by red arrows in Figure 22(c, d)) of each domain rotates with further increase 

in applied deformation. The composites with 𝜂 = 4, 8, 24, develop different patterns 

of periodic wavy chains of particles upon instabilities (see Figure 23(b-d)). Thus, the 

instability induced patterns exhibit a transition from the domain formations to the 

appearance of wavy patterns. Moreover, we find that the length of the formed wavy 

chain patterns decreases with the increase in periodicity aspect ratio; for example, the 

period of wavy chain for the composite with 𝜂 = 4 consists of approximately eight 

inclusions, while the composite with 𝜂 = 8 forms a period with approximately five 

inclusions. Furthermore, we note that the evolution of the instability-induced pattern 

transformations for the composites with 𝜂 =8, 24 is almost identical (compare Figure 

23(c, d)). This is due to the fact that the interactions between the columns of stiff 

inclusions become weak in composites with large periodicity aspect ratio, and the post-

buckling behavior of such composites approaches the one corresponding to a single 

column of particle system (see Figure 23(d)). 
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Figure 24. Buckled configurations in soft composites with various inclusion spacing ratios 𝜉 =

0.7, 0.8, 0.9, 0.95; and fixed periodicity aspect ratio 𝜂 = 3. The results are given at strain 

levels 𝜀 = 0.17 (a), 0.15 (b), 0.06 (c), and 0.04 (d). 

Next, we illustrate the role of the inclusion spacing ratio in the soft composite 

behavior. Figure 24 presents the instability-induced patterns in the composites with 

various inclusion spacing ratios 𝜉 = 0.7  (a), 0.8 (b), 0.9 (c), 0.95 (d), and fixed 

periodicity aspect ratio 𝜂 = 3. The results are shown for the composites with applied 

strain levels: 𝜀 = 0.17  (a), 0.15 (b), 0.06 (c), and 0.04 (d). We observe that all 

composites develop wavy-like patterns, and the length of the wavy-like pattern 

increases with the increase in inclusion spacing ratio. The wave length of the 

instability-induced pattern in the composite with 𝜉 = 0.95 is significantly larger than 

the characteristic size of its unit cell, similar to the one shown in Figure 22(e)); these 

patterns can be attributed to the transition to the macroscopic or long wave mode. 

Remarkably, these pattern transformations are fully reversible, since the composites 

restore their initial states after removing the applied load. 
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Figure 25. Experimental stress-strain curves for the composites with various spacing ratios (a) 

and various periodicity aspect ratios (b). 

The experimental stress-strain curves for the composites with various spacing 

ratios (a) and various periodicity ratios (b) are shown in Figure 25. Prior to the onset 

of instability, the composites with larger spacing ratio and/or smaller aspect ratio 

possess stronger reinforcement and exhibit stiffer responses. When the critical 

deformation level is achieved, the softening behavior is observed due to the instability-

induced microstructure transformations; the softening effect weakens for the 

composites with smaller spacing ratio and/or larger periodicity aspect ratio. In 

particular, for the composite with 𝜉 = 0.7, 𝜂 = 3, only slight softening is observed at 

𝜀 =0.152; and for the composite with single column of inclusions (i.e., 𝜂 = 24), the 

softening behavior is barely detectable, though the instability can be readily identified 

from visual observation of the pattern change. Thus, the composite response can be 

described by two effective convex strain energy functions merged at the onset of 

instability, and it is characterized by the reduced effective stiffness in the postbuckling 

regime. 
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Figure 26. The dependence of critical strain (a) and critical wavenumber (b) on periodicity 

aspect ratio for the composites with various spacing ratios. The dotted curves and filled 

triangular symbols correspond to macroscopic instabilities, while continuous curves and 

hollow triangular symbols correspond to microscopic instabilities. 

Next, we summarize our numerical predictions together with experimental 

observations of the dependence of the critical strain (a) and critical wavenumber (b) as 

functions of periodicity aspect ratio for the composites with various inclusion spacing 

ratios in Figure 26. The dotted and continuous curves correspond to the numerically 

predicted macroscopic and microscopic instabilities, respectively. We use the hollow 

and filled triangles to denote the experimentally observed critical strains and 

wavelengths (wavenumbers) corresponding to the numerically detected microscopic 

and macroscopic instabilities, respectively. The experimental critical strain is 

measured as the deformation level at which the onset of material softening is detected. 
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We observe a qualitative agreement between the numerically predicted trends and 

experimental results. Interestingly, the domain formation is observed, when the 

numerical analysis detects the instability at a special limit of the so-called macroscopic 

instabilities (𝑘𝑐𝑟 →⁡0). The macroscopic instability analysis can only detect the onset 

of instabilities, however, it cannot provide the information on the characteristic 

wavelength of the instability-induced domains. We note, however, the interesting 

correspondence of the prediction of the macroscopic instabilities and the new domain 

formations observed in the experiments. We observe that both simulations and 

experiments indicate that the composites with higher inclusion spacing ratio are more 

prone to instabilities and buckle earlier (see Figure 26(a)). The critical strain 

dependence on the periodicity aspect ratio changes as the spacing ratio is increased. 

For the composite with small spacing ratio (for example, 𝜉 = 0.5), critical strains are 

found to increase with the increase in the periodicity aspect ratio. When the spacing 

ratio attains a certain value, the dependence changes and a minimum critical strain is 

observed at a certain value of periodicity aspect ratio, depending on the inclusion 

spacing ratio. For example, for the composites with 𝜉 = 0.9, the minimum critical 

strain (𝜀𝑐𝑟
min = 0.038) occurs at 𝜂 ≈⁡1.4. Moreover, we note that the experimental 

critical strains are observed to be lower than the numerical results. This may be due to 

various factors, such as the boundary effects for the finite-sized specimens tested in 

experiments, which are not considered in the numerical simulations for the infinite 

periodic composites [14,39,71]. 

Figure 26(b) shows the dependence of critical wavenumber on the periodicity 

aspect ratio for the soft composites with various fixed inclusion spacing ratios. Our 
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simulations predict that the composites with high spacing ratio and/or low periodicity 

aspect ratio develop macroscopic instability (namely, 𝑘𝑐𝑟 → 0 ); these cases 

correspond to the experimentally observed domain formations. Both experiments and 

simulations show that an increase in periodicity aspect ratio, or a decrease in inclusion 

spacing ratio can result in a transition from domain formations to the appearance of 

periodic wavy chains of particles. Moreover, both critical strain and critical 

wavenumber are found to be barely influenced by the change in the periodicity aspect 

ratio when it is large enough (𝜂 > 6 for the composites with inclusion spacing ratio 

𝜉 = 0.8); this agrees well with our experimental observations for the composites with 

𝜂 = 8 and 24, showing similar responses (compare Figure 23(c, d)). These numerical 

predictions, together with the experimental observations, indicate that the composites 

with more dense assemblies of the stiff particles tend to develop the twinning domains 

(upon onset of instabilities); apparently, these patterns are energetically favorable over 

the wavy patterns in these configurations. Once the distance between the columns of 

particles is increased, the composites start to exhibit laminate-like buckling behavior 

– with the effective stiffer layer formed from the column of stiff inclusions – 

developing the wavy patterns with various wavelengths. 



 

81 
 

 

Figure 27. The dependence of critical strain (a), and critical wavenumber (b) on inclusion-to-

matrix shear modulus contrast 𝜇𝑖 𝜇𝑚⁄ . The composite spacing ratio is fixed as 𝜉 = 0.8. Dotted 

and continuous curves correspond to macroscopic and microscopic instabilities, respectively. 

Finally, we numerically examine the influence of the material composition on the 

composite buckling behavior. Figure 27 presents the dependence of (a) critical strain, 

and (b) critical wavenumber on the inclusion-to-matrix shear modulus contrast 𝜇𝑖 𝜇𝑚⁄  

for the composites with periodicity aspect ratio 𝜂 = 2, 3, 4 and fixed spacing ratio 𝜉 =

0.8. We observe that the composites with higher shear modulus contrast buckle earlier 

(at lower strains); interestingly, an increase in the shear modulus contrast may result 

in the buckling mode switch from macroscopic instability to microscopic instability 

(see Figure 27(b)) depending on the initial microstructure parameters. For example, 

the switch of the buckling mode from macroscopic to microscopic instability occurs 

at 𝜇𝑖 𝜇𝑚⁄ ≈ 5.9⁡for the composite with periodicity aspect ratio 𝜂 = 3 , and initial 

spacing ratio⁡𝜉 = 0.8. In the range of low shear modulus contrasts, the inclusions are 

able to develop significant deformations, and change their shape resulting in strong 
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stabilization of the composite, and in significant changes in the buckling modes 

developing at large strains. 

4.4 Summary 

In conclusion, we have observed experimentally the formation of anti-symmetric 

domains, and the evolution of the instability-induced patterns into periodic wavy 

chains. These pre-determined patterns and transitions are dictated by the initial 

microstructure geometrical parameters; thus providing the means to tailor the 

transformative behavior of soft composites, and to pre-design a variety of switchable 

functions. The observed domain formation phenomenon in the soft composites can be 

used for designing materials with switchable functionalities drawn from different 

length scales. The material design can be further facilitated through numerical 

computations, as we have shown, the employed numerical method predicts the 

phenomenon, and can guide towards the desired functionalities achieved through 

tailored microstructures. We note, however, that the computationally macroscopic 

instability analysis alone is not enough, and it requires to be accompanied with the full 

microscopic analysis for the reliable predictions of the domain formations in soft 

composites. This approach can be combined with the energy convexity consideration 

along the loading path to identify the energetically preferable post-buckling 

configurations of the soft composites [171]. We note that the emergence of the 

domains happens in the composite configurations with dense population of the stiff 

inclusions. However, when the particle frustration is relaxed – as the distance between 

the columns of inclusions increases – the composites develop wavy patterns 
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resembling the buckling behavior in soft laminates with the effective stiff layer formed 

from stiff particle columns. Apparently, the domain patterns are energetically 

preferable over the wavy patterns in the composite configurations with dense 

concentration of the stiff inclusions; interestingly, the surface patterns observed in 

stiff-thin-film/soft-substrate systems show similar behaviors and transitions from 

twining patterns to wrinkles. Moreover, the formation of the domains in the soft 

composites is reminiscent of the structures emerging in different systems such as twin 

patterns in martensitic phase transformations, liquid crystals, and nematic elastomers. 

Our findings open new ways for developing the reconfigurable mechanical 

metamaterials that can find applications in a large variety of fields from acoustic 

metamaterials, actuators, and soft robotics to morphing devices remotely controlled by 

external fields for biomedical applications. Thus, for example, the observed switchable 

behavior can be potentially induced by electric [172] or magnetic [173] fields, or 

thermally [174], extending application of the phenomenon in a broad class of 

architected active materials. Furthermore, these controllable microstructure 

transformations can be potentially merged at different length scales with other material 

systems, such as laminates [175], periodic porous [39] and bistable structures [176] 

providing the opportunity for the design of new hierarchical materials that draw their 

functionalities from different wavelengths. 
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Chapter 5 

Instability-induced pattern transformations in multiphase 

soft composites 

We investigate the instability-induced pattern transformations in 3D-printed soft 

composites consisting of stiff inclusions and voids periodically distributed in a soft 

matrix. These soft auxetic composites are prone to elastic instabilities giving rise to 

negative Poisson’s ratio (NPR) behavior. Upon reaching the instability point, the 

composite microstructure rearranges into a new morphology attaining NPR regime. 

Remarkably, identical composites can morph into distinct patterns depending on the 

loading direction. These fully determined instability-induced distinct patterns are 

characterized by significantly different NPR behaviors, thus, giving rise to enhanced 

tunability of the composite properties. Finally, we illustrate a potential application of 

these reversible pattern transformations as tunable acoustic-elastic metamaterials 

capable of selectively filtering low frequency ranges controlled by deformation. 

  

                                                      
 Based on the published paper: Li J, Slesarenko V, Rudykh S. Auxetic multiphase soft composite material design 

through instabilities with application for acoustic metamaterials. Soft Matter 2018;14:6171–80. 
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5.1 Introduction 

Auxetic materials, also known as materials with negative Poisson’s ratio (NPR), 

are characterized by their unusual response to uniaxial strain. As opposite to 

conventional materials, they demonstrate lateral shrinkage while being compressed. 

This endows auxetic materials with many desirable properties, such as enhanced 

mechanical resistance [177,178], variable permeability [179,180], high energy 

absorption ability [181], synclastic behavior [182]. Due to these remarkable properties, 

auxetic materials can be potentially used in various applications, including protective 

devices [183], smart sensors [184] and filters [179,185], angioplasty stents [186], 

fasteners [187] and textiles [188]. Among them, perforated systems [189–191] are of 

particular interest thanks to relative simplicity and low cost of manufacturing; for 

example, various periodic patterns, ranging from diamonds [192] to stars [193] or slits 

[149,194,195], have been explored to design auxetic material. Meanwhile, there have 

been increasing interest in using elastic instability induced pattern transformations to 

design reconfigurable metamaterials that exhibit negative Poisson’s ratio behavior [46]. 

Bertoldi et al. [159] illustrated the NPR behavior in two-dimensional periodic 

porous structures with square arrays of circular voids in an elastomeric matrix. They 

found that the auxetic behavior arose from the dramatic changes in geometry due to 

the development of elastic instability. Overvelde et al. [45] considered the effect of 

pore shape on the mechanical response; Shim et al. [19] systematically investigated 

the role of circular hole arrangement on the post-buckling behavior of the periodic 

porous structures. Remarkably, these reversible pattern transformations have been 
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demonstrated to be instrumental to design tunable color displays [160,196], phononic 

[20,68,69] and photonic [154] switches. The design of the periodic elastomeric porous 

structures is based on various distribution of voids in a single phase matrix material. 

Furthermore, mechanical properties [197] and surface patterns [157] in stiff-soft two 

phase composites can be controlled by tailored stiff phase distributions. 

Here, we put forward a new design of soft auxetic composites incorporating stiff 

inclusions and voids periodically distributed in soft matrix. The rich design space of 

the material system provides the means to control the onset of instabilities and pattern 

formations through positioning of the stiff phase, while maintaining the ability to pre-

design collapse of voids. This combination of voids, soft and stiff phases gives rise to 

new admissible multiple pattern switches, and tunable and enhanced NPR behavior. 

Guided by our numerical simulations, we experimentally realize the instability-

induced pattern transformations and NPR behavior in 3D-printed multiphase soft 

auxetic composites. In addition, we illustrate a potential application of the reported 

pattern transformation phenomenon for design of acoustic soft metamaterials 

possessing tunable stop bands at low frequencies of elastic waves. 

5.2 Experiments and simulations 

The periodic composite specimens were fabricated by means of 3D printer Object 

Connex 260-3. The 3D printed samples were composed of stiff circular inclusions and 

voids periodically distributed in soft matrix as schematically shown in Figure 28. The 

radius of circular voids and stiff inclusions was 𝑟0 =⁡2 mm, and the initial matrix 

volume fraction was 𝑐(𝑚) =⁡0.3. The stiff inclusions were printed in Verowhite resin, 
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while the soft matrix was printed in digital material FLX9860, which is a mixture soft 

TangoBlackPlus (~ 85 wt%) and stiff Verowhite (~ 15 wt%) [198]. The out-of-plane 

thickness of both specimens was 𝑡 =⁡ 10 mm. Uniaxial compression tests were 

performed using Shimadzu EZ-LX testing machine (maximum load 2 kN). During the 

test, the specimens were placed in a transparent fixture to prevent out-of-plane 

deformation. The specimens were quasi-statically compressed at constant strain-rate 

of 2×10-4 s−1. Since the microstructure exhibits different mechanical responses in X- 

and Y-directions, two sets of experiments - compression in X-, and in Y- directions - 

were performed. The specimens that were loaded in X or Y material direction were 

composed of 8 × 11 or 10 × 9 unit cells, respectively. The deformation process was 

recorded by a high resolution digital camera. 

 

Figure 28. Schematic of the geometric arrangement of three phase (stiff inclusions, voids, soft 

matrix) periodic composites. 𝑎0 denotes the center-to-center distance between circular voids 

in the undeformed configuration. 

Numerical simulations are performed by means of the finite element code 

COMSOL 5.2a, in which the unit cell (see Figure 28) is constructed and corresponding 
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periodic displacement boundary conditions are imposed on the opposite sides of the 

unit cell. Note that here we consider a 2D-system, in particular, plane-strain conditions 

are used; similar conditions are maintained in the experimental setting. The matrix and 

inclusion materials are modeled as neo-Hookean materials with initial shear moduli 

𝜇(𝑚) = 0.60  MPa and 𝜇(𝑖) = 0.63  GPa, respectively. The onset of instability is 

identified by Bloch-Floquet analysis superimposed on the deformed state [68]; the 

analysis allows us to identify the critical strain and corresponding patterns that form 

upon achieving the critical level of deformation. This information is used in the post-

buckling numerical analysis, for which new unit cells are constructed to match the new 

instability-induced periodicity. In particular, enlarged unit cell consisting of 1 ⁡×⁡2 

primitive unit cells with small amplitude geometrical imperfections in the form of the 

buckling mode (obtained from Bloch-Floquet instability analysis) are numerically 

analyzed in the post-buckling regime. 

5.3 Results and discussion 

Figure 29 presents the evolution of the instability-induced pattern transformation 

when the composite is loaded in Y (a,b) or X (c,d) material directions at different strain 

levels from 0 to 20% (from left to right); rows (a, d) and (b, c) show the experimental 

and numerical results, respectively. We observe that when the critical compressive 

strain is reached, the material microstructure experiences rapid and dramatic changes, 

leading to the formation of the new patterns (see Figure 29(b, c) at 𝜀 =⁡0.05), which 

further evolve with an increase in applied strain. These observed changes in pattern 

transformation may be a result of a combination of the geometry changes and 
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inhomogeneous deformation of the nonlinear materials. In particular, we note that the 

pattern transformation results in significant rotation of the stiff inclusion accompanied 

by the corresponding local deformation of the matrix. Similar deformation mechanism 

has been utilized in design of functional metamaterials [159,190,192,196,199]. Note 

that, in agreement with the numerical instability analysis predictions, the periodicity 

of the new pattern doubles in Y-direction (regardless of the compression direction). 

Although the development of the instability-induced patterns for the composite loaded 

in X- or Y-direction is initially similar (see Figure 29(a, d) at 𝜀 =⁡0.05), their patterns 

are essentially distinct at larger strain levels (for details, see the visualization of the 

deformed configurations in Appendix C). The difference in the achieved distinct 

microstructures is dictated by the positions of the stiff inclusions relative to the loading 

direction. Thus, various stiff inclusion distributions give rise to an increased variety of 

admissible instability-triggered patterns. We note that the initial shape of the material 

microstructure can be fully recovered after unloading, demonstrating that these pattern 

transformations are fully reversible. Remarkably, the structure exhibits negative 

Poisson’s ratio (NPR) behavior upon developing the new instability-induced pattern; 

in particular, significant lateral contraction (in response to vertical contraction) are 

predicted numerically, and are observed experimentally (see Figure 29(b, c) at 𝜀 =⁡0.2) 

for both loading cases. 
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Figure 29. Numerical and experimental images of the structure loaded in Y-direction (a,b), in 

X-direction (c,d) at different macroscopic deformation levels. Scale bar: 20 mm. 

Figure 30 shows evolutions of stress (a) and Poisson’s ratio (c, d) as functions of 

the applied compressive strain for the composite structures loaded in X- and Y- 

material directions. Both experiments and simulations indicate that the stress-strain 

curves are strongly affected by elastic instabilities (see Figure 30(a)). In the stable 

regime, the stress-strain curves are almost linear, and the periodic composite exhibits 

different responses when loaded in X- and Y-direction. In particular, the effective 

moduli are 0.46 MPa (for X-material direction) and 0.64 MPa (for Y-direction). While 

the corresponding inclusion-matrix composite with hexagonal periodic unit cell 

exhibits similar in-plane responses for the corresponding X- and Y-loading directions 

[200]; the considered void-matrix-inclusion system possesses in-plane anisotropy as 

the microstructure differs in X- and Y- material directions. For completeness, we show 

the dependence of effective Young’s moduli of the composite loaded in X- and Y- 
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Figure 30. (a) Numerical and experimental stress-strain curves for the structure loaded in Y or 

X material directions. (b) Schematic composite area for Poisson’s ratio evaluation. (c) 

Poisson’s ratio 𝜈YX  as function of 𝜀X . (d) Poisson’s ratio 𝜈XY  as function of 𝜀Y . (e-f) 

Dependence of critical strain and Poisson’s ratio (at deformation level 𝜀 =0.2) on shear 

modulus contrast 𝜇(𝑖) 𝜇(𝑚)⁄ . 
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material directions on matrix volume fraction in Appendix D. The critical strain levels 

are 𝜀X
(𝑐𝑟)

≈ 0.028 for the composite loaded in X material direction; and 𝜀Y
(𝑐𝑟)

≈ 0.039 

for the composite loaded in Y material direction. The critical strain values are obtained 

numerically by the Bloch-Floquet analysis superimposed on the deformed state [68]. 

When the applied strain exceeds the critical level, significant softening of the structure 

is observed for both material loading directions. The numerical simulations predict 

earlier developments of instability patterns, as compared to the observed onset of 

instabilities in experiments. In addition, a drop in the stress level is observed (after the 

critical strain level) in experiments. This difference is due to the boundary effects of 

the tested samples; these effects are not included in the numerical simulations, in which 

infinite composites are examined through consideration of the periodic unit cell. 

Similar behaviors were also observed in buckling of porous structure [39,71]. In 

addition, the effect of friction between the fixtures and specimens may also contribute 

to the appearance of the local peak in the stress-strain curve. 

Remarkably, the onset of instability and the associated composite microstructure 

switches significantly affect the effective Poisson’s ratio (see Figure 30(c, d)). We 

observe that prior to instability, Poisson’s ratio is positive in the composite loaded 

either in X- or Y- material directions4. When the critical deformation is reached, the 

voids suddenly collapse inward leading to a rapid decrease in composite Poisson’s 

                                                      
4 In our experiments, Poisson’s ratio was measured by monitoring the central part of the composite samples (where 

the behavior is not significantly affected by the boundary effects from the sample edges) by means of a high 

resolution digital camera allowing to identify the position of stiff inclusion centroids. The corresponding monitored 

central regions of the samples are highlighted by red rectangles in Figure 30(b). The details of the evaluation of the 

Poisson’s ratio are described in the Appendix E. 
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ratio, which soon becomes negative. Further increase in compressive deformation 

results in a slow decrease in the Poisson’s ratio. The composite structure loaded in X 

or Y material directions exhibits a significant difference in the values of Poisson’s ratio; 

for example, 𝜐YX ≈⁡−0.2 or 𝜐XY ≈ ⁡−0.6 at 𝜀 =0.2, respectively. To highlight the 

significance of the stiff phase presence on the induced negative Poisson’s ratio 

behavior, we present our numerical results for the corresponding void-matrix system 

(without stiff inclusions), whose buckled patterns have been experimentally observed 

by Shan et al. [6,19]. The dependence of the Poisson’s ratio on deformation for the 

void-matrix system is denoted by dashed blue curves in Figure 30(c, d). We observe 

that the void-matrix system is characterized by positive Poisson’s ratio and NPR 

behavior is not observed until the deformation reaches the level of 𝜀 ≈⁡0.2 (for both 

cases that loaded in X- or Y-directions). This is in contrast to the NPR behavior in the 

composites that start showing negative values of Poisson’s ratio after only 𝜀 ≈⁡0.05. 

Thus, at larger strain levels the periodic composites show very significant NPR 

behavior as compared to the corresponding void-matrix system, for example, at⁡𝜀 =0.2, 

the composite shows 𝜐YX ≈⁡−0.2 or 𝜐XY ≈⁡−0.6, while the void-matrix system has 

positive value for⁡𝜐YX ≈ ⁡0.01, and only 𝜐XY ≈ ⁡−0.03. Furthermore, the stiff phase 

makes the composite prone to elastic instabilities at smaller strains; in particular the 

composite experiences instabilities at only 𝜀X
(𝑐𝑟)

≈ 0.028 or 𝜀Y
(𝑐𝑟)

≈ 0.039; while the 

void-matrix material requires 𝜀X
(𝑐𝑟)

≈ 0.120  or 𝜀Y
(𝑐𝑟)

≈ 0.078  to buckle. Thus, our 

results indicate that by introducing periodically distributed stiff phase into soft porous 

structures, new patterns can be induced upon instabilities; and these distinct patterns 

exhibit very different NPR behavior. 
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Next, we show an example of the dependence of critical strain and Poisson’s ratio 

on shear modulus contrast 𝜇(𝑖) 𝜇(𝑚)⁄  in Figure 30(e, f). The example of the Poisson’s 

ratio dependence is given for the deformation level  = 0.2. Through the simulations, 

we observe that the composites form the new periodicity with 1⁡×⁡2 primitive unit cells 

for the considered range of shear modulus contrasts, 𝜇(𝑖) 𝜇(𝑚)⁄  from 1 to 1000. The 

critical strain and Poisson’s ratio decrease with an increase in shear modulus contrast 

for both X- or Y- loading directions. Thus, composites with higher shear modulus 

contrasts are more prone to instabilities and show more pronounced NPR behaviors. 

Next, we explore a potential application of the reported reconfigurable material 

for tunable soft phononic crystal that can manipulate elastic wave propagation and 

filter specific frequency ranges, which, in turn, can be controlled by applied 

deformation. The Bloch wave analysis is performed at different deformation levels to 

obtain the corresponding dispersion curves [68]. The obtained dispersion relations (a, 

b) and the evolution of the stop bands for waves propagating in X- or Y-directions as 

functions of applied deformation (c-f) are shown in Figure 31. The reported frequency 

is normalized as 𝑓 = ⁡𝜔𝑎0/ (2𝜋√𝜇(𝑚) 𝜌0
(m)⁄ ) , where 𝜔  is angular frequency and 

𝜌0
(m)

 is the initial matrix density. We note that the initial density of the inclusions and 

matrix density is identical, namely, 𝜌0
(i)

= 𝜌0
(m)

. 

In addition, a frequency domain analysis is performed to obtain the transmittance 

spectra, 16 enlarged unit cells with periodic boundary conditions are considered in the 

numerical model. Shear wave (S wave) and pressure wave (P wave) are excited to 

evaluate the corresponding attenuation, which is calculated as ⁡𝛷 = 20log10 |
𝑢out

𝑢in
|, 
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where 𝑢in and 𝑢out refer to the average displacement for the input and output enlarged 

unit cell, respectively. 

 

Figure 31. (a-b) Dispersion relations and transmittance spectrum for elastic waves propagating 

in X direction in undeformed (a) and deformed (b) states. (c-f) Evolution of stop bands for 

waves propagating in X (c, d) or Y (e, f) direction as a function of applied strain in X (c, e) or 

Y (d, f) direction. The shaded grey areas and blue areas correspond to the band gap structure 

of the void-inclusion-matrix composite and void-matrix system, respectively. The dotted 

curves and the dashed curves correspond to the critical strain of the composite and void-matrix 

system, respectively. 
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Figure 31(a, b) show the dispersion relations and corresponding transmittance 

spectrum in the undeformed and deformed (𝜀x = 0.1) states. Here, we show the results 

for elastic waves propagating in X direction at low frequency range 𝑓 ≤ 0.3. In the 

undeformed state, the periodic structure possesses the first band gap (i.e. the frequency 

ranges where neither pressure nor shear waves can propagate) at lower boundary 𝑓 =

0.246 with the width ∆𝑓 = 0.016. With applied strain 𝜀x = 0.1, the band gap shifts 

the lower boundary towards 𝑓 = 0.224, and widens up to ∆𝑓 = 0.045. Moreover, in 

the deformed state, a new band gap – that does not exist in undeformed state – opens 

at a lower frequency range 𝑓 = 0.150 − 0.170 . Furthermore, the transmittance 

spectra shown in Figure 31(a, b) demonstrate significant attenuation at the 

corresponding bang gap frequency ranges for both shear and pressure waves. 

Next, we show the evolution of the band gaps (denoted by shaded grey areas) for 

elastic wave propagating in X- or Y- directions as a function of applied strain in X or 

Y material directions in Figure 31(c-f). We observe that the widths and locations of 

the band gaps are significantly influenced by applied deformation, and new band gaps 

open upon reaching the instability point and pattern transformations. In the stable 

regime, for elastic wave propagating in X-direction, the prohibited frequency range is 

narrowed and shifted towards lower frequencies with an increase in strain applied in 

X-direction; while the applied strain in Y-direction expands the band gap width and 

shifts it towards higher frequencies. In the post-buckling regime, the width of the band 

gap increases significantly. Moreover, new band gaps are opened at low frequencies. 

For elastic waves propagating in Y-direction, there is no band gap in the undeformed 

state (in the considered frequency range 𝑓 ≤ 0.3). However, the instability induced 
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new patterns give rise to formation of new band gaps. For example, at the applied 

strain 𝜀 = 0.2, the structure loaded in X-direction possesses two band gaps at 𝑓 =

0.081 − 0.096 and ⁡⁡0.151 − 0.232 frequency ranges, whereas the structure loaded in 

Y-direction possesses five band gaps at 𝑓 = 0.048 − 0.062; ⁡⁡0.074 − 0.076 ; 

0.139 − 0.178; ⁡0.223 − 0.224; and 0.249 − 0.292. These results indicate that the 

reported instability-induced pattern transformations in multiphase composites hold 

significant potential for applications as switchable acoustic metamaterials. 

For comparison, we present the evolution of the band gaps (denoted by shaded 

blue areas) in void-matrix system (corresponding to the considered composite with the 

stiff inclusions replaced by voids) in Figure 31(c-f). The corresponding matrix volume 

fraction is identical to that of void-matrix-inclusion system, namely, 𝑐(𝑚) =0.3. In the 

void-matrix system, the instability induced pattern also opens the band gaps; however, 

the widths of band gaps are significantly narrowed, and their locations are at higher 

frequency ranges as compared to the composite (compare the shaded blue and grey 

areas in Figure 31(c-f)). In addition, we provide an example with the following 

material parameters: matrix volume fraction 𝑐(𝑚) =0.3, 𝑎0 =10 mm, 𝜇(𝑚) = 0.6 MPa, 

𝜌0
(m)

=103 kg/m3; and, for the composite with stiff inclusions, we consider⁡𝜇(𝑖) =

630⁡MPa  and 𝜌0
(i)

= 𝜌0
(m)

. When elastic waves propagate in the undeformed 

composite in Y direction, there is no band gap in the frequency range 0-600 Hz for 

both composites. However, at applied deformation level of 𝜀x = 0.2, the void-matrix 

material opens a band gap at frequency range 499.2−545.0 Hz, whereas the composite 

with stiff inclusions exhibits more remarkable band gaps at lower frequency ranges, 
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namely, at 198.7−234.1 Hz and 370.1−568.8 Hz. This is remarkable because it is 

usually challenging to open band gaps at low frequency ranges. 

We note that many soft materials are rate dependent, and this aspect is not 

included in the simulations. Therefore, the numerical predictions of the band gap are 

more applicable for composites made out of phases with low damping; otherwise, 

these effects may shift the edges of band gaps and affect the corresponding 

attenuations [201,202]. We note that the computational predictions of the band gaps in 

the soft single phase porous system have been experimentally demonstrated through 

the observed capability of significant wave attenuation in the frequency ranges 

controlled by deformation [6]. In addition, the examined composite exhibits significant 

NPR behavior and opens low frequency band gaps after the deformation exceeds the 

critical level; although effective Poisson’s ratio would manifest in a lower initial slope 

(corresponding to long waves) of the longitudinal or pressure wave branch in 

dispersion curves, the observed effective NPR may not be directly related to the 

formation of the band gaps. 

Moreover, we note that the performance of the system can be potentially 

optimized through a selective choice of distribution, volume fractions, and shapes of 

stiff inclusion and voids, to give rise to a specific property, such as enhanced NPR 

behavior; the effect of material properties, such as shear modulus and density contrasts, 

viscoelasticity, on the material performance and wave propagation properties can be 

also considered in the future work. 
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5.4 Summary 

To summarize, through a combination of numerical calculations and experiments 

on 3D printed composite samples, we demonstrate the existence of multiple stable 

patterns in the identical composite material with periodically arranged phases. These 

new instability induced patterns – tunable by the location of the stiff phases – give rise 

to the negative Poisson’s ratio behavior. Thus, one can potentially pre-design and 

significantly tune the onset of instability and the associated microstructure 

transformations. Thus, we achieve highly tunable and switchable properties and 

functionalities, such as negative Poisson’s ratio, and acoustic properties of the soft 

composite materials. We illustrate that the reported phenomenon of reversible pattern 

transformations in composite materials can be utilized for the design of highly tunable 

phononic crystals. The reported multiphase composite material system opens new 

ways for design of reconfigurable material and devices, including acoustic switches 

[4,6], actuators [21,143,144,203,204], soft robotics [2,205], and flexible electronics 

[7,153,206]. 
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Chapter 6 

Tunable microstructure transformations and auxetic 

behavior in multiphase composites: the role of inclusion 

distribution 

We experimentally and numerically investigate instability-induced pattern 

transformations and switchable auxetic behavior in multiphase composites consisted 

of circular voids and stiff inclusions periodically distributed in a soft elastomer. We 

specifically focus on the role of inclusion distribution on composite behaviors. We 

show that tailored positioning of the stiff inclusions can be exploited to expand the set 

of admissible switchable patterns in multiphase composites. Thus, extreme values of 

negative Poisson’s ratio can be attained through applied strains; moreover, the onset 

of instabilities, and the corresponding switches to extremely soft behavior are shown 

to be controlled by the inclusion arrangements and volume fractions. Furthermore, the 

dependence of the microstructure buckling and post-buckling behavior on loading 

direction is investigated, and the composite anisotropic properties depending on the 

microstructure parameters are discussed. 

  

                                                      
 Based on the published paper: Li J, Rudykh S. Tunable microstructure transformations and auxetic behavior in 

3D-printed multiphase composites: The role of inclusion distribution. Compos Part B Eng 2019;172:352–62. 
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6.1 Introduction 

Owing to enhanced mechanical properties and functionalities, microstructured 

materials – such as, fiber-reinforced or cellular microstructures – have become 

attractive for various engineering applications [4,140,207–210]. The properties 

tailored through microstructure geometry can be further tuned by external stimuli, or, 

in case of deformable materials, by pre-stress. In the latter case, the large deformations 

lead to the evolution in composite microstructures accompanied by geometrical and 

materials nonlinearities [141,176,197]. Moreover, the materials may exhibit sudden 

changes in their microstructures due to elastic instabilities. The phenomenon holds 

significant potential for designing new materials with switchable properties and 

functionalities [18,94,157,211]. To predict the onset of instabilities and associated 

buckling modes various techniques have been developed and employed [24,122,127]; 

in the context of nonlinear elasticity theory, the framework of small deformation 

superimposed on the finitely deformed state is used [70]. Within the framework, the 

onset of macroscopic or long wave instabilities can be predicted through the loss of 

ellipticity analysis based on the homogenized response of the material [13,29–

31,103,104]; while microscopic instabilities can be detected through the Bloch-

Floquet analysis [11,12,25,37,68,107], which also allows detecting the long wave 

instabilities for a special limit. In this work, we employ the Bloch-Floquet technique 

to investigate the instability phenomenon and, then, post-buckling behavior in soft 

composite with various periodic distributions of voids and stiff inclusions – these 

structures can exhibit cooperative and controllable collapse of the voids leading to 
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sudden pattern transformations, which hold the potential for responsive and 

reconfigurable functional materials and devices, such as highly stretchable 

metamaterials [149], switchable auxetic materials [194], and elastic wave filters 

[6,14,20,68,69], color displayers [160], and actuators [21]. 

Abeyaratne and Triantafyllidis [38] studied the onset of instability in porous 

solids detecting the loss of ellipticity in homogenized periodic porous elastomer under 

large strains. Triantafyllidis and Maker [23] examined layered composite with 

incompressible hyperelastic phases, and showed the connection between the 

microscopic instability analysis and loss of ellipticity. Geymonat et al. [26] established 

the rigorous theoretical foundation for Bloch-Floquet technique to detect microscopic 

and macroscopic instabilities in finitely strained periodic composites; it was shown 

that the long wave instability limit can be identified with the loss of ellipticity of the 

homogenized properties. Based on these results, Triantafyllidis et al. [40] numerically 

investigated the microscopic and macroscopic instabilities in porous structure with 

periodic distribution of circular voids. Michel et al. [212] predicted microscopic 

instabilities in porous system with periodic distribution of circular voids in a square 

unit cell. The development of the corresponding instability-induced pattern 

transformations was experimentally observed in an elastomeric system with a square 

array of circular voids by Mullin et al. [39]. The buckling mode at micrometer length 

scale was also realized in polymer structures with periodically distributed circular 

voids fabricated by interference lithography [41–43]. Later, Bertoldi et al. [159] 

investigated the instability-induced negative Poisson’s ratio behavior in the 2D porous 

systems, and this idea was extended to the design of 3D soft metamaterials with auxetic 
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behavior [46]. In addition, the distribution [19,71] and shape [44,45] of voids were 

further employed to obtain complex new patterns and to tune Poisson’s ratio. Shan et 

al. [6] employed the anisotropic property of composite structure to trigger multiple 

pattern transformations in an elastomeric porous structure comprising of a triangular 

periodic arrangement of circular voids. Florijn et al. [48,49] proposed a bi-void system 

comprising of larger and smaller circular voids to induce co-existing states and 

switches between these. Overvelde et al. [50] realized the instability-induced 

checkerboard pattern in soft metamaterial comprising a square array of circular voids 

under equibiaxial tensile load. Recently, Li et al. [14] introduced the design of 

switchable soft system comprising of arrays of circular voids and stiff inclusions 

distributed in a soft matrix. These materials showed new pattern transformations with 

a strong auxetic behavior. 

In this study, we examine the role of the stiff inclusions, their positions and 

volume fraction, on the instabilities and post-buckling behaviors in the transformative 

composites; and explore the ways of using this composite design space for tailored 

performance and enriched instability-induced pattern transformations. Moreover, we 

examine the multiphase composite anisotropy, and study the response of the 

composites subjected to different loading directions. First, we discuss possible 

arrangements of circular stiff inclusions in the structure with periodically distributed 

circular voids, where new uniform buckling modes are observed. Then, guided by the 

numerical simulations, we experimentally realize and observe multiple pattern 

transformations depending on the distribution of inclusions and loading directions in 

the samples fabricated by multimaterial 3D printing. Next, simulations of infinite 
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periodic and finite size structures are compared with the experimental results of 3D 

printed samples. Finally, the effect of the distribution of stiff inclusions, loading 

direction, phase volume fraction, and inclusion-to-matrix ratio of shear moduli on the 

responses of the composites is numerically studied to illustrate the tunability of the 

systems. 

6.2 Specimen design and fabrication, and experimental 

testing 

First, we discuss possible arrangements of circular stiff inclusions in the structure 

with periodically distributed circular voids. In the periodic void system a cooperative 

(or uniform) collapse of the voids happens when the ligaments undergo the same 

buckling mode simultaneously [19,47]. To achieve this behavior, the geometrical 

requirements for the void position are: (i) the distance between neighboring voids is 

identical; (ii) the number of ligaments around each void is an even number. Based on 

that, we consider two types of distributions of stiff inclusions in the porous structure 

with circular voids arranged in triangular configuration, while the stiff inclusions are 

arranged in square (a) and triangular (b) configurations as shown in Figure 32, which 

are denoted as composite type A and composite type B, respectively. The corresponding 

primitive unit cells are highlighted by light green color. 
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Figure 32. Schematics of periodic microstructures with circular stiff inclusions arranged in 

square (a) and triangular (b) configurations. 

To investigate the effect of inclusion distribution on the mechanical responses of the 

proposed anisotropic multiphase composites under different loading directions, the specimens 

with circular voids and stiff inclusions periodically embedded in an elastomeric soft matrix 

were fabricated by using a multimaterial 3D printer (Object Connex 260-3). The soft matrix 

was printed in FLX9860 digital material with initial shear modulus 𝜇(m) = 0.6⁡MPa, the stiff 

inclusion was printed in VeroWhite resin with initial shear modulus 𝜇(i) = 600⁡MPa. The 

specimens were characterized with initial volume fraction of soft matrix 𝑐(𝑚) = 0.25, as well 

as identical void and inclusion radii 𝑟 = 3⁡mm. For all specimens, the in-plane dimensions 

were 92.37 ⁡× 91.42 mm (width ⁡×⁡ height), the out-of-plane dimension was 𝑡 = 10⁡mm 

(thickness). In order to track the positions of stiff inclusions during the deformation process, 

the centroids of stiff inclusions were marked by black dots. 
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Figure 33. Experimental setup. 

Uniaxial compression tests under plane strain conditions were conducted using 

the Shimadzu EZ-LX testing machine with maximum load 2 kN. The corresponding 

experimental setup is shown in Figure 33. The specimen was held between two 

transparent parallel fixtures mounted on a metal base to maintain the plane-strain 

conditions. A plate printed in VeroWhite material and thickness 𝑡 = 10⁡mm  was 

placed between the specimen and the testing machine to apply load on the specimen. 

The compression tests were performed at a constant strain rate of 4 × 10−4⁡s−1 . 

Compression displacement and applied force were recorded to produce stress-strain 

curves. A high-resolution digital camera was placed in front of the specimen to monitor 

the deformation process capturing one frame at 0.01 mm compression displacement. 

6.3 Simulations 

To analyze the mechanical responses for the multiphase composites, numerical 

simulations are performed for both finite size structure and infinitely periodic structure. 



 

107 
 

The responses of soft matrix and stiff inclusion materials are modeled as neo-Hookean 

hyperelastic materials, whose strain energy density function is defined as 

𝑊 =
𝜇

2
(𝐼1 − 3) − 𝜇 ln 𝐽 +

𝛬

2
(ln 𝐽)2,                             (26) 

where 𝜇  and 𝛬  denote the initial shear modulus and the first Lame constant, 

respectively. 𝐼1 = tr(𝐅T𝐅) and 𝐽 = det⁡(𝐅), with 𝐅 denoting the deformation gradient. 

The high ratio 𝛬/𝜇 = 1000 is used to maintain the nearly incompressible behavior of 

the material; for the soft matrix material the initial shear modulus is 𝜇(m) = 0.6⁡MPa. 

The inclusion-to-matrix ratio of shear moduli is chosen as 𝜇(i) 𝜇(m)⁄ = 103 so that the 

stiff inclusions almost do not deform. 

To identify the onset of instability in infinite periodic composite under large 

deformations, Bloch-Floquet analysis superimposed on the deformed state is used 

[11,20,23,26,37,68]. The analysis is implemented in the nonlinear finite element code 

COMSOL 5.2a. To obtain the solution for the deformed state, we first apply the 

averaged macroscopic deformation through imposing periodic displacement boundary 

conditions on the edges of the primitive unit cell via 𝐮𝐵 − 𝐮𝐴 = (𝐅̅ − 𝟏)(𝐗𝐵 − 𝐗𝐴), 

where 𝐗 denotes the position vector in the undeformed configuration; 𝐮 denotes the 

displacement vector; 𝐅̅ is the applied macroscopic deformation gradient; A and B are 

the paired nodes periodically located at the opposite edges of the primitive unit cell. 

Then, Bloch-Floquet conditions are superimposed on the edges of the deformed 

primitive unit cell via 𝐮(𝐗 + 𝐑) = 𝐮(𝐗)𝑒−𝑖𝐊⋅𝐑, where 𝐑 defines the distance between 

the paired nodes on the opposite edges of the unit cell; 𝐊 is the wave vector. Through 

gradually increasing the applied deformation along the loading path and solving the 

corresponding eigenvalue problem, the microscopic instability is identified, when the 
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lowest eigenvalue (of a non-trivial eigenmode) attains zero. The corresponding applied 

strain level and wavenumber are identified as the critical strain 𝜀cr  and critical 

wavenumber 𝐊cr. Note that macroscopic instability is detected when 𝐊cr → 𝟎; this 

long wave instabilities can be identified through examining the loss of ellipticity 

analysis, and the corresponding conditions for the effective acoustic tensor or tensor 

of the elastic moduli [23,26]. Once the critical conditions are identified, the 

postbuckling analysis is performed. To this end, an updated unit cell is constructed – 

defined through the obtained critical wavenumber 𝐊cr . To trigger the instability 

induced pattern transformations, small amplitude imperfections in the form of the 

buckling mode (obtained from Bloch-Floquet instability analysis) are introduced in the 

initial geometry of the updated unit cell. 

Quadratic triangular plane strain elements are used in simulations for periodic 

structures and finite size structures; a mesh sensitive analysis has been performed, in 

accordance to the analysis, mesh density of approximately 4000 elements for each 

primitive unit cell has been used. 

In addition, numerical simulations on finite size specimens are conducted using 

explicit nonlinear finite element code LS-DYNA. The mesh of finite size structure is 

disturbed by introducing a small amplitude imperfection in the form of the first 

buckling mode obtained by linear buckling analysis. In the analysis, the displacement 

of the top and bottom edges of the structure was constrained to be horizontally fixed. 

The contact between the edges for the collapsed voids is modeled using the 

CONTACT_AUTOMATIC_SINGLE_SURFACE option. The quasi-static loading 
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conditions are maintained while monitoring the force response and deformation mode 

being independent of the loading rate. 

6.4 Results and discussion 

We start with studying of the deformation processes of the two types of the 

periodic composites A (as shown in Figure 32(a)) and B (as shown in Figure 32(b)) 

with a fixed volume fraction of the phases; next, we will examine the effect of the 

constituent volume fractions on the performance of the multiphase composites. Since 

the materials exhibit anisotropic behavior, we show their responses for different 

loading directions; in particular, each of the composite is tested under uniaxial 

compression in X- and Y-material directions. 

Figure 34 shows the experimental and numerical results on deformation 

sequences for the composites at different deformation levels (the numerical results for 

infinite periodic and finite size specimens are given at the first and third rows, 

respectively; the experimental results are given at the second row). When the critical 

strain is reached, the voids collapse as the ligaments between them buckle. This leads 

to sudden microstructure transformations along with the breakage of composite 

symmetry and/or periodicity (see Figure 34(a-d) at 𝜀 = 0.10). As the deformation 

level is further increased, the instability-induced new patterns are rapidly accentuated 

(see Figure 34(a-d) at 𝜀 = 0.15) and start evolving. Remarkably, the significant lateral 

contraction with respect to the loading direction is observed both experimentally and 

numerically for all cases (see Figure 34(a-d) at 𝜀 = 0.20). This instability-induced 

negative Poisson’s ratio or auxetic behavior is attributed to the microstructure 
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transformation in the postbuckling regime. We note that the numerical simulations of 

the finite size samples nicely capture the boundary effects relevant to the experimental 

testing; due to the boundary effects only the central part of the specimens exhibit a 

nearly uniform deformation of the unit cells corresponding to the numerically modeled 

infinite periodic structures. 

Moreover, both experiments and simulations show that the buckled patterns for 

composite A (with the square periodicity of inclusion distribution) loaded either in X- 

or Y-material directions consist of 1 × 2 primitive unit cell; while composite B (with 

the triangular periodicity of inclusion distribution) preserves its initial periodicity even 

after the onset of instability for both loading directions. Moreover, thanks to the 

anisotropy of the composite microstructures, the development of the buckling patterns 

can be tuned by altering the loading direction. For example, different pattern 

developments are observed for composite A loaded in X- and Y-material directions; as 

a result, different effective behaviors can be observed for these loading cases, in 

particular, composite A loaded in Y-material direction exhibits a more significant 

lateral contraction behavior. Thus, this illustrates that rich pattern transformations can 

be obtained through tuning the positions of stiff inclusions and loading directions. 

Finally, the initial microstructure of the composites is fully recovered after the release 

of applied loading, demonstrating that these instability-induced pattern 

transformations are fully reversible. 
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Figure 34. Deformation sequences in soft composites at different deformation levels. Scale bar: 

20 mm. 



 

112 
 

 

Figure 35. Experimental and numerical stress-strain curves. Dotted lines denote critical strains 

for infinite periodic composites. 

Figure 35 shows the experimental and numerical results of the evolution of 

nominal stress as functions of applied strain. The dotted vertical lines refer to the 

critical strains of the corresponding infinite periodic composites. We observe that the 

buckling strain is significantly influenced by the positions of stiff inclusions and 

loading directions. The critical strains for composite A loaded in X- and Y-material 

directions are 𝜀𝑐𝑟 = 0.016 and 0.026, respectively; while the critical strains for 

composite B loaded in X- and Y-material directions are 𝜀𝑐𝑟 = 0.062  and 0.048 , 
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respectively. Prior to the onset of instability, the stress-strain relation is characterized 

by an initial nearly linear behavior of the curves; in this stable regime, composite A 

has a larger effective modulus as compared to the response of composite B, regardless 

of the loading direction. We note the agreement between the stress-strain curves 

observed in experiments and predicted by the finite element modeling for both finite 

size and infinite periodic structures. This is due to the fact that in the stable regime, 

each primitive unit cell undergoes a nearly identical deformation, which has been 

observed experimentally (see, for example, Figure 34(c, d) at 𝜀 = 0.05). However, 

upon achieving the critical strain, softening behavior is observed in all cases due to the 

development of elastic instability. We observe that composites A exhibits almost linear 

stress-strain curve behavior after buckling (for both loading directions); while for 

composite B, a plateau stress is observed following the onset of instabilities; this 

continues until the development of new patterns results in partial closure of the voids 

resulting in the increased overall stiffness. We note that a drop in the stress value is 

observed in the experiment after the applied deformation exceeds a critical level; this 

is more visible for composite A loaded in X-and Y-material directions; this 

phenomenon, however, is not captured by simulations. Similar differences between 

simulations and experiments were also reported in the system of periodic elastomeric 

array of circular voids [39]. There is a number of factors – stemming from the 

numerical model simplifications – that may contribute to the observed differences. 

These include the constitutive material model with the absence of inelastic behavior, 

strong plane strain constraint, absence of friction, and possible dynamic effects not 

accounted for in the numerical simulations. 
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Figure 36. Effective Poisson’s ratio vs strain level. 

Figure 36 shows the dependence of the effective Poisson’s ratio on the applied 

strain. The blue dashed and red dash-dotted curves correspond to the numerical results 

for finite size and infinite periodic structures, respectively; while the experimental 

results are denoted by the black points with error bar5 symbols (the details about the 

calculation of the effective Poisson’s ratio is given in Appendix F). We observe a good 

agreement between the trends of the curves for numerical results and experimental 

observations; however, some quantitative differences are observed, especially in the 

initial regime of relatively small deformations. In this regime, the displacement of stiff 

                                                      
5 The error bars represent the standard deviations of the calculated effective Poisson’s ratio values based on 

various selected representative elements; the calculation procedure is described in the Appendix F. 
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inclusion is relatively small, and the measurement inaccuracy influences the calculated 

value of the effective Poisson’s ratio. After the applied deformation exceeds the critical 

strain, due to the buckling of the ligaments resulting in void collapse, a rapid drop in 

Poisson’s ratio up to a negative regime is observed in both experiments and 

simulations for all cases. The drop in Poisson’s ratio is followed by a slow decrease 

with a further increase in the applied deformation. While for composite A loaded in X-

material direction excellent agreement between experiments and simulations is 

observed, for other cases, the simulations on finite size structures show a better 

agreement with experiments in comparison to the results from the simulations of the 

infinite periodic structures. This is due to the fact that the finite size specimen (of 

composite A loaded in X-material direction) exhibits nearly identical deformation of 

the unit cells up to 𝜀 = 0.2 (see Figure 34(a)). For other cases (Composite A loaded in 

Y-material direction, and composite B loaded in X- and Y-material directions), the 

lateral edges of the specimens significantly bend inward due to the strong negative 

Poisson’s ratio behavior (see Figure 34(b-d) at 𝜀 = 0.2); this effect is not accounted 

for in the infinite periodic structure simulations. Finally, we note the significant 

dependence of the instability-induced negative Poisson’s ratio behavior on the 

positions of stiff inclusions and loading directions. For example, at applied strain 𝜀 =

0.2, effective Poisson’s ratios for infinite periodic composite A loaded in X- and Y-

material directions are 𝜈YX = −0.21  and 𝜈XY = −0.72 , respectively; while the 

Poisson’s ratios for infinite periodic composite B loaded in X- and Y-material 

directions are 𝜈YX = −0.55 and 𝜈XY = −0.58, respectively. 
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Figure 37. Dependence of effective Young’s modulus and Poisson’s ratio on inclusion volume 

fraction for composites with various void volume fractions in the stable regime of small 

deformations. The dashed curves with markers and the continuous curves refer to the results 

of the composite loaded in X- and Y-material directions, respectively. 

For completeness, we show the effect of the inclusion distribution and loading 

direction on the initial responses (in the stable regime of small deformations) of the 

periodic composites. Figure 37 presents the dependence of effective Young’s modulus 

and Poisson’s ratio on inclusion volume fraction for the composites with various void 

volume fractions. The dashed curves with markers and the continuous curves refer to 

the results of the composite loaded in X- and Y-material directions, respectively. The 

effective Young’s modulus is calculated as 𝐸eff = 2𝑈𝜀−2/𝐴, where U is the stored 

elastic energy; A is the area of the primitive unit cell; 𝜀  is the applied strain. The 
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method has been verified against the analytical estimation for inclusion-reinforced 

composite with stiff inclusions periodically embedded in a softer matrix arranged in a 

hexagonal array [200]. The effective Young’s modulus is normalized as 𝐸̃ =

𝐸eff 𝜇(m)⁄ . We observe that the effective Young’s modulus and Poisson’s ratio for 

composite A loaded in X- and Y-material directions are clearly different (see Figure 

37(a, c)); whereas the corresponding responses for composite B loaded in X- and Y-

material directions are identical (see Figure 37(b, d)). Composite A shows a stiffer 

response when loaded in Y-material as compared to its response to loading in X-

direction. For both cases, an increase in inclusion volume fraction leads to an increase 

in effective Young’s modulus, and this effect is more significant for the composite 

with smaller void volume fraction. For example, an increase in stiff volume fraction 

of composite B from 𝑐(i) =0.05 to 0.25 results in an increase in effective Young’s 

modulus from 𝐸̃ =0.148 to 0.160 for the case 𝑐(v) = 0.6, from 𝐸̃ = 2.288 to 2.832 for 

the case 𝑐(v) = 0.2. Larger Poisson’s ratios are observed for composite A loaded in Y-

material direction in comparison to the load in X-material direction; and composites 

with higher inclusion volume fractions exhibit lower Poisson’s ratios (see Figure 

37(c)). The effect of inclusion volume fraction on Poisson’s ratio in composite B is 

very different, and it strongly depends on the composite void volume fraction (see 

Figure 37(d)). For instance, the influence of inclusion volume fraction on Poisson’s 

ratio for composite B with 𝑐(v) = 0.6 is negligible; whereas an increase in inclusion 

volume fraction results in a significant decrease in Poisson’s ratio for composite B with 

𝑐(v) = 0.3. 
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Figure 38. Dependence of critical strain on matrix volume fraction. The radii of circular voids 

and stiff inclusions are identical. 

Next, we examine the influence of the phase volume fractions on the onset of 

instabilities. To this end, we perform the Bloch-Floquet analysis (described in the 

Numerical Modeling Section). Figure 38 shows the dependence of critical strain on 

the composite matrix volume fraction. Here, the radii of the circular voids and stiff 

inclusions are set to be identical. Note that in the considered range 𝑐(v) ∈ (0.2, 0.4), 

all composites experience microscopic instabilities, and the buckling mode of 

composite A consists of 1 × 2 primitive unit cell, while composite B preserves its 

initial 1 × 1  periodicity (see Figure 32). Regardless of the positions of the stiff 

inclusions and loading directions, we observe that a decrease in matrix volume fraction 

results in an earlier onset of instability. This is because the composites with lower 

matrix volume fractions have slender ligaments that are prone to buckling. We observe 

that composite A loaded in X-direction buckles earlier as compared to the response in 

Y-direction; whereas composite B is more stable when the applied load is in X-material 

direction. Moreover, we note that composite A is more prone to buckling than 

composite B for both loading directions. 
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Figure 39. Dependence of Poisson’s ratio on applied deformation for composites with various 

matrix volume fractions. The radii of voids and stiff inclusions are identical. 

Figure 39 shows the evolution of Poisson’s ratio with applied compressive strain 

for composites with various matrix volume fractions (with the radii of circular voids 

and stiff inclusions set to be identical). We note that, prior to the onset of instability, 

Poisson’s ratio is positive for all considered cases. However, upon the onset of 

instabilities and microstructure transformations, an increase in deformation results in 

a dramatic drop in Poisson’s ratio down to the negative regime. The analysis shows 

that a stronger auxetic or negative Poisson’s ratio behavior can be obtained through 

decreasing the matrix volume fraction (i.e., increasing the void volume fraction). 
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Remarkable, for composite A loaded in X-material direction, the value of negative 

Poisson’s ratio for the composite with lower matrix volume fraction is found to be 

nearly independent on applied strain after a certain deformation level. For instance, for 

composite A with 𝑐(m) = 0.2, Poisson’s ratio is nearly constant at 𝜈YX ≈ −0.21 when 

applied strain 𝜀X ≥ 0.08 . When composite A loaded in Y-material direction, we 

observe that Poisson’s ratio for the case 𝑐(m) = 0.2 can attain extreme values, for 

example, 𝜈XY = −0.99  at the applied strain 𝜀Y = 0.07; however, this minimum is 

followed by an increase in Poison’s ratio with further increase in the applied 

deformation. For composite B, we observe similar trends for loadings in X- and Y-

material directions, especially for the composites with small matrix volume fractions. 

 

Figure 40. Dependence of critical strain and Poisson’s ratio on inclusion volume fraction. Void 

volume fraction is fixed as 𝑐(v) = 0.45. Poisson’s ratio is evaluated at deformation level of 

𝜀 = 0.2. 
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Furthermore, we examine the influence of the inclusion volume fraction on the 

composite behavior, while keeping the void volume fraction fixed. Figure 40 shows 

the dependence of the critical strain and Poisson’s ratio on the inclusion volume 

fraction. The void volume fraction is fixed as 𝑐(v) = 0.45  and Poisson’s ratio is 

evaluated at 𝜀 = 0.2. Composites with larger stiff inclusions are observed to buckle 

earlier for all considered cases. Thus, a larger negative value of Poisson’s ratio can be 

achieved at the same level of deformation by increasing the stiff inclusion volume 

fraction. For example, for composite A loaded in Y-material direction, an increase in 

the stiff inclusion volume fraction from 𝑐(i) = 0.0  to 0.3 leads to a decrease in 

Poisson’s ratio from 𝜈XY = −0.22 to −0.55. In composite B loaded in X-material 

direction, a change in the stiff inclusion volume fraction has a more significant 

influence on the buckling strain and Poisson’s ratio in comparison to the composite 

loaded in Y-direction (compare Figure 40(c, d)). Moreover, it is notable that the effect 

of the inclusion volume fraction on the buckling strain and Poisson’s ratio behavior 

can be stronger for composites with smaller radius of voids. 

Finally, we investigate the role of shear modulus contrast on the soft composite 

behavior. Figure 41 shows the dependence of critical strain and Poisson’s ratio on 

shear modulus contrast. The matrix volume fraction is fixed as 𝑐(m) = 0.65 and the 

radii of voids and stiff inclusions are identical. Poisson’s ratio is evaluated at 𝜀 = 0.2. 

Note that, for the considered range 𝜇(i) 𝜇(m)⁄  from 1 to 104, composite A buckles and 

forms the new periodicity consisted of 1 × 2 primitive unit cell, while composite B 

preserves its initial periodicity for both loading directions. We observe that the 

composite with a higher shear modulus contrast buckles earlier, resulting in a more 
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significant negative Poisson’s ratio behavior. However, when the contrast 𝜇(i) 𝜇(m)⁄  

is larger than 103, this effect becomes negligible. We note that a change in 𝜇(i) 𝜇(m)⁄  

has more significant influence on the critical strain and Poisson’s ratio for the case of 

composite A loaded in Y-material direction (see Figure 41(b)). For example, an 

increase in the contrast 𝜇(i) 𝜇(m)⁄  from 1 to 103 can result in a decrease in critical strain 

from 𝜀𝑐𝑟 = 0.075 to 0.054, and a decrease in Poisson’s ratio from 𝜈XY = −0.397 to 

−0.515. For the case of composite B, the composite loaded in X-material direction is 

more sensitive to a change in shear modulus contrast in comparison to the composite 

loaded in Y-material direction (compare Figure 41(c) with (d)). 

 

Figure 41. Dependence of critical strain and Poisson’s ratio on shear modulus contrast 

𝜇(i) 𝜇(m)⁄ . The matrix volume fraction is fixed as 𝑐(m) = 0.65. The radii of voids and stiff 

inclusions are identical. Poisson’s ratio is evaluated at the deformation level of 𝜀 = 0.2. 
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6.5 Summary 

We have investigated the instability-induced pattern transformations in 

multiphase composites consisted of circular voids and stiff inclusions periodically 

distributed in a soft elastomer. In this study, we specifically focused on the role of 

inclusion distribution and anisotropic property on the mechanical responses of the 

composites. We studied two types of stiff inclusion arrangements in the porous 

structure comprising of a triangular array of circular voids, where elastic instability 

can be exploited to trigger cooperative buckling of voids. Through the combination of 

simulations and experiments on the 3D printed composites, we have realized multiple 

new patterns. We showed that these new patterns can be tuned by altering the 

distribution of stiff inclusions, thus, switchable extremely soft and negative Poisson’s 

ratio behavior can be tailored. 

Furthermore, through the survey of the microstructure parameter space, we 

provide the trends for the changes in the effective properties as functions of the 

microstructure parameters. We have found that the composites may attain extreme 

values of negative Poisson’s ratio for certain morphologies and loadings. Thus, the 

composites with square periodic arrangement of the stiff inclusions (composite A) with 

low matrix volume fractions have been identified as the advantageous configurations 

with high tunability of the effective properties by deformation. Moreover, the tailored 

composite morphologies allow to pre-design the onset of instabilities. Thus, we have 

found that the composites with larger void and/or stiff inclusion volume fractions, as 

well as a higher inclusion-to-matrix ratio of shear moduli, are more prone to buckling, 
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and, hence, they exhibit a more pronounced negative Poisson’s ratio behavior. The 

composites with the square periodic inclusion arrangement (composite A) are more 

stable in comparison to the composites with the triangular periodic inclusion 

arrangement (composite B). Thus, the performance of the composites can be 

significantly tuned via altering the distribution of stiff inclusions, loading directions, 

phase volume fractions, and shear modulus contrast. The reported behavior of the soft 

microstructures can be potentially used in designing materials for energy dissipation 

and shock wave mitigation; vibration and noise management, and novel soft actuators 

with morphing abilities. These actuators can incorporate functionalized inclusions to 

respond to applied electrical [213] or magnetic field [137,140], potentially enabling 

future design of actively and/or remotely controlled functional materials. Finally, we 

note that – since the overall response of these materials is highly compressible, and 

even exhibiting auxetic behavior in the postbuckling regimes – the response to 

unidirectional tensile loadings may result in different behavior as compared to the 

compressive loading considered here. The effect of various loading conditions, such 

as tensile or bi-axial loadings, can be exploited to gain access to distinct pattern 

transformations, and, potentially, different behavior in the postbuckling regime 

[50,214,215]. 
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Chapter 7 

Oblique wave propagation in finitely deformed layered 

composite 

We study the influence of deformation on shear waves propagating at various 

angles in hyperelastic layered composites. We find that shear wave band gaps 

(forbidden frequency ranges) in periodic laminates exist only for waves propagating 

perpendicular to the layers, and the band gaps close suddenly if the incidence angle 

changes even slightly. However, the attenuation in the frequency range of the band gap 

decreases gradually with a change in the angle. Moreover, we observe the significant 

influence of deformation on the dispersion curves of oblique shear waves propagating 

in finitely deformed layered composites. 

  

                                                      
 Based on the published paper: Li J, Slesarenko V, Galich PI, Rudykh S. Oblique shear wave propagation in 

finitely deformed layered composites. Mech Res Commun 2018;87:21–8. 
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7.1 Introduction 

Elastic wave propagation in solids has been an active topic of research due to its 

importance for many applications, such as seismology, nondestructive testing, acoustic 

filters, vibration damper, biomedical imaging, and acoustic cloaking. Recently, the 

field of architected microstructured metamaterials for manipulating elastic wave 

propagation has attracted significant attention [72–76,78,79,81–85,87,88,91,94,99]. 

Moreover, soft materials provide an opportunity to control elastic waves by 

deformation. This can be achieved through different effects of applied deformation – 

changes in microstructural geometry [69,92] and local material properties [57–

59,97,216], or by a combination of these effects [65,80,217]. Furthermore, the 

influence of deformation can be further magnified by utilizing the elastic instability 

phenomenon. Buckling induced microstructure transformations can lead to formations 

of new periodic microstructures, thus, significantly influencing elastic wave 

propagation [6,62,93,102]. Experimental realization of such microstructured materials 

significantly depends on the development in material fabrications such as layer-by-

layer fabricating and 3D printing techniques; these recently emerged techniques 

already allow manufacturing of microstructured materials at various length-scales 

[35,141,218–220]. 

Elastic wave propagation in finitely deformed homogeneous isotropic materials 

was pioneered by Biot [52], who investigated the influence of various cases of initial 

stress conditions on elastic wave propagations. Boulanger et al. [221] derived explicit 

expressions for phase velocities of shear and pressure waves propagation in 
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compressible Hadamard materials. To account for the stiffening effects on elastic wave 

propagation, Galich et al. [57] studied the infinitesimal wave propagating in finitely 

deformed incompressible and compressible Gent materials and derived explicit 

expressions for phase velocities. By employing the homogenization method, Vinh and 

Merodio [222] investigated elastic wave propagation in soft tissue, which was 

considered as an incompressible transversely isotropic elastic solid. Vinh et al. [223] 

studied the influence of deformation and propagation direction on Rayleigh wave 

propagating in one family fiber-reinforced incompressible nonlinearly elastic half-

space, this work was extended to two family fiber-reinforced elastic half-space by Nam 

et al. [224]. For the case of elastic waves propagating in layered composites (LCs), the 

pioneering work by Rytov [64] derived an explicit dispersion relation for steady state 

waves propagating perpendicular and parallel to the layers. In particular, for the case 

of waves propagating perpendicular to the layers, it was shown that the frequency 

spectrum consisted of an infinite number of modes with stop and pass bands. Recently, 

Galich et al. [65] investigated the influence of large deformation on the elastic waves 

in deformable laminates. Galich et al. [65] obtained estimates for long shear waves 

propagating in any direction of the finitely deformed laminates with incompressible 

neo-Hookean phases. In addition to the long wave estimates, classical results of Rytov 

[64] have been extended to account for the effects of finite deformations, thus, 

allowing investigation of the influence of deformation on shear and pressure wave 

band gaps in laminates. Galich et al. [21] also showed that the shear wave band gaps 

in (incompressible and compressible) neo-Hookean LCs do not depend on deformation, 
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as the deformation induced change in the geometry is fully compensated by the change 

in the effective material properties. 

In this work, we focus on oblique shear waves propagating in the finitely 

deformed LCs. We analyze the significant changes in the wave dispersion as the 

incidence angle starts to deviate from the normal case (wave propagation 

perpendicular to the layers) towards the oblique case. The most significant aspect is 

that the band gaps appear only for waves propagating perpendicular to the layers, and 

the band gaps do not appear if the propagation direction is changed even slightly. From 

the experimental point of view, it is extremely challenging to maintain the exact 

normal direction, so that the detection of the phenomenon may be affected by 

deviations in the actual propagation direction. While the band gaps close immediately, 

the transmission of the signal does not show a sudden change, but exhibit a gradual 

decrease with a change in the incidence angle from the normal direction. This was 

experimentally observed by Schneider et al [225], who found strong attenuation in the 

band gap area of normal elastic wave propagation in LCs with alternating poly (methyl 

methacrylate) and porous silica; moreover, Schneider et al [225] observed that the 

attenuation changed with a change in incidence angle. Here, we specifically focus on 

the influence of deformation on oblique shear wave propagation. 

7.2 Simulations 

Let us consider periodic LCs consisted of two alternating nearly incompressible 

neo-Hookean phases with volume fraction 𝑣𝑎 = 𝑑𝑎 𝑑⁄  and 𝑣𝑏 = 1 − 𝑣𝑎 (as shown in 

Figure 42(a)). Here and after, the quantities corresponding to phase a and phase b are 
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denoted by subscripts (•)𝑎 and (•)𝑏, respectively. The constitutive behavior of each 

phase is defined through neo-Hookean strain energy function 

𝑊(𝐅𝜉) =
𝜇𝜉

2
(𝐅𝜉: 𝐅𝜉 − 3) − 𝜇𝜉 ln(𝐽𝜉) +

𝛬𝜉

2
(𝐽𝜉 − 1)2⁡,                     (27) 

where 𝛬𝜉  is the first Lame constant,⁡𝜇𝜉  is the shear modulus, 𝐅𝜉  is the deformation 

gradient, and 𝐽𝜉 ≡ det⁡(𝐅𝜉) , where 𝜉  stands for 𝑎  and 𝑏 . To maintain a nearly 

incompressible behavior of the phases, we set a high ratio between the first Lame 

constant and shear modulus (𝛬𝜉/𝜇𝜉 = 104). Here we consider LCs in plane strain 

condition and apply macroscopic tension deformation along the layers (as shown in 

Figure 42(b)). The macroscopically applied deformation gradient is expressed as 

𝐅𝜉 = 𝜆−1𝐞𝟏 ⊗ 𝐞𝟏 + 𝜆𝐞𝟐 ⊗ 𝐞𝟐 + 𝐞𝟑 ⊗ 𝐞𝟑,                              (28) 

where 𝜆 is the stretch ratio. 

 

Figure 42. Schematic of the unit cell and boundary conditions. (a) Periodic LCs with 

alternating phases a and b, (b) Unit cell with periodic boundary conditions, (c) Bloch wave 

boundary conditions superimposed on the deformed state, (d) Schematic of calculating 

transmittance coefficient of shear wave propagating in periodic LCs. 
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To obtain the dispersion relations for shear waves propagating in finitely 

deformed LCs, we employ the Bloch wave analysis implemented in the finite element 

based code COMSOL 5.2a. A unit cell, as shown in Figure 42(b), is constructed for 

the simulations. The height of the unit cell, ℎ, is set to be 0.1𝑑 to eliminate redundant 

eigenvalues and maintain reasonable computational time. The simulation procedures 

are performed in two steps: (Step 1) we apply an in-plane tension λ along the layer by 

the imposed periodic boundary conditions (Eq. (29)) to obtain the deformed state; 

(Step 2) we superimpose Bloch-Floquet periodic boundary conditions on the deformed 

unit cell (Eq. (30)). Then through solving the corresponding eigenvalue problems for 

a range of Bloch wave vectors [37,68,110], the dispersion relations for finitely 

deformed periodic LCs are obtained. 

Step 1. 

{
𝑢1|𝑟𝑖𝑔ℎ𝑡 = 𝑢1|𝑙𝑒𝑓𝑡 +⁡𝑢1|B − 𝑢1|C⁡

𝑢2|𝑟𝑖𝑔ℎ𝑡 = 𝑢2|𝑙𝑒𝑓𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
,    ⁡⁡⁡⁡{

𝑢1|𝑡𝑜𝑝 = 𝑢1|𝑏𝑜𝑡𝑡𝑜𝑚⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑢2|𝑡𝑜𝑝 = 𝑢2|𝑏𝑜𝑡𝑡𝑜𝑚 + (𝜆 − 1)ℎ

𝑢1|A = 𝑢2|A = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡,  (29) 

where the index right, left, top, and bottom denote the sides of the unit cell. A, B and 

C correspond to the nodes at the corner of the unit cell (see Figure 42(b)). 

Step 2. 

{
𝑢1|𝑟𝑖𝑔ℎ𝑡 = 𝑢1|𝑙𝑒𝑓𝑡𝑒

−𝑖𝐾1𝑑

𝑢2|𝑟𝑖𝑔ℎ𝑡 = 𝑢2|𝑙𝑒𝑓𝑡𝑒
−𝑖𝐾1𝑑

 ,                      {
𝑢1|𝑡𝑜𝑝 = 𝑢1|𝑏𝑜𝑡𝑡𝑜𝑚𝑒−𝑖𝐾2ℎ

𝑢2|𝑡𝑜𝑝 = 𝑢2|𝑏𝑜𝑡𝑡𝑜𝑚𝑒−𝑖𝐾2ℎ
,             (30) 

where 𝐾1  and 𝐾2  are the components of Bloch wave vector 𝐊  in the undeformed 

configuration. Note that the Bloch wave vectors in the undeformed ( 𝐊 =

|𝐊|(sin𝜃0𝐞𝟏 + cos𝜃0𝐞𝟐)) and deformed configurations (𝐤 = |𝐤|(sin𝜃𝐞𝟏 + cos𝜃𝐞𝟐)) 

are related, namely, 𝐤 = 𝐅−T𝐊 [226]. Here, the angles 𝜃0 and 𝜃 define the directions 

of Bloch wave vectors in the undeformed and deformed configurations (see Figure 
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42(c)), respectively. When the applied deformation takes the form of Eq. (28), the 

angles in the undeformed and deformed configurations are related as tan𝜃 = 𝜆2tan𝜃0. 

Mesh sensitive analysis has been conducted to ensure that the relative error of the 

calculated frequency is less than 10-3. 

To analyze the transmittance spectra of the waves propagating in the periodic LCs, 

the standard frequency domain analysis is performed. A schematic representation of 

the numerical model is shown in Figure 42(d). An array of 32 unit cells is used in the 

numerical simulations. Two regions of homogenous matrix materials (4 times length 

of the period of the unit cell) are added to the left and right side of the LC. Perfectly 

matched layers (PMLs) are imposed on the two ends of the homogenous matrix regions 

to eliminate reflections. In addition, periodic boundary conditions are applied on the 

top and bottom boundaries. Finally, a harmonic vertical displacement with small 

amplitude is applied at the interface (denoted as the source line in Figure 42(d)) 

between the left perfectly matched layer (PML) and the homogeneous material region. 

By measuring the amplitudes of the displacements in the left and right homogenous 

matrix areas denoted as 𝑢𝑜𝑢𝑡  and 𝑢𝑖𝑛 , respectively, we obtain the transmittance 

coefficient defined as 𝜙 = 10lg⁡(𝑢𝑜𝑢𝑡 𝑢𝑖𝑛)⁄ . 

7.3 Results and discussion 

We start from consideration of the influence of small deviation in the wave 

propagation direction from the normal case (waves propagating perpendicular to the 

layers) on the dispersion relations. First, we compare the dispersion relations of shear 

waves propagating in undeformed and deformed LCs in the direction (a) perpendicular 
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to the layers (𝜃0 = 𝜋/2) and (b) with a small deviation from the normal direction (𝜃0 =

89𝜋/180). Here frequency is normalized as 𝑓𝑛 = 𝜔𝑑√𝜌̅ 𝜇⁄ /(2𝜋), where 𝜔 is the 

angular frequency, 𝜌̅ = 𝑣𝑎𝜌𝑎 + 𝑣𝑏𝜌𝑏  is the average density, and 𝜇 = (𝑣𝑎 𝜇a⁄ +

𝑣𝑏 𝜇a⁄ )−1. In perfect agreement with the theoretical results [64,65], the dispersion 

structure for the normal case is periodic and possesses band gaps (denoted by the 

shaded grey areas in Figure 43(a, c)). The first shear wave band gap (BG) is in the 

range of the normalized frequency from ⁡0.45 to 0.55 and it is not affected by 

deformation (see Figure 43(a, c)). This is in full agreement with the results by Galich 

et al [65] that showed that the BGs for shear waves propagating perpendicular to neo-

Hookean layers are independent of the applied deformation. However, when the 

direction of propagation is changed even slightly, for example, 𝜃0 = 89𝜋/180, we 

observe the absence of BGs (see Figure 44(b) for the undeformed state and Figure 43(d) 

for the deformed state). We note that for relatively small normalized wavenumbers 

(see the range from 0 to 4 in Figure 43(b, d)), the dispersion curves for 𝜃0 = 89𝜋/180 

are somewhat similar to the normal case. We also observe the peak frequencies of the 

lower branch increase with an increase in wavenumber (see Figure 43(b, d)), leading 

to the absence of the BGs as opposite to the normal case (see Figure 43(a, c)). Thus, 

the BGs of the undeformed and deformed LCs disappear immediately once the 

direction of wave propagation is changed from the perpendicular direction. 
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Figure 43. Dispersion diagram of shear waves propagating in LCs (𝑣𝑎 = 0.20, 𝜇𝑎 𝜇𝑏⁄ = 100, 

𝜌𝑎 𝜌𝑏⁄ = 1). 

 

Figure 44. Band gaps and transmittance spectra for LC with 𝑑 = 1m, 𝑣𝑎 = 0.20, 𝜇𝑎 =

500MPa, 𝜇𝑏 = 5MPa, ⁡𝜌𝑎 = 𝜌𝑏 = 103⁡kg/m3 . (a) Band gaps of shear waves propagating 

perpendicular to the layers, (b) Transmittance spectra for shear waves propagating 

perpendicular to the layers (𝜃0 = 𝜋/2 – dash-dotted black curve) and at a slightly oblique 

angle (𝜃0 = 89𝜋/180 – continuous red curve). 
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Next, we illustrate the attenuation characteristics for shear wave propagation in 

LCs for two cases: (a) normal case, (b) a small deviation from the normal case. The 

dispersion curves for shear waves propagating perpendicular to the layers are plotted 

in Figure 44(a), the transmittance spectra for different incidence angles are plotted in 

Figure 44(b). In the calculation of transmittance spectra of the LCs, the following 

geometrical and material parameters are used: 𝑑 = 1m, 𝑣𝑎 = 0.20, 𝜇𝑎 = 500MPa, 

𝜇𝑏 = 5MPa,⁡𝜌𝑎 = 𝜌𝑏 = 103⁡kg/m3. The continuous red curve corresponds to the case 

of 𝜃0 = 89𝜋/180, and the dash-dotted black curve is for the case of 𝜃0 = 𝜋/2. When 

waves propagate perpendicular to the layers ( 𝜃0 = 𝜋/2 ), strong attenuations is 

observed in the frequency range of the band gap. Again, for the case with a slight 

deviation ( 𝜃0 = 89𝜋/180 ), there is no band gap; however, the corresponding 

attenuations (in the band gap area of 𝜃0 = 𝜋/2) are still significant, although it is 

reduced as compared to the normal case. Thus, the band gaps disappear immediately 

with a change in the incidence angle, but the transmittance characteristics change 

(decrease) gradually. 
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Figure 45. Dispersion curves for oblique shear waves propagating in LCs (𝑣𝑎 = 0.20,𝜇𝑎 𝜇𝑏⁄ =

100, 𝜌𝑎 𝜌𝑏⁄ = 1) subjected to different deformation levels. 

To clarify how the dispersion curves of shear wave propagation in LCs transform 

from perpendicular to parallel to the layer direction, we present the dispersion curves 

for various directions of shear wave propagation in Figure 45. We note that the 

dispersion curves are in good agreement with the long wave estimates [65]. Examples 

of comparisons between the long wave estimates and the Bloch wave numerical results 

are shown in Appendix G. Figure 45 shows that the dispersion curves gradually change 

from 𝜃0 = 𝜋/2 to 𝜃0 = 0⁡for the undeformed (a) and finitely stretched (λ = 1.2 (b), 

λ = 1.5 (c), and λ = 2.0⁡(d)) laminates. We note that in accordance with the previous 

results, the periodicity of the dispersion curves breaks once the incidence angle change 
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from 𝜃0 = 𝜋/2.  We observe that for oblique cases the dispersion curves are 

characterized by the existence of two typical linear ranges (in the long wave range and 

in the short wave range). However, for the cases that are close to the normal case (𝜃0 =

𝜋/2  ), the transition range between these two linear regimes is characterized by 

significant nonlinearities  (see, for example, the dispersion curves corresponding to 

𝜃0 = 5𝜋/12  in Figure 45). Remarkably, the dispersion curves are significantly 

influenced by deformation (compare the corresponding curves in Figure 45(a, c)). For 

example, for 𝜃0 = 5𝜋/12 , in the undeformed state, there is a prominent local 

minimum at 𝑘𝑑/2𝜋 ≈ 1; however, application of deformation of λ = 1.5 eliminates 

this local minimum. Also, for smaller angles, such as 𝜃0 ≤ 𝜋/3, we clearly find the 

applied tensile deformation in the direction of the layers leads to a sharper transition 

between these two linear regimes. 

Figure 46 shows the examples of the influence of deformation on the dispersion 

curves for shear waves propagating at 𝜃 = 𝜋/6 in LCs with various volume fractions 

and stiffness ratio of the phases. In agreement with our previous results, we also 

observe that the dispersion curves have two typical linear ranges, and the nonlinearities 

of the transition range between these two linear regimes increase with an increasing 

role of stiffer layers (higher shear modulus contrast and/or volume fraction of the 

stiffer layer). Meanwhile, the tensile deformation shifts the dispersion curves towards 

higher frequencies. For example, the LC with ⁡𝑣𝑎 = 0.20⁡ and 𝜇𝑎 𝜇𝑏⁄ = 500 , the 

applied deformation of λ = 1.5 shifts the dispersion curve from 𝑓𝑛 = 0.99 up to 1.47 

as compared to the undeformed LC with 𝑣𝑎 = 0.05 , 𝜇𝑎 𝜇𝑏⁄ = 10 . Moreover, we 

observe that for longer waves the influence of deformation becomes less pronounced 
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after certain deformation level (which depends on the material composition). For 

example, the frequency (at 𝑘𝑑/2𝜋 = 0.3) from 𝑓𝑛 = 0.56 (in the undeformed LC) up 

to 1.15; whereas the frequency increases only up to 1.20 with further increase of 

deformation up to λ = 2.0. The corresponding deformation level (after which the 

influence of deformation becomes less pronounced) is lower for LCs with more 

significant role of the stiffer layers (compare Figure 46(a, d)). 

 

Figure 46. Dispersion curves for oblique shear waves propagating at 𝜃 = 𝜋/6 in LCs with 

𝜌𝑎 𝜌𝑏⁄ = 1  and (a) ⁡𝑣𝑎 = 0.05, 𝜇𝑎 𝜇𝑏⁄ = 10; (b)𝑣𝑎 = 0.05 , 𝜇𝑎 𝜇𝑏⁄ = 500; (c) ⁡𝑣𝑎 = 0.20 , 

𝜇𝑎 𝜇𝑏⁄ = 10; (d)⁡𝑣𝑎 = 0.20, 𝜇𝑎 𝜇𝑏⁄ = 500. 
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Figure 47. Equifrequency curves of shear waves propagating in undeformed (a) and deformed 

(b, c and d) LCs (𝑣𝑎 = 0.20, 𝜇𝑎 𝜇𝑏⁄ = 100, 𝜌𝑎 𝜌𝑏⁄ = 1). 

To provide more details on the oblique shear waves, we plot the equifrequency 

curves in Figure 47. Due to the periodic laminate structure, the equifrequency curves 

are periodic in the direction of 𝑘1, and are not periodic in the direction of 𝑘2. Specially, 

for the equifrequency curves of undeformed LC in a period (0 ≤ 𝑘1𝑑/(2π) ≤ 1), we 

find that the maximum and minimum frequency at a certain 𝑘2 are always located at 

𝑘1𝑑/(2π) = 0.5  and 𝑘1𝑑/(2π) = 0 , respectively (see Figure 47(a)). However, an 

increase in 𝑘2, leads to the situation when the equifrequncy curves become smooth, 

and the prominent minima/maxima points disappear. Furthermore, applied 
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deformation leads to a change in the periodicity due to the change in the layer 

thicknesses, namely, the period of 𝑘1  changes from Δ𝑘1𝑑/(2π) = 1  (in the 

undeformed state) to Δ𝑘1𝑑/(2π) = 1.5  for the laminates stretched to λ = 1.5  level 

(see Figure 47(c)). The applied deformation significantly influences the shape of the 

equifrequency curves. For example, compared with the contour lines at 𝑓𝑛 =

0.4,0.6,0.8  in the undeformed state (see Figure 47(a)), we observe maximum 

frequency for a certain 𝑘2 gradually changes from 𝑘1𝑑/(2π) = 0.5 to 𝑘1𝑑/(2π) = 0 

in the deformed state (see Figure 47(c)). In addition, the deformation also shifts the 

equifrequency curves towards higher frequencies. For instance, the curves 

corresponding to 𝑓𝑛 = 1.2 in the undeformed and deformed (λ = 2.0) sates are located 

at 𝑘2𝑑/(2π) ≈ 0.97 and 0.30, respectively. 

7.4 Summary 

We have studied shear waves propagating in finitely deformed LCs with nearly 

incompressible neo-Hookean phases. By application of Bloch wave analysis 

superimposed on large deformation, we obtained the dispersion curves for shear waves 

propagating at normal and oblique angles relative to the layers. We have found that 

the band gaps close immediately when the direction of wave propagation changes even 

slightly from the normal propagation direction – this is for both undeformed and 

deformed laminates. The attenuation, however, decreases gradually with a change in 

the direction of wave propagation. We have observed that the dispersion curves of 

shear waves propagating in LCs change suddenly when the direction of propagation 

changes (even slightly) from perpendicular to the layer direction. Further change in 
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the propagation direction leads to a graduate change in the dispersion curves. For small 

deviation angles (from the normal case), the dispersion curves exhibit significant 

nonlinearities; and prominent picks are observed. These picks evolve with the further 

change in the angle, and, at certain oblique propagation direction, the dispersion curves 

are characterized by two linear ranges. The transition wavenumber between these two 

linear regimes depends on the LC composition, and the corresponding transition 

wavenumber is observed to increase with an increasing role of stiffer layers (higher 

shear modulus contrast and larger volume fraction of the stiffer layer). 

The dispersion curves for the oblique waves are found to be significantly affected 

by the applied deformation. In particular, the highly nonlinear behavior of dispersion 

curves (for waves propagating at the angles close to the normal case), is significantly 

transformed through the applied deformation. More specifically, the local minima can 

be significantly smoothened and even transformed into local maxima by increasing the 

applied deformation level. Furthermore, for oblique waves propagating at large angles 

(relative to the normal case) corresponding to the “bi-linear” regime, we have observed 

that the increased tensile deformation shifted the dispersion curves towards higher 

frequencies. This is valid for both linear ranges (short and long wave ranges) of the 

oblique waves. For longer waves, however, the influence of deformation becomes less 

pronounced after certain deformation level, which is defined by LC composition (the 

deformation level is lower for LCs with more significant role of the stiffer layers). 
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Chapter 8 

Conclusions and discussion 

This thesis investigates the elastic instability phenomena in microstructured soft 

composites undergoing large deformations; in addition the work explores the 

application of large deformation-induced microstructure transformations to the control 

of small amplitude elastic wave propagation. In this thesis, the onset of instability, as 

well as the instability-induced pattern transformations in layered composites, 3D fiber 

composites, particulate composites, and multiphase composites are examined. 

Moreover, the thesis illustrates an application of employing these reversible 

microstructure transformations in periodic hyperelastic layered composites and 

multiphase composites to manipulate small amplitude elastic wave propagation. 

Microscopic instabilities and small amplitude elastic wave propagation in finitely 

deformed laminates with compressible hyperelastic phases are first investigated. By 

means of Bloch-Floquet instability analysis implemented in the finite element code, 

the onset of instability in compressible hyperelastic layered composites is examined. 

It is found that compressible layered composites are observed to be more stable, and 

the critical stretch ratio increases with a decrease in phase compressibility. This 

stabilizing effect can be contributed by the additional freedom in accommodating 

deformation in compressible layered composites as compared to the constrained 
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incompressible layered composites. Moreover, microscopic instability-induced wavy 

patterns are utilized to tune the band gap of elastic waves propagating in layered 

composites perpendicular to the layer direction. It is shown that instability-induced 

wavy patterns expand the widths of shear wave band gaps and shift them to higher 

frequency ranges. However, the compressive deformation significantly shifts pressure 

wave band gaps to lower frequency ranges and narrow the widths of pressure wave 

band gaps. 

Then, the elastic instabilities and pattern formations in single stiff fiber and 

periodically distributed stiff fiber embedded in a soft matrix subjected to axial 

compressive loads are considered. For single 3D fiber-reinforced composite, an 

explicit expression predicting the buckled wavelength is derived based on the Winker 

foundation model, showing that the critical wavelength has a linear dependence on the 

stiff fiber diameter. This prediction is further verified by experimental observations on 

3D-printed single fiber composites. For composites with periodically distributed 3D 

fibers, through a combination of experiments on 3D-printed fiber composites and 

rigorous Bloch-Floquet numerical instability analyses, it is observed that the critical 

wavenumber and critical strain decrease with an increase in fiber volume fraction. In 

particular, since the interactions between stiff fibers weaken with a decrease in stiff 

fiber volume fraction, the critical wavenumber and critical strain of periodic fiber 

composite in the dilute limit are found to attain the value given by the derived 

theoretical formulas for single fiber system. For composites with the rectangular in-

plane periodicity of fibers, it is found that the buckling mode develops in the direction, 
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where the fibers are close to each other; and an increase in the periodicity aspect ratio 

leads to a decrease in critical wavenumber and critical strain. 

Next, Instability-induced pattern transformations in soft particulate composites 

are studied. Experiments on 3D-printed samples show that the system of stiff 

inclusions periodically distributed in a soft elastomeric matrix experiences dramatic 

microstructure changes upon the development of elastic instabilities. In particular, the 

formation of domain microstructures is observed in the composites with a dense 

arrangement of stiff inclusions, for which macroscopic instabilities are predicted. 

Moreover, an increase in periodicity aspect ratio or decrease in concentration of the 

inclusions can result in a transition from domain patterns to cooperatively wavy pattern. 

These experimental observations on the buckled strain and buckled wavelength are in 

a qualitative agreement with numerical instability results. However, it is noted that 

macroscopic instability analysis only predicts the critical strain for the domain pattern, 

while the prediction on the pattern length-scale requires more detailed microscopic 

analysis. 

After that, the instability phenomena in auxetic multiphase composites consisting 

of stiff inclusions and voids periodically distributed in a soft matrix are examined. The 

instability-induced pattern transformations lead to the collapses of circular voids, thus 

giving rise to the Negative Poisson’s ratio behaviors. Thanks to the anisotropic 

property of the composite microstructure, identical composite can morph into distinct 

patterns depending on the loading direction. These distinct patterns are characterized 

by significantly different auxetic behaviors. Moreover, it is illustrated that these 
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reversible pattern transformations open significant complete band gaps (i.e., both shear 

and pressure band gaps) in remarkable low-frequency ranges. 

Furthermore, the role of inclusion distribution on the behaviors of multiphase 

composites is discussed. To ensure a uniform collapse of voids, the inclusions are 

distributed in either square or triangular periodic configurations, while the voids are 

distributed in the triangular periodic array. In a combination of simulation and 

experiment on 3D-printed composites, multiple new patterns are realized by altering 

the distribution of inclusions and loading direction. Comparison of experimental and 

numerical results on deformation sequences, stress-strain curves, and Poisson’s ratio 

shows good agreements. Then, a survey of microstructure space in periodic composite 

shows that the composites with larger void and/or stiff inclusion volume fractions, as 

well as a higher inclusion-to-matrix ratio of shear moduli, are more prone to buckling, 

thus exhibiting a more pronounced negative Poisson’s ratio behavior; and the 

composites with the square periodic inclusion arrangement are more stable in 

comparison to the composites with the triangular periodic inclusion arrangement. 

Therefore, the performance of the composites can be significantly tuned through 

altering the distribution of stiff inclusions, loading direction, phase volume fraction, 

and shear modulus contrast. 

Finally, the oblique shear wave propagation in finitely deformed layered 

composites with nearly incompressible neo-Hookean phases is investigated. By 

application of Bloch wave analysis superimposed on the deformed state, it is found 

that the band gaps close immediately when the direction of wave propagation deviates 

even slightly from the normal (i.e., perpendicular to the layers) propagation direction 
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– this is for laminate in the undeformed and deformed state. However, the attenuation 

decreases gradually with a change in the wave propagation direction. It is observed 

that the dispersion curves of oblique waves have the linear short and long wave ranges, 

and the nonlinearities of the transition regimes between these two linear regimes 

significantly depend on the applied deformation and laminate compositions (i.e., shear 

modulus contrast and stiffer layer volume fraction). 

In conclusion, this work illustrates that various pattern formations can be pre-

designed in microstructured soft composites through the elastic instability 

phenomenon. The instability-induced changes in microstructural geometry and local 

material properties can be employed to tune the propagation of small amplitude elastic 

waves in these composites. It is noted that the material systems considered here are 

assumed to be hyperelastic, and inelastic behavior is not examined here. The analytical 

and numerical predictions are in good agreement with the experimental realizations of 

the microstructure transformations in soft 3D printed-composites under low strain-rate 

or quasi-static loadings. 
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A. Approximation of the effective stiffness K of Winkler 

foundation model for incompressible material 

Winkler foundation model is employed to investigate the buckling behavior of a 

stiff fiber embedded in a soft matrix subjected to a compressive load along the fiber. 

The matrix is approximated as an array of springs with effective stiffness K acting only 

in the radial direction. An elastic circular stiff fiber with radius r buckles in the mode 

of 𝑢(𝑧) = 𝐴cos(𝑘𝑧), where 𝐴  and 𝑘 = 2𝜋 𝑙⁄  are the amplitude and wave number, 

respectively; 𝑙 is the wavelength. The effective stiffness K can be expressed as [127] 

𝐾 =
16𝜋𝐺𝑚(1−𝜈𝑚)

2(3−4𝜈𝑚)𝐾0(𝑘̃)+𝐾1(𝑘̃)𝑘̃
,                                        (A1) 

where 𝑘̃ = 𝑘𝑟, 𝐾0 and 𝐾1 are the modified Bessel functions of the second kind. 

We note that for the buckling of an infinite length stiff fiber embedded in a soft 

matrix, 𝑘̃ ≪ 1 , Eq. (A1) can be significantly simplified. At first, 𝐾0(𝑘̃)  can be 

expanded as [227]  

𝐾0(𝑘̃) = − {ln (
𝑘̃

2
) + 𝛾} (1 +

𝑘̃2

22 +
𝑘̃4

22×42 +
𝑘̃6

22×42×62 + ⋯) +
𝑘̃2

22 +
𝑘̃4

22×42 (1 +
1

2
)  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+
𝑘̃6

22×42×62 (1 +
1

2
+

1

3
) + ⋯,                                                                 

(A2) 

where ⁡𝛾=0.577 is the Euler’s constant. 

Since 𝑘̃ ≪ 1, we neglect the terms of the order higher than 2, then Eq. (A2) is 

approximated as 

𝐾0(𝑘̃) ≈ − {ln (
𝑘̃

2
) + 𝛾} = −ln⁡(

𝑒𝛾

2
𝑘̃).                             (A3) 
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Furthermore, 𝐾1(𝑘̃)𝑘̃ has the following approximation [228] when 𝑘̃ ≪ 1, 

𝐾1(𝑘̃)𝑘̃ ≈ 1.                                                  (A4) 

 

Figure A1. Comparison of the approximated value with the exact value. 

Figure A1 shows the values of the modified Bessel function of second kind 𝐾0(𝑘̃) 

and 𝐾1(𝑘̃) and their estimates for the argument 10−3 < 𝑘̃ < 0.4. In the considered 

range, the estimates (A3) and (A4) provide very accurate approximation for the exact 

values of Bessel functions. For instance, for 𝑘̃=0.1, the estimates (A3) and (A4) 

produce the values of 2.419 and 1, respectively, while the exact values of 

𝐾0(0.1) =2.427 and 0.1𝐾1(0.1) =0.985. We note that although 𝐾0(𝑘̃) → ∞  with 

𝑘̃ → 0, the convergence 𝐾0(𝑘̃) → ∞ is very slow, for example, 𝐾0(10−10) =23.14. 



 

149 
 

Then, under the soft matrix incompressibility assumption (𝜈𝑚=0.5), substitution 

of (A3) and (A4) into (A1) yields 

𝐾 ≈
8𝜋𝐺𝑚

−2ln⁡(
𝑒𝛾

2
𝑘̃𝑐𝑟)+1

=
4𝜋𝐺𝑚

−ln⁡(
𝑒
𝛾−

1
2

2
𝑘̃𝑐𝑟)

.                                        (A5) 

 

Figure A2. Comparison of effective stiffness K obtained by the approximate expressions Eq. 

(A5), Brangwynne et al.[113] and Zhao et al. [121] with the original formula (A1). 

Different ways to simplify the expression (A1) are reported in the literature (see, 

for example, Brangwynne et al.[113] and Zhao et al. [121]), where the second term in 

the denominator is usually neglected. However, according to the results presented in 

Figure 17 and Figure A1, even for relatively high shear modulus contrast, both terms 

in the denominator of expression (A1) are of the same order, and should not be 
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neglected. For example, for incompressible fiber and soft matrix (𝜈𝑓 = 𝜈𝑚=0.5), and 

shear modulus contrast 𝐺𝑓 𝐺𝑚⁄ = 106 , the normalized critical wavenumber 𝑘̃𝑐𝑟  is 

0.033, and 2𝐾0(𝑘̃𝑐𝑟) ≈ 7𝐾1(𝑘̃𝑐𝑟)𝑘̃𝑐𝑟 . Figure A2 shows a comparison of the exact 

value of effective stiffness 𝐾⁡with estimate (A5) as well as the approximations reported 

in [113] and [121] plotted as functions of 𝑘̃. We observe that the derived in this work 

expression (A5) shows an excellent accuracy in approximations of the original 

expression (A1). Moreover, we note that the inaccuracy of the approximations of the 

original expression decrease with a decrease in the normalized wavenumber. Since the 

normalized wavenumber decreases with an increase in shear modulus contrast (see 

Figure 17), it means that the approximate expressions ((A5), [113], [121]) provide 

more accurate results in the range of higher shear modulus contrast. 
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B. The energy landscape and instability of particulate 

composite 

The simulations are performed by using the finite element code COMSOL 5.2a. 

The material behavior of the soft matrix and stiff inclusion are modeled as nearly 

incompressible neo-Hookean hyperelastic model, whose strain energy density function 

is defined as 

𝑊(𝐅) =
𝜇

2
(𝐅: 𝐅 − 2) − 𝜇 ln(det⁡(𝐅)) +

𝛬

2
(ln(det⁡(𝐅)))2,                    (B1) 

where 𝜇  and 𝛬  denote the initial shear modulus and the first Lame constant, 

respectively. 𝐅 =
𝜕𝐱

𝜕𝐗
 is the deformation gradient, with mapping of a material point 

from the reference position X to its current location x. The ratio 𝛬/𝜇 = 103 is set 

resulting in a nearly incompressible response of the material. The soft matrix material 

is modeled with the initial shear modulus 𝜇𝑚 = 0.2⁡MPa ; the inclusion-to-matrix 

contrast ratio in shear moduli is chosen as 𝜇𝑖 𝜇𝑚⁄ = 103  so that the deformation 

mostly develops in the soft matrix material. The plane-strain conditions are imposed 

in the simulations. 
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Figure B1. Schematic illustration of the primitive unit cell and applied loading. 

To detect the onset of instability in periodic particulate soft composite and the 

associated critical strain 𝜀𝑐𝑟  and critical wavenumber 𝑘𝑐𝑟 , we employ the Bloch-

Floquet technique superimposed on the deformed state.[1,2] We consider the primitive 

unit cell (as shown in Figure B1), characterized by the periodicity aspect ratio 𝜂 =

𝑤 ℎ⁄ , and inclusion spacing ratio 𝜉 = 𝑑 ℎ⁄ . The procedures to identify the onset of 

instability are performed in two steps. 

Step 1: The primary solution for a finitely deformed state is obtained numerically. 

The macroscopic deformation is applied through imposing the periodic displacement 

boundary conditions on the edges of the unit cell; the periodic boundary conditions are 

defined as 

𝐮𝐵 − 𝐮𝐴 = (𝐅̅ − 𝟏)(𝐗𝐵 − 𝐗𝐴),                                 (B2) 

where A and B are the paired nodes periodically located at the opposite edges of the 

unit cell; 𝐮 = 𝐱(𝐗) − 𝐗 is the displacement field; 𝐅̅ is the macroscopic deformation 

gradient, which can be given as  

𝐅̅ = 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆2𝐞2 ⊗ 𝐞2,                                  (B3) 
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where 𝐞1  and 𝐞2  are the unit vectors in X and Y directions. 𝜆2 = 1 − 𝜀  and 𝜆1  is 

obtained from the solution of the boundary value problem. Moreover, rigid body 

motions are prevented by fixing a node at the corner of the unit cell. 

Step 2: the Bloch-Floquet boundary conditions are imposed on the edges of the 

deformed unit cell as follows:  

𝐮(𝐗 + 𝐑) = 𝐮(𝐗)𝑒−𝑖𝐊⋅𝐑,                                       (B4) 

where 𝐑 defines the distance between the paired nodes on the opposite edges of the 

unit cell; 𝐊 is the wave vector. Then, we solve the corresponding eigenvalue problem 

for a range of wave vectors 𝐊. These steps are repeated with gradually increased 

macroscopic deformation until a non-trivial zero eigenvalue is detected at a certain 

deformation level. Then, the corresponding applied deformation and wavenumber at 

which the appearance of the non-trivial zero eigenvalue is identified as the critical 

strain 𝜀𝑐𝑟 and critical wavenumber 𝐊𝑐𝑟. In particular, when 𝐊𝑐𝑟 → 𝟎, the macroscopic 

instability or so-called long wave mode is detected.[3] 

Once the primary solution is obtained, the average energy density can be 

calculated through integration over the unit cell area S, namely, 

𝑊(𝐅̅) =
1

𝑆
∫ 𝑊(𝐅̅, 𝐗)𝑑𝑆
Ω

.                                                 (B5) 

Figure B2 (a) shows the composite energy as a function of the applied 

deformation for the composite with 𝜂 = 1.0, 𝜉 = 0.8; the average energy density is 

normalized by the matrix shear modulus. The average energy function (shown in 

Figure B2 (a)) is convex for the considered compressive strain range. However, when 

the compressive strain exceeds a certain value, an addition of the shearing deformation 

results in a decrease in the composite average strain energy, thus indicating that by 



 

154 
 

developing shearing deformation the composite can attain a lower energy state, upon 

achieving the critical value of the compressive strain. This is illustrated in Figure B2 

(b) showing the normalized average strain energy density as functions of the 

compressive strain 𝜀 and amount of shear 𝛾. 

 

Figure B2. (a) Energy curve of the primary solution. (b) Average energy surface of the 

composite subjected to the combined compressive strain 𝜀 and shear 𝛾. The results are given 

for the composite with 𝜂 = 1.0, 𝜉 = 0.8. 
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C. Visualization of deformed configuration 

The distinct deformed configurations of the composite loaded in X-direction (a, 

c, e, g) or in Y-direction (b, d, f, h) are shown in Figure C1. For completeness, we 

show the deformed configuration in two selections of the enlarged unit cell: the stiff 

inclusions located in the middle of the unit cell (a, b, e, f); and the stiff inclusions 

located in the corners of the unit cell (c, d, g, h) (as shown in Figure C1). Although, 

the buckled patterns for the composite loaded in X- or Y-direction are similar in the 

initially post-buckling deformation stage (compare the deformed configuration in 

Figure C1 at 𝜀 = 0.05); at larger deformation levels, clearly distinct deformed void 

shapes are formed in the composite (compare the deformed configuration in Figure C1 

at 𝜀 = 0.2). Thus, the composite develops different patterns when loaded in different 

directions. 

 

Figure C1. Distinct pattern formation in the composite loaded in X- and Y- material directions. 
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D. Effect of matrix volume fraction on composite effective 

Young’s modulus 

The dependence of effective Young’s moduli of the composite loaded in X- and 

Y- material directions on matrix volume fraction is shown in Figure D1. The effective 

Young’s modulus is calculated as the initial slope of the stress-strain curve in small 

deformations. The numerical simulations have been verified against the analytical 

estimates for matrix-inclusion composite with hexagonal periodic unit cell [200]. Here, 

we consider nearly incompressible material for matrix and inclusion, and 𝜇(𝑖) 𝜇(𝑚)⁄ =

103 . The reported effective Young’s modulus is normalized by the corresponding 

maximum value of the modulus. We observe that the effective modulus of the 

composite increases with an increase in matrix volume fraction for both X- or Y- 

material loading directions, and the effective modulus of the composite loaded in Y-

material direction is always larger than that of the composite loaded in X-material 

direction. Moreover, for the geometrical limits, namely, 𝑐(𝑚) = 0.093⁡and⁡1 , the 

normalized effective modulus attains 0 and 1, respectively. 

 

Figure D1. Dependence of normalized effective Young’s moduli of the composite loaded in 

X- and Y- material directions on matrix volume fraction. 
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E. Evaluation of Poisson’s ratio 

To evaluate the value of Poisson’s ratio at different levels of applied compressive 

strain in experimentally observed pattern transformations, we identified the selected 

stiff inclusion centroids and representative elements by their row and column indices 

(see Figure E1). Considering the rotational symmetry of the buckled patterns (see 

Figure 29 (a, d)), the nominal strain for each considered representative element is 

calculated as 

𝜀X
[𝑖,𝑗]

=
𝑥(𝑖,𝑗+1)−𝑥(𝑖,𝑗)+𝑥(𝑖+1,𝑗+1)−𝑥(𝑖+1,𝑗)

4𝑎0
− 1,                           (E1) 

𝜀Y
[𝑖,𝑗]

=
𝑦(𝑖+1,𝑗)−𝑦(𝑖,𝑗)+𝑦(𝑖+1,𝑗+1)−𝑦(𝑖,𝑗+1)

2√3𝑎0
− 1.                           (E2) 

The corresponding Poisson’s ratio for each representative element is defined as 

𝜐XY
[𝑖,𝑗]

= −
𝜀X
[𝑖,𝑗]

𝜀Y
[𝑖,𝑗],   𝜐YX

[𝑖,𝑗]
= −

𝜀Y
[𝑖,𝑗]

𝜀X
[𝑖,𝑗].                                  (E3) 

Then, the average Poisson’s ratio 𝜐XY = 〈𝜐XY
[𝑖,𝑗]〉  and 𝜐YX = 〈𝜐YX

[𝑖,𝑗]〉  for the 

considered 15 representative elements are computed. 

 

Figure E1. Schematic diagram of the method for experiments to calculate Poisson’s ratio. 
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F. Calculation of the effective Poisson’s ratio 

Here we describe the procedure for calculating the effective Poisson’s ratio based 

on the experimental testing. In experiments, the deformation process was recorded by 

a high-resolution digital camera producing a sequence of frames at increasing strain 

levels. The position for the centroid of each circular stiff inclusion, marked by black 

dot, is tracked through the digital image analysis of the recorded frames. To diminish 

the boundary effect, we focus on the central part of the finite size specimens, where 

more uniform deformation is observed for each updated unit cell. The selected areas 

for the tested specimens are highlighted in green color in Figure F1 (b-e). The selected 

representative elements and stiff inclusions are numbered by their row and column 

indices. The applied strain for the representative element is calculated as 

𝜀XX
[𝑖,𝑗]

=
𝑥(𝑖,𝑗+1)−𝑥(𝑖,𝑗)+𝑥(𝑖+1,𝑗+1)−𝑥(𝑖+1,𝑗)−2𝐿X

0

2𝐿X
0 ,                             (F1) 

𝜀YY
[𝑖,𝑗]

=
𝑦(𝑖+1,𝑗)−𝑦(𝑖,𝑗)+𝑦(𝑖+1,𝑗+1)−𝑦(𝑖,𝑗+1)−2𝐿Y

0

2𝐿Y
0 ,                            (F2) 

where 𝐿X
0  and 𝐿Y

0  are defined in undeformed state, given in Figure F1 (a). The 

Poisson’s ratios for the considered representative element [i, j] when loaded in X- and 

Y-material directions are calculated as 

𝜐YX
[𝑖,𝑗]

= −
𝜀YY
[𝑖,𝑗]

𝜀XX
[𝑖,𝑗],                                                 (F3) 

𝜐XY
[𝑖,𝑗]

= −
𝜀XX
[𝑖,𝑗]

𝜀YY
[𝑖,𝑗].                                                 (F4) 

Finally, the effective Poisson’s ratio is given as the averaged value for nine 

selected representative elements. 
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Figure F1. Schematic diagrams (a) and selected areas (b-e) for calculation of the effective 

Poisson’s ratio. 
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G. Comparisons of long wave estimates and Bloch wave 

numerical analyses 

The long wave estimates of shear waves propagating in LCs subjected to any 

homogeneous deformation can be expressed as 

𝜔 = √𝑏/𝜌̅⁡,                                                              (G1) 

where 

𝑏 = 𝜇(𝐤 ⋅ 𝐁 ⋅ 𝐤) + (𝜇̃ − 𝜇)(𝐤 ⋅ 𝐅 ⋅ 𝐦)
2
+ +

𝜇−𝜇̃

𝛼2 (
4𝛽𝑘

2

𝛼
− 𝑘2) (𝛼 −

𝛽𝑘
2

𝑘2)              (G2) 

where 𝐤  is the wave vector, ⁡𝑘 = |𝐤|  is the wavenumber, ⁡𝐅 = 𝑣𝑎𝐅𝑎 + 𝑣𝑏𝐅𝑏  is the 

average deformation gradient; 𝐁 = 𝐅 ⋅ 𝐅
T

 is the average left Cauchy-Green 

deformation tensor; 𝐦 is the direction of LCs (see Figure 42 (a)); 𝛼 = 𝐦 ⋅ 𝐂
−1

⋅ 𝐦, 

𝛽𝑘 = 𝐤 ⋅ 𝐅
T

⋅ 𝐦, 𝜇 = 𝑣𝑎𝜇a + 𝑣𝑏𝜇b. 

Here we show the comparison of the analytical long wave estimates and Bloch 

wave numerical results for shear waves propagating in LCs in the direction of Bloch 

wave vector 𝜃0 = 𝜋/12. The examples are given for LCs subjected to a deformation 

of λ = 1.5⁡. Figure E1 (a, b) shows the comparisons for LCs with 𝑣𝑎 = 0.20, 𝜇𝑎 𝜇𝑏⁄ =

10 and 𝜇𝑎 𝜇𝑏⁄ = 500, respectively; Figure E1 (c, d) shows the results for 𝑣𝑎 = 0.05, 

𝜇𝑎 𝜇𝑏⁄ = 10 and 𝜇𝑎 𝜇𝑏⁄ = 500, respectively. Here we consider LCs with the phases 

characterized by identical densities. The continuous black curves represent the Bloch 

wave numerical results, and the dash-dotted red curves correspond to the long wave 

estimates. For LCs with small volume fractions and shear modulus contrasts, such as 

shown in Figure E1 (c), 𝑣𝑎 = 0.05, 𝜇𝑎 𝜇𝑏⁄ = 10, the long wave estimate is in good 

agreement with the result of simulation up to the wavelengths comparable to the period 
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of LC. However, with an increase in volume fraction and shear modulus contrast, the 

difference increases. For instance, for LCs with 𝜇𝑎 𝜇𝑏⁄ = 10, 𝑣𝑎 = 0.05⁡and 𝑣𝑎 =

0.20, the long wave estimate curves and Bloch wave numerical curves start to differ 

after wavenumber 𝑘𝑑/(2𝜋) ≈ 0.4  and 0.2, respectively. For LCs with 𝜇𝑎 𝜇𝑏⁄ =

1000,⁡⁡the significant differences are observed after the wavenumber 𝑘𝑑/(2𝜋) ≈ 0.05 

(𝑣𝑎 = 0.05) and 0.03 (𝑣𝑎 = 0.20), respectively. Thus, the difference of long wave 

estimates increases with an increase in volume fraction and shear modulus contrast. 

This observation is similar to the one for three dimensional hyperelastic fiber 

composites [110]. 

 

Figure E1. Comparisons of long wave estimates and numerical analyses for shear waves 

propagating in LCs with 𝜃0 = 𝜋/12. LCs are considered as 𝜌𝑎 𝜌𝑏⁄ = 1 and (a)⁡𝑣𝑎 = 0.20, 

𝜇𝑎 𝜇𝑏⁄ = 10  (b) 𝑣𝑎 = 0.20 , 𝜇𝑎 𝜇𝑏⁄ = 500  (c) ⁡𝑣𝑎 = 0.05 , 𝜇𝑎 𝜇𝑏⁄ = 10  (d) ⁡𝑣𝑎 = 0.05 , 

𝜇𝑎 𝜇𝑏⁄ = 500. The LCs are subjected to a tension of  λ = 1.5. 
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