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Solution to the problem of a spherical balloon made out of an electroactive polymer which is subjected

to coupled mechanical and electrical excitations is determined. It is found that for certain material

behaviors instabilities that correspond to abrupt changes in the balloon size can be triggered. This can

be exploited to electrically control different actuation cycles as well as to use the balloon as a micro-

pump.

& 2011 Published by Elsevier Ltd.
Electroactive polymers (EAP) are materials that change their
size and shape in response to electrostatic excitation. Roughly
speaking, the electrostatically induced Maxwell stress results in
the deformation of the material. Various EAP based actuators have
been considered in the past [1–7]. A major limitation of these
materials originates in the need for relatively large electric
fields [8]. However, the usage of instability phenomena [9–13]
may reduce the intensity of the required electric field. Accord-
ingly, we analyze the response of EAP balloons and demonstrate
that a relatively small electrostatic field can be used as a trigger
for large deformations. We follow the theory of nonlinear electro-
elasticity [14,15], where the total stress is

sðtÞij ¼ s
ðcÞ
ij þs

ðmÞ
ij : ð1Þ

Here, sðcÞij is the Cauchy mechanical stress, sðmÞij ¼ ee0EiEj�ðe0=2Þ
EnEndij is the Maxwell stress induced by the electric field E, e is a
dielectric modulus, and e0 is the vacuum permittivity. We assume
that e¼ 6, which is typical for common polymers, is constant [16].
We adopt a quite general constitutive law for incompressible

isotropic materials, in which the principal stresses are

sðcÞk ¼
XN

p ¼ 1

mpl
ap

k �q, ð2Þ

where lk are the principal stretches, q is an arbitrary hydrostatic
pressure, mp are shear moduli, and ap are material constants. In
the case N¼1 with a1 ¼ 2, the model (2), which is commonly
denoted as Ogden model, reduces to the neo-Hookean one.
With N¼3 an excellent correlation with experimental data for
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elastomers is revealed [17]. Accordingly, we assume the following
typical values for the elastic constants of soft polymers [17]
m1 ¼ 6:3� 105 Pa, m2 ¼ 1:2� 103 Pa, m3 ¼�1� 104 Pa, a1 ¼ 1:3,
a2 ¼ 5, and a3 ¼�2. In the vicinity of the reference configuration
this polymer behaves like a neo-Hookean material with shear
modulus m¼ 1

2

P3
p ¼ 1 mpap ¼ 4:225� 105 Pa.

Consider a spherical balloon made out of a dielectric elastomer
with inner Ri and outer Ro radii. Here and thereafter, the notations
ð�Þi and ð�Þo are used to specify quantities at the inner and outer
radii, respectively. The thickness of the balloon wall is H¼ Ro�Ri.
The inner and outer surfaces of the balloon wall are covered with
thin electrodes with negligible elastic modulus [1]. With these
electrodes electric field is induced across the wall. The balloon can
be inflated with inner pressure Pi, and electrically exited with
electric potential jo between the two electrodes. The associated
boundary conditions are

sðtÞrr ðriÞ ¼�Pi, sðtÞrr ðroÞ ¼ 0, jðriÞ ¼ 0, jðroÞ ¼jo, ð3Þ

where r is the radius in the deformed configuration.
In spherical coordinate system the principal stretch ratios are

lr ¼
dr

dR
¼ l�2, ly ¼ lf ¼

r

R
¼ l, ð4Þ

where lðRÞ ¼ ð1þðRo=RÞ3ðl3
o�1ÞÞ1=3. Maxwell equations reduce to

Laplace equation for the electrical potential j, which is solved
in the deformed configuration. The components of the electric
field E��rj satisfying the electrostatic boundary conditions
in (3) are

Er ¼
jorori

ri�ro

1

r2
, Ey ¼ Ef ¼ 0: ð5Þ
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Fig. 1. Deformation of a thick-wall balloon due to (a) inflation pressure and

(b) electrostatic excitation. The continuous and dashed curves correspond to

Ogden and neo-Hookean materials, respectively.
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Fig. 2. The deformations of balloons with different wall thicknesses as functions of the

wall approximation (8).
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The solution of the equilibrium equation

d

dr
sðtÞrr ¼�

2

r
ðsðtÞrr �s

ðtÞ
yyÞ, ð6Þ

with boundary conditions (3) and relations (1), (2) and (4) reads

Pi ¼
XN

p ¼ 1

2mp

3
B l�3

i ,l�3
o ,1�

ap

3

h i
þB l�3

o ,l�3
i ,1þ

2ap

3

� �� �

þ
1

2t2

ðt�1Þ2

l2
i l

2
o

t4l4
i �l

4
o

ðtli�loÞ
2
ee0E2

0, ð7Þ

where B½z0,z1,a� ¼
R z1

z0
xa�1ð1�xÞ�1 dx is the generalized incom-

plete Beta function, t¼ Ri=Ro, and E0 ¼jo=H is a referential
electric field.

Results for a thick-wall balloon (t¼0.8) are presented in Fig. 1.
Shown in Fig. 1(a) is the inflation pressure versus the stretch ratio
for a few fixed electric fields. Fig. 1(b) shows the electric field
versus the stretch ratio for a few values of the inflation pressure.
The results for the Ogden and the neo-Hookean materials are
denoted by continuous and dashed curves, respectively.

With the increase in the inflation pressure the balloon slowly
expands until a critical pressure is reached. Further increase in
the pressure leads to a sudden jump in the size of the balloon to a
new stable state. This phenomenon is commonly denoted ‘‘snap-
through’’. Application of electric field reduces the critical pressure
at which the balloon snaps. We observe that this effect cannot be
recovered with the neo-Hookean material [18]. Similarly, electro-
static excitation which is applied in the undeformed configuration
leads to the expansion of the balloon up to a critical electric field.
Further increase in the electric potential results in a snap-through
of the balloon. When applied to a pre-inflated balloon, the critical
electric field at which the instability occurs decreases. We note
that the slopes of the curves along the secondary branches (the
post-instability) are markedly lower than the ones along the
primary branches. This implies that once the balloon snaps to
its new state, smaller variations in the electric field result in larger
actuations.

For thin-wall spheres [3] Eq. (7) can be simplified to

Pi ¼
2 H

R

XN

p ¼ 1

mpðl
ap�3
�l�2ap�3

Þ�e0eE2
0l

 !
: ð8Þ
0.9

0.8

0.99

 0.6

.01 

2010

pressure with fixed electric excitation. The dashed curve corresponds to the thin-



S. Rudykh et al. / International Journal of Non-Linear Mechanics 47 (2012) 206–209208
With N¼1 and a1 ¼ 2, Eq. (8) further reduces to the case of a thin-
wall neo-Hookean sphere [18]. In Fig. 2(a) comparison of solution
(7) with approximation (8) is carried out for different thickness
ratios. We note that Eq. (8) provides a fair estimate for t40:9.
However, for micro-actuators with a diameter of a few tenth of
micrometers this approximation will lead to considerable errors.

We consider next two snap-through cycles in which the inner
pressure is fixed and the actuation is electrically controlled. To
this end we show in Fig. 3 the deformation of a thin-wall balloon
(t¼0.99) as a function of (a) the inflation pressure and (b) the
electrostatic excitation.

The first actuation cycle is ‘‘irreversible’’, and once the balloon
deforms, it remains in a deformed state even after the removal of
the electric field. This cycle is represented by the path A–B–C–D.
Initially, the balloon is inflated, with jo ¼ 0, to point A. Applica-
tion of a relatively low electric field will result in a expansion to
point B, where the balloon snaps to a stable state at point C. Upon
removal of the electrostatic field, the balloon shrinks to point D
that corresponds to a stable configuration under zero electric
excitation.

The second actuation cycle is ‘‘reversible’’ in the sense that
upon removal of the electric excitation the balloon returns to the
original configuration. This cycle corresponds to the path M–N–
Q–S. As before, the balloon is initially inflated with jo ¼ 0, to
point M. Application of electric field results in gradual inflation to
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Fig. 3. Actuation cycles of a dielectric balloon subjected to (a) inflation pressure

and (b) electrostatic excitation.
point N, followed by abrupt expansion to point Q. Removal of the
electric potential will result in shrinking of the balloon to point S,
followed by a jump back to point M.

Lastly, in Fig. 4 we examine the usage of the dielectric balloon
as a micro-pump. Consider a balloon with inlet and outlet
unidirectional valves. When the balloon expands at a pressure
lower than a specific negative threshold pressure P1 the inlet
valve opens and let liquid flow into the balloon. When the balloon
shrinks, at some positive threshold pressure P2 the outlet valve
opens and liquid flows out. In a way of an example, in Fig. 4 the
normalized pressures are P1¼�0.29 and P2¼0.4. The pumping
cycle starts at point A at which the internal pressure is slightly
lower than P2. Once the balloon is excited, due to the electrostatic
forces that act to shrink its wall, the internal pressure drops to P1

at constant l (since the balloon cannot deform as long as both
valves are close). At this point the inlet valve opens, and the
balloon expands while liquid flows in (segment B–C). At point C,
due to the instability, the balloon further expands to point D. This
is a stable point at which the inlet valve closes, terminating the
sucking stage. As the electric excitation is removed, due to
the elasticity of the balloon the inner pressure increases as long
as the pressure is lower than P2 (segment D–E). At point E the
pressure reaches P2, the outlet valve opens and liquid flows out of
the balloon as it starts to shrink. This process continues till the
balloon returns back to point A through point F.
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Fig. 4. Pumping cycle of a dielectric balloon subjected to (a) inflation pressure and

(b) electrostatic excitation.
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