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Abstract. The stability of anisotropic electroactive polymers is investigated. A general criterion for the onset of instabilities
under plane-strain conditions is introduced in terms of a sextic polynomial whose coefficients depend on the instantaneous
electroelastic moduli. In a way of an example, the stable domains of layered neo-Hookean dielectrics are determined. It is
found that depending on the direction of the electrostatic excitation field relative to the lamination direction, the critical
stretch ratios at which instabilities may occur can be either larger or smaller than the ones for the purely mechanical case.
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1. Introduction

Electroactive polymers (EAP) are promising materials which enable to convert electrical energy into
mechanical one [5,19,20]. The basic theory of the elastic dielectric was developed by Toupin [28] and was
recently revisited by McMeeking and Landis [16], Dorfmann and Ogden [10] and Vu and Steinmann [31].
The class of transversely isotropic materials was considered by Bustamante [6]. Wide-spread usage of
EAPs is limited because of the need for large electric fields [2,24]. To overcome this difficulty the usage of
heterogeneous electroactive materials was proposed recently by Zhang et al. [14,32]. Indeed, recent theo-
retical works demonstrate that this approach may lead to marked enhancement of the electromechanical
coupling (e.g., deBotton et al. [9] and Tian et al. [27]). Clearly, a comprehensive investigation of these
composite dielectrics is significant toward overcoming their limitations and advancing their implementa-
tion in “real life” applications. In this regard, an important aspect of the behavior of EAP composites
concerns the possible developments of instabilities under certain electromechanical loading conditions.

Commonly, the instability phenomenon is considered as a negative one that should be predicted and
avoided. However, in some cases, it can be used for our benefit. For example, as a trigger for large deforma-
tions [17,23] or as a wave guide filtering [12]. Electromechanical instabilities in homogeneous electroactive
materials such as pull-in instabilities [21] and electrical breakdown [15] were studied experimentally. The-
oretical study of the incremental governing equations was conducted by Dorfmann and Ogden [11]. More
recently, Bertoldi and Gei [4] investigated instabilities in soft neo-Hookean layered dielectrics in which
the electric field is perpendicular to the layers and pre-stretch is applied along the layers.

In this study, we examine the stable domain of anisotropic electroactive materials undergoing large
deformations. We introduce a general condition for the onset of instability in plane problem. In a way of
an example, we examine the class of layered media with isotropic behavior of the layers. We chose this
class for two reasons. The first is related to the fact that expressions for the coupled electromechanical
behaviors of anisotropic EAPs are not available in the literature, and since layered materials can be
manufactured, the outcome will correspond to a feasible class of anisotropic materials. For this reason,
we also chose a widely accepted form for the phases behavior, one that can provides an approximation
to more complicated behaviors in the limit of small to moderate deformations. The second reason stems
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from the fact that for this class of materials a rigorous explicit expression for the homogenized anisotropic
energy-density function can be determined [4,8]. By making use of this expression for their overall energy-
density function, we identify the stable domain of these materials under different loading conditions and
demonstrate the significance of their overall symmetry.

In passing, we recall that in heterogeneous materials instabilities at different wavelengths may appear
[30]. These may range from the size of a typical inhomogeneity to that of many representative volume
elements. In the purely mechanical case it was shown by Geymonat et al. [13] that stability analyses of the
homogenized constitutive behavior correspond to the long wave limit. This implies that along different
loading paths instabilities at shorter wavelengths may precede the macroscopic ones. Thus, the stable
domain that is determined by analyzing the homogenized constitutive behavior of a composite provides
an upper bound for its actual stable domain. In this study, we do not consider instabilities other than
the macroscopic ones as our goal is to analyze the significance of anisotropy on the stable domain of elec-
troactive materials. To this end, we exploit the fact that an explicit expression for the overall behavior
of layered dielectrics can be determined and make use of this expression as a representative one for the
class of anisotropic materials.

The work is structured as follows: in the next section we start with the required theoretical background
and continue with the introduction of the criterion for the onset of instability in anisotropic EAPs under
plane-strain conditions. This is followed by a derivation of the effective energy-density function for layered
composites and a few numerical examples that highlight the dependency of the bifurcation diagrams on
anisotropy along different loading paths.

2. Theory

The Cartesian position vector of a material point in a reference configuration of a body %, is X, and its
position vector in the deformed configuration % is x. The deformation of the body is characterized by

Ix(X)

invertible and hence F is non-singular. Accordingly, J = det F # 0. Furthermore, since J is the volume
ratio between the volumes of an element in the deformed and the reference configurations, on physical

the mapping x = x(X). The deformation gradient is F = . We assume that the deformation is

dv
d 3 that J = — > 0.
ground, we assume tha av >

The differential operators in the reference configuration are denoted Div(e) and Curl(e), and the cor-
responding operators in the current configuration are div(e) and curl(e), respectively. We assume that
the deformation is quasi-static and no magnetic field is present. Consequently, Maxwell equations reduce
to

divD =0, culE=0. (1)

Here, D is the electric displacement, and E is the electric field in the current configuration.
Following Dorfmann and Ogden [10], these equations can be rewritten in terms of the referential
electric field E° = FTE and the referential electric displacement D° = JF~!'D as

DivDY =0 and CurlE® = 0. (2)
In the absence of body forces, the equilibrium equation is
DivP =0, (3)

where P is the total nominal stress tensor. The corresponding total true or Cauchy stress tensor is related
to the nominal stress tensor via the relation o = J~!PFT. We consider hyperelastic dielectrics whose
behaviors are characterized by a scalar-valued augmented energy-density function ¥(F, DY) such that
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For the class of incompressible materials

oV (F,D%)
OF

where p is a pressure-like Lagrange multiplier, and the expression for E° is similar to the one in Eq. (4).
The incremental governing equations are (Dorfmann and Ogden [11])

DivP =0, DivD’=0 and CwlE’ =0, (6)

P= +pF 7T, (5)

where 15, ]50, and E° are infinitesimal increments in the nominal stress, the referential electric displace-
ment and the referential electrical field, respectively. The linearized constitutive equations are expressed
in terms of the electroelastic moduli tensors

0% 0% 0%
Ay = G = &Y = 7
W QF0Fy T 0F,0DY TP 9DYaDY’ @)
such that
Py =5 Fu+9%.Dy and E; =9 Fi, + &LDY
ij = Dkl + 9D, an i = Gkl jr + 605 (8)
For an incompressible material, the linearized constitutive relations are
Pij = A5 Fa + 95, D)) — pFi;T +pFﬁ§szEZl 9)
and
E; =940 Fix + &) D3, (10)

where p is an incremental change in p.

Consider, next, the current configuration as a new reference configuration. We recall that Fy =
Vk,nFni, where v; = &; is an increment in z;. The corresponding counterparts of P, EO, and D° in the
current configuration are

T=J'PF', D=J'FD° and E=FTE". (11)
Following Dorfmann and Ogden [11] once again, the corresponding incremental governing Eq. (6) are
divi =0, divD=0, cwlE=0. (12)
In this configuration, the linearized constitutive equations are
Tij = “ijivig + Gije D — DOij + pvj.s (13)
and
Ei = Gjivjr + &5 D;, (14)
where
i = I FaFipiogg, Gk = FjaFg Gog  and & = JF [ Fl 60, (15)
These electroelastic moduli tensors possess the symmetries
ikl = Diiij,  Gigk = G and - &y = Eji. (16)

Upon substitution of the linearized constitutive relations (13) and (14) in the governing Eq. (12), the
following equations are revealed

Fijravetj + %GiixDij —Di =0,  espi (gjkivj,kp + éz%jﬁj,p> =0, (17)

where egp; is the Levi-Civita symbol.
In order to determine the onset of instabilities, we seek a solution for Eq. (17) in the form

Ui:'gif(é'x)> p:q~f/(é'x)a -Di:dif/(é'x)’ (18)

where f is a continuous and sufficiently differentiable function, and a is a unit vector.
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We assume that the material undergoes plane-strain deformations and there is no out-of-plane com-
ponent of the electric displacement field. In this case, by making use of the incompressibility constraint
divv = 0 together with Maxwell equation for D we find that 9;a; = 0 and d;a ;a; = 0 and hence d = Y0;,
where 7 is a real coefficient. Thus, upon substitution of Eq. (18) together with the relation d; = = vv; in
Eq. (17) and eliminating the pressure increment, we end up with a polynomial equation for £ = as/a,
namely

D0 + T58® + Tyt + T3 + o2 +T16 + Ty = 0. (19)
The coefficients I'; are given in terms of the electroelastic moduli

Lo = 9Py — 12160,
I'y = 2 (@h121812 + (Fr121 — Dai22) a2 — Gi22 (D112 + G121 — Da22)),
Iy = —ah121611 — 4 (121 — Dor22) E12 — (Fh111 — 290122 — 2901221 + Ha222) En2

+ 29192 (G111 — Groo — Don) + (D12 + Grio1 — Do)’
I's = 2((A121 — Dho122) E11 + (Hi111 — 291122 — 291201 + a22) E12

+ (P22 — H112) 622 + (G121%122 — (G111 — G122 — Do21) (G112 + G121 — Do22))),
Ty = — (@111 — 294122 — 2901991 + Gagaa) 11 + 4 (D112 — F1222) Ei2

— 212602 + (D122 + Gos1 — %111)° — 29121 (D112 + D21 — Do),
s =2 ((222 — H112) 11 + 212812 + G121(G111 — Gh2e — Do21)),
T = 9% — 1212601

(20)

Whenever a real solution for Eq. (19) exists, instabilities may occur. The corresponding value of v that
relates the amplitudes of the incremental changes in the electric displacement and the displacement is

_ G113 + (G111 — Gro2 — Go21) €2 + (Doza — G112 — G121) € + G122
&g + (E11€ — 2612) € .

We conclude this section noting that condition (19) is an extension to the class of anisotropic materials
of the corresponding result derived by Dorfmann and Ogden [11] for the class of isotropic materials. In
the following section, we apply this general criterion to a specific class of anisotropic materials for which
analytical expressions for the electroelastic moduli can be determined. Yet, before we proceed to this
task, we stress that condition (19) can be used in conjunction with numerical simulations of more general
anisotropic materials for which analytical solutions cannot be determined. In these cases estimates for the
electroelastic moduli can be determined with appropriate simulations of small variations in the boundary
conditions.

(21)

3. Applications to soft dielectric laminates

In a way of an example, we examine the class of layered composites with two isotropic and incompress-
ible phases. As was mentioned in the introduction, from a practical viewpoint, this is a feasible class of
materials and, from a theoretical viewpoint, their overall behavior can be determined explicitly (deBotton
et al. [9]; Tevet-Deree [26]). The resulting closed form expressions for the electroelastic moduli can be
conveniently utilized in the stability analysis. Bertoldi and Gei [4] considered this class of composites
under specific loading conditions that are aligned with the layers. Here, we extend this analysis and
examine the influence of more general loadings on the onset of instabilities. In this regard, it is worth
mentioning that enhancement of the mechanical response to electrical excitation crucially depends on the
ability to furnish appropriate soft modes of deformation by controlling the angle between the layers and
the electrical excitation field [9,26].
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FiGc. 1. Electroactive layered composite subjected to electric excitation

The volume fractions of the phases are ¢(™ and ¢/) = 1 — ¢™). Geometrically, the layers are charac-
terized by their thicknesses h™ = ¢(™h and h) = ¢ h, where h = ™ + h(f). Here and thereafter,
we denote a field in phase r by (8)("), in particular (¢)/) and (e)(") correspond to the stiffer and the
softer phases, respectively. The direction normal to the layers plane in the undeformed configuration is
the laminate direction N, and M is a unit vector tangent to the interface (see Fig. 1). Specifically, in
terms of the referential lamination angle ©,

N =sin©®8& +cos®é, and M = cosOé&, —sin© &,. (22)

Assuming that all fields are homogeneous in each phase, we have that the mean deformation gradient,
the nominal electric field and the electric displacement are

F = cmFm 4 (D& FO = MEIm) 4 (DEIS) DO = (mpoim) 4 (NPOW), (23)
Following deBotton [7], by making use of the displacement continuity condition across the interface
FOm — f <I+c<f>aM®N), F) = F (I—c<m>aM®N), (24)
where the scalar « is obtained from the traction continuity condition
(Pw) _ P(f)) N =0. (25)
Similarly, since the interfaces are charge free, the continuity condition for the electric displacement is
(DO (m) _ DO(f)> ‘N=0 or D™ _DOoU)— gNI, (26)
and, together with the last of Eq. (23), we conclude that
DM =D 4 M and D) =D° — ™M, (27)
where 3 is a scalar to be determined from the continuity condition for the nominal electric field
(EO (m) _ g0 (f>) M = 0. (28)

The energy-density functions of the isotropic phases can be expressed in terms of the invariants of
the Cauchy—Green strain tensor C = FTF and the referential electric displacement D° [10]. A set of six
invariants can be expressed in the form

1
I, =TrC, I,= - (I? = Tr(CQC)), I;=detC,
! 2= (I = Tr(CC)), Is=de (29)

I,,=D". D' I,,=D".CD’, I =D°.C?D".
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Thus, the energy-density functions of the isotropic phases can be written as scalar functions of these six
invariants in terms of the local fields F("™) and D°("). In particular, for composites with neo-Hookean
dielectric phases the energy-density functions are

ooy Ise (30)

v (FO DOy = LT) (IY) _ 3) +
’ 2

where ;") are the shear moduli, and (") are the dielectric constants of the two phases. In this work, we
restrict our attention to this class of phases behaviors for two reasons. The first stems from the fact that
explicit expressions for the corresponding effective electroelastic moduli can be determined. The second
is that, at moderate stretch levels where instabilities frequently onset, this energy-density function can
be viewed as a first-order estimate for more general energy-density functions [e.g., 25]. Moreover, in the
purely mechanical case, it was recently found that the critical stretch ratios at which instabilities occur in
composites with neo-Hookean phases can serve as good estimates for corresponding critical stretch ratios
for composites with Gent phases [1,3,22].
Upon substitution of Eq. (30), with the aid of Eq. (5) for P(") and E°("), in Eqs. (25) and (28), we
find that
p) — pm) FN - FM

@ T D D FNLFNC (31)

where

= pmem) — (N FDO . FM N p) — ym) 50 NI (32)
(cm)p(h) + c(f),u(m)) EFM-FM  cmulh) + )y (m) ’
and & = c(Me(m) 4 (D)
Once the solution for the boundary value problem is given in terms of the local fields in both phases,
the expression for the macroscopic energy-density function of the composite can be expressed as the
weighted sum of the energy-density functions of the two phases, namely

U(F,D% = Y Mu0(F, D). (33)

r=m,f

The expressions for the average nominal stress and electric field are

1 or™ 1 ar\" _
_ = (r) (r) 1 5 _ -T
b= 2T:Zm A (“ oF Tz oF ) PF (34)
and
_ 1 ) 8I(T)
0o_ = 5
¥Tg 2 ane (35)

The corresponding overall electroelastic moduli are

1 821(7") 1 62[(7")
0 == (r) [ (221 95
g =5 D ¢ (“ OFOF | e OFOF |’

r=m,

1 ) 2"
@b — - _ 5 36
ik :Zm:f&(” OFODO’ (36)

T

go-ly e
Yvoo2 4 fs(") oDYHDO’
Finally, with the aid of Eq. (20), the appropriate coefficients can be determined and substituted in the
general instability condition (19).
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Fic. 2. Bifurcation diagrams of layered materials with different lamination angles as functions of the critical stretch ratio
and electric displacement field. The volume fractions of the stiffer phase is ¢(f) = 0.2 for (a) and (b) and ¢(/) = 0.8 for (c)

and (d); the phase constants ratios are k = ¢t = 10. Figures (a) and (c) are for small lamination angles, and figures (b) and
(d) are for large lamination angles

We examine the behavior of a composite which is subjected to electric excitation corresponding to a
nominal electric displacement in the form

D% = D° (cos pé; + sin &), (37)
and macroscopically stretched according to the homogeneous deformation gradient
F=X1 06 +) '8 Q8+ 85 ® é;. (38)

We consider first the case p = 7/2 and the angle of lamination relative to the applied loading var-
ies. The loading configuration is schematically shown in Fig. 1. We make use of Egs. (19) and (36) to
determine the stable domain of the layered EAP.

Shown in Fig. 2 are the analytical estimates for the onset of instabilities in materials with ¢(f) = 0.2
(Fig. 2a, b) and ¢f) = 0.8 (Fig. 2c, d), stiffer-to-softer shear moduli ratio k¥ = pu)/u(™ = 10 and
dielectric constants ratio ¢t = (/) /E(m) = 10. Following Triantafyllidis et al. [30], we plot failure sur-
faces that separate stable domains from these in which instabilities may develop. These bifurcation
diagrams are presented as functions of the critical stretch ratio A. and the critical electrostatic excitation
D,, = D°/\/ume(m) for composites with different lamination angles. The dashed curves for © = 0 in
Fig. 2a, ¢ are identical to the ones determined by Bertoldi and Gei [4].

We note that in agreement with earlier findings [e.g., 1,18,22,29], in the purely mechanical case
(D, = 0), the composites become unstable only under compression in the layers direction. Moreover,
as the angle between the loading and the lamination directions increases, there exists an angle beyond
which no macroscopic instability occurs [1]. This corresponds to the situation where the layers rotate to
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an angle 6 = 7/4 in the deformed configuration [22]. At this angle the loading on the layers switches from
compression to tension. Consequently, beyond this point no instability is detected. In contrast to the
purely mechanical case, under coupled electromechanical loadings instabilities may develop in composites
with lamination angles beyond the critical one. The failure surfaces of composites with lamination angles
smaller than the critical angle are shown in Fig. 2a, ¢, and these of composites with lamination angles
larger than the critical one are shown in Fig. 2b, d. To highlight the transition from small to large lam-
ination angles we added the curves for the failure surface of a composite with lamination angle slightly
larger than the critical angle (© = 157/128) to Fig. 2a, c.

We observe that, in a manner similar to one observed in the purely mechanical case, at low electro-
static fields an increase in the lamination angle stabilizes the composites. However, this effect decays as
the applied excitation field is increased and beyond a certain value the effect is reversed. Specifically, as
can be seen in Fig. 2a, c, at values of D,, larger than ~ 3.0 for ¢(/) = 0.2 and ~ 10.0 for ¢(f) = 0.8, an
increase in © may result in earlier onsets of instabilities.

We note that whenever © = nr and 7/2+nm, or n =0, 1, 2.. ., the coefficients 'y, '3, T'5 in Eq. (19)
vanish and the condition for ellipticity loss can be written in terms of the bi-cubic polynomial

Dc0 + Ty + 982 + T = 0. (39)

For the case © = 0, this result was previously determined by Bertoldi and Gei [4]. The corresponding
relation between the critical stretch ratio and the electric excitation is

- 2 - 1/4
T

where & = () /() 4 () /Em)—l L= (e /) 4 clf) /Mm)—l, and i = ™ (™ 1 D () Here,
we find that for the case © = /2, the critical stretch ratio is

(862 62)”
)

In the purely mechanical case (D,, = 0), both expressions (40
well-known result of Triantafyllidis and Maker [29].

The bifurcation diagrams of composites with phase volume fractions ¢/) = 0.2 and material constants
similar to the ones considered previously are shown in Fig. 3. To highlight the role of the anisotropy
of the material this time the critical stretch ratios are presented as functions of the lamination angle
for different electrostatic loading conditions. The curves with square, triangle, white circle, and black
circle marks correspond to excitation fields D,, = 1.37,2.05,2.73, and 4.0, respectively. The dashed curve
represents the purely mechanical case. This curve is symmetric with respect to the loading direction
© = 0, that is A\.(0) = A\(—0©), and is also m-periodic, that is, Ac(©) = A\e(© +7j), j=1,2,3....
Additionally, we note that A\.(©) = 1/A.(0© + 7/2). In contrast to the purely mechanical case, in general,
the electromechanical failure surfaces do not possess the last symmetry due to the different contributions
of the electric excitation in the two perpendicular cases.

We observe that in the purely mechanical case composites with larger lamination angles are becoming
more stable [18]. This is also true at moderate levels of electric excitations where we note that the topmost
curves that emerge from the ® = 0 axis have a negative slope up to a certain lamination angle beyond
which no instability is detected. However, at large enough electrostatic excitation, the direction of the
slope is reversed (e.g., the curve marked by black circles that corresponds to D,, = 4.0). Furthermore,
under large electrostatic fields, instabilities may occur at any lamination angle.

A somewhat different observation is associated with the case where the layers are aligned with the
electric field (i.e., ©® = 7/2). In this limit the electric field stabilizes the material and larger tensile stretch
ratios (that correspond to larger compressions along the layers) are required for the onset of instabilities.
At moderate levels of electric fields, as the lamination angle of the composite is decreased toward © = 0,
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Fic. 3. Bifurcation diagrams of layered materials as functions of the critical stretch ratio and the lamination angle at
different levels of electric excitations. The volume fraction of the stiffer phase is ¢(/) = 0.2, the shear moduli ratio is k = 10,
and the dielectric constants ratio is ¢ = 10
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Fic. 4. The failure surfaces of layered composites with different lamination angles as functions of the critical stretch ratio

and volume fraction of the stiffer phase subjected to a fixed electrostatic excitation D, = 4.0. The shear moduli ratio is
k = 10, and the dielectric constants ratio is ¢ = 10

the critical stretch ratio increases. However, once again at large levels of electric excitations, the trend
is reversed (see the curve corresponding to D,, = 4.0). In this case, as the lamination angle is decreased
from © = 7/2, instabilities may occur at lower stretch ratios.

The influence of the volume fraction of the phases on the stability of the composites is depicted in
Fig. 4. Bifurcation diagrams for composites with lamination angles © = 0, 7/16, /8, and 37 /16 subjected
to electric excitation D,, = 4.0 are plotted as functions of the volume fraction of the stiffer phase (the
dashed curve and the continuous curves marked by squares, triangles, and circles, respectively).

At both limits of dilute volume fractions of the stiff and the soft phases the materials are stable. We
note, however, that the composites with low volume fractions of the stiffer phase are less stable than
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F1G. 5. Electroactive layered composite subjected to electric excitation

those with higher concentration of the stiff phase. This tendency is more pronounced for composites with
larger lamination angles, for which at the low concentration end the critical stretch ratio is higher than
the one for composites with © = 0. Conversely, when the volume fraction of the stiffer phase is higher, the
critical stretch ratio is lower than the one determined for ©® = 0 and at high enough volume fractions the
material is stable under the applied electrostatic excitation. We emphasize, however, that at higher elec-
trostatic excitations this trend is reversed, and composites with large lamination angle become less stable
even with ¢/) > 0.5. This can be deduced from Fig. 2¢ that corresponds to materials with ¢/) = 0.8.
Specifically, note the failure surface for © = 157/128 (marked with clear triangles) that demonstrates
that at D,, > 10 the unstable domain of this material is larger than the ones for composites with smaller
lamination angles.

Next, we consider the case when the composite is subjected to aligned deformation, i.e., ® = 0 in
Eq. (38) and the angle of applied electric field ¢ in Eq. (37) varies. A schematic representation of this
loading mode is depicted in Fig. 5. In this case, the non-zero components of the electroelastic moduli are

E =1)5, =&z =1/¢, (42)
1 DO cos DOsin
5%11 = Y100 = G133 = Do10 = D313 = f@, G191 = Do11 = ng
1 DOsin ¢
Yooy = Gog3 = Y93 = ——— 43
5 Y222 233 323 SERL (43)
D92 ¢os?
111 = D131 = Saazo = N2 <,u + €<p>,
D°2 cos psin
121 = D211 = o120 = Saga1 = 3132 = 3231 = #7
_ D%2gin? _
G313 = Glago3 = 3333 = [I, 212 = (H + €<p> A2 (44)
DV2¢—¢ i— i
rom = s = 1 — cos2p) + L P
1221 2112 = Sy o (1 —cos2¢) + h
D2 gin? _
@ly121 = D111 + D221, Gazaa = W32 = <ﬁ + é@) A2
Obviously, for the cases when ¢ = nm and 7/2 4+ n7w, where n = 0, 1, 2,. .., the condition for ellipticity

loss (19) reduces to the bi-cubic polynomial Eq. (39). In the case when ¢ = n, the critical stretch ratio
can be explicitly determined.

() (2 (-9)
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Fic. 6. Bifurcation diagrams of layered materials subjected to aligned stretch and electrostatic excitation at different angles
as functions of the critical stretch ratio and electric displacement. The volume fraction of the stiff phase is ¢(/) = 0.8 and
the contrasts between the elastic and dielectric moduli are k =t = 10

Naturally, this expression is the reciprocal of the one given in Eq. (41).

Bifurcation diagrams as functions of \. and D,, are presented in Fig. 6 for composites with ¢(f) = 0.8,
and contrast between the shear moduli £ = 10 and dielectric constants ¢ = 10. The diagrams are shown for
different angles ¢ = 0,37/16,57/16, 77 /16, 157/32, and /2. These correspond to the continuous curves
marked by triangles, solid squares, circles, solid circles, squares, and the dashed curve, respectively. The
regions beneath the curves correspond to the unstable domains.

The influence of the angle of the applied electric displacement shows that the most sensitive structure
is the one with ¢ = 7/2, as its bifurcation curve lies above the ones for ¢ < 7/2. It is easy to see
from Fig. 6 that for some values of ¢ the composite becomes stable even at large intensities of electric
excitation. For example, a composite subjected to the electric excitations at ¢ = 37/16 is stable even
when subjected to large compressive stretch ratios along the layers.
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