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Electroactive soft elastomers require huge electric field for a meaningful actuation. We

demonstrate, by means of numerical simulation, that this can be dramatically reduced and large

deformations can be achieved with suitably designed heterogeneous actuators. The mechanism by

which the enhancement is attained is illustrated with the aid of both idealized and periodic models.
VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801775]

Electroactive polymers (EAP) are capable of large

deformations in response to electric stimulus. A sketch of a

planar actuator is shown in Fig. 1. The top and bottom faces

of the soft dielectric are covered with compliant electrodes,1

inducing an electric field through the material. The resulting

Maxwell stress leads to the deformation of the material. The

variety of possible applications of these “artificial muscles”

motivated an intensive search for appropriate polymers.

Indeed, recent experimental studies achieved remarkable

milestones in terms of the magnitudes of the actuation

strains.2–9 In parallel, the concept of enhancing the respon-

siveness of EAP devices by means of snap-through unstable

mechanisms was examined too.10–12 However, these studies

did not tackle the main limitation of EAPs, namely the huge

electric fields needed for meaningful actuations.

We address this challenge and investigate a mechanism

by which the exciting electric field can be reduced by an

order of magnitude. In this regard, we recall that recent ex-

perimental works involving soft elastomers with high dielec-

tric particles demonstrate an improved response of the

heterogeneous systems.3,8 In agreement, theoretical studies

of idealized heterogeneous dielectrics predicted an enhance-

ment of the electromechanical coupling.13–15 In this work,

the non-linear theory of electroelasticity at finite strains16–18

is adopted, and an exact analytical solution for an idealized

heterogeneous system is deduced. This, in turn, sheds light

on the mechanism that leads to the improved coupling and

motivates an investigation of more realistic microstructures.

By application of the finite element (FE) method correspond-

ing periodic models are examined and the improvement in

the electromechanical coupling is quantified.

The deformation of the material is characterized by the

deformation gradient Fij ¼ @xi=@Xj, where xi and Xj are the

position vectors of a material point in the deformed and ref-

erence states, respectively. The electric field at a point is

Ei ¼ �@/=@xi, where / is the electric potential. In incom-

pressible and isotropic neo-Hookean dielectrics, the electric

displacement and the total stress tensor are

Di ¼ �0�Ei and rij ¼ lFikFjk þ �0�EiEj � pdij; (1)

where �0 is the vacuum permeability, � is the dielectric con-

stant, l is the shear modulus, p is the pressure, and dij is the

Kronecker delta. In the expression for the stress, the first

term is the mechanical stress and the electrostatic Maxwell

stress tensor is the second term. Assuming a quasistatic de-

formation, no magnetic fields, and no body forces, the gov-

erning equations are

@Di

@xi
¼ 0 and

@rij

@xj
¼ 0: (2)

In the absence of free charges at the interfaces, the electric

field continuity conditions are ½½Ei��m̂i ¼ 0 and ½½Di��n̂i ¼ 0,

where ½½•�� � ð•Þþ � ð•Þ� is the jump across the interface, and

n̂i and m̂i are the unit vectors normal and tangent to the inter-

face, respectively. The corresponding mechanical continuity

conditions are ½½Fij��m̂j ¼ 0 and ½½rij��n̂j ¼ 0.

Figure 2 depicts an idealized layered material with alter-

nating soft isotropic and anisotropic layers (phases 2 and 1).

The anisotropic layers are themselves laminated structures

made out of alternating “sublayers” of a stiff material with

high dielectric modulus and a soft material with low dielec-

tric modulus. Four parameters characterize this microstruc-

ture: the lamination angle with respect to the electrodes

plane and the volume fraction of the isotropic layers (H2 and

a2), and the lamination angle and volume fraction of the stiff

sublayers in the anisotropic layer (H1 and a1). It is assumed

that the thickness of the sublayers is an order of magnitude

smaller than the thickness of the enclosing layer. This “scale

separation” allows to solve analytically the associated

coupled homogenization problem19–21 and to determine the

planar mechanical response to electrostatic excitation

E0 ¼ /0=d, where /0 is the electric potential between the

electrodes and d is the distance between them in the unde-

formed state. The parameters of the two models examined in

this work are summarized in Table I. Model I1 follows an

optimization process in the limit of infinitesimal deformation
that resulted in extremely thin isotropic layers.14 Model I2,

with thicker isotropic layers, is reminiscent of the periodic

models that were inspired by the predictions of the optimized

one.
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A finite element model of a particulate periodic micro-

structure is shown in Fig. 3. The model consists of thin iso-

tropic layers at an angle H2 between bulky stacks of

elongated stiffer inclusions that are tilted at an angle H1. The

highlighted inclined rectangle is a representative unit cell

(RUC) of the model P5 with 5 inclusions. A denser model,

P10, with 10 inclusions in the RUC is analyzed too. The as-

pect ratios a/b are 16.35 and 32.7 for the models P5 and P10,

respectively. The simulations were accomplished with

appropriate in-plane periodic displacement and potential

boundary conditions. The non-linear coupled problem was

solved by application of COMSOL FE code.

Properties of the widely used 3M VHB-4910 scotch7

were chosen for the soft phase in both, the idealized and the

periodic, models. The properties for the stiffer high dielectric

inclusions are comparable with those of Polyaniline

(PANI).3 The values of the physical constants are listed in

Table II.

Predictions for the principal actuation stretch as func-

tions of the applied electric excitation are shown in Fig. 4.

The response of the homogeneous VHB-4910 actuator is

determined via the relation

k ¼ ð1� ��0E2
0=lÞ

�1=4: (3)

The optimized microstructure I1 displays the best response.

Nonetheless, even the more realistic periodic microstructures

exhibit a substantial enhancement of the response relative to

that of the homogeneous actuator. Specifically, at 17 MV/m,

FIG. 2. A sketch of the idealized layered model.

TABLE I. Microstructure parameters.

Model a1 a2 H1 H2

I1 0.416 0.008 63:1� 27:5�

I2 0.6 0.06 63:1� 27:5�

FIG. 1. A sketch of a planar EAP

actuator.

FIG. 3. A sketch of the periodic model.

FIG. 4. Principal stretch ratio versus the electrostatic excitation. The black

and magenta curves correspond to the idealized models I1 and I2. The red

and blue curves are the results of the simulations with models P5 and P10.

The green curve is the response of a homogeneous VHB-4910 actuator.

TABLE II. Material constants.

Phase � l ½MPa�

VHB 4910 6.5 0.2

Polyaniline (PANI) 6500 2700
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the periodic model P10 attains a 20% strain in comparison

with the 2% strain of the homogeneous actuator.

The amplification of the electromechanical coupling is a

tricky two-parts mechanism that highlights the roles of the

fluctuations in the electric field and anisotropy. First, due to

the continuity of the normal component of the electric dis-

placement, the ratio between the mean electric fields in the

anisotropic and the isotropic layers is inverse proportional to

the ratio between their dielectric moduli. Consequently, the

electric field in the anisotropic layer is small, and since the

volume average of the electric field is equal to E0, the magni-

tude of the electric field in the isotropic layers is proportional

to the applied field divided by their volume fraction.14 In

Fig. 5, the mean electric fields in the isotropic layers are

shown. Indeed, the intensities of these fields are approxi-

mately E0=að2Þ. As the number of stiff inclusions in the RUC

increases, the curves for the periodic models approach the

one for the idealized model I2.

The large electric field results in a large electrostatic

stress that tends to stretch the isotropic layer in the transverse

direction in a manner reminiscent of the one shown in Fig. 1.

Roughly speaking, due to the large fluctuations in the electric

field, the isotropic layers act like “micro-actuators.” This

brings us to the second stage of the amplification mecha-

nism. Since the anisotropic layers are made out of alternating

stiff and compliant sublayers, their compliant mode corre-

sponds to a shear of the soft sublayers with rotation of the

stiffer ones. This mode amounts to an extension at 45� to the

sublayers plane, which is quite close to the angle

Hð2Þ �Hð1Þ. Thus, when the micro-actuators deform due to

the intensive local electric field, they stretch the bulky aniso-

tropic layers along their soft mode, and the entire actuator

expands in a direction transverse to that of the electric

excitation.

The amplification mechanism is illustrated in Fig. 6,

where the amplification of the electric field in the micro-

actuators, their resulting deformation perpendicular to the

direction of the electric excitation, and the rotation of the

elongated stiff inclusions can be appreciated. We conclude

noting that the proposed mechanism exhibits a ten-fold
enhancement of the electromechanical coupling, thus provid-

ing a method to overcome the primary obstacle in the devel-

opment of EAP actuators.
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FIG. 5. The mean electric fields in the isotropic layers versus the electro-

static excitation. The black and magenta curves correspond to the idealized

models I1 and I2. The blue and red curves are the results of the FE models

P10 and P5, and the error bars represent the standard deviation in the field.

The green curve depicts the field in a homogeneous VHB-4910 actuator.

FIG. 6. The deformed state of the periodic RUCs and the distributions of the

electric field in the models (a) P5 and (b) P10 at E0 ¼ 17 MV=m.
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