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We examine deformation mechanisms and performance of multilayered structures inspired by imbricated
scale-tissue systems of elasmoid fish. Exact analytical solutions are derived for these soft composite
structures undergoing finite deformation in compressive and bending loading conditions. The layered
structure leads to dramatic coupled shear-compressive deformations which afford distinct and advanta-
geous behaviours in compression and bending. The existence of super-flexible behaviours is found for
particular structural configurations. The influence of the geometrical parameters on the composite perfor-
mance is rigorously analysed.
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1. Introduction

Design of protective materials and structures has been of long-standing interest for engineers and sci-
entists. When materials are designed to protect mobile units, it is desirable to reduce the weight of
the materials. In the case of personal body armour, a certain level of flexibility is needed, especially for
joint areas, where various large movements are common. These factors make lightweight polymer-based
composites extremely attractive for designing flexible armour. Inspired by natural materials (Bruet et al .,
2008), we focus on the mechanical performance of scale-tissue protective systems present in elasmoid
fish. These imbricated stiff-scale-soft-tissue systems (see Fig. 1(a—c)) provide an excellent combination
of flexibility and protective properties (Meyers et al., 2012; Browning et al., 2013; Yang et al., 2013;
Zhu et al., 2013 and references therein). These works study the mechanics of a limited set of systems
and loadings. Meyers et al. (2012) explored the microstructure of Arapaimas scale and performed pen-
etration tests. Browning et al. (2013) investigated experimentally and numerically the performance of
the composites under compression. Browning et al. (2013) also employed the finite element method
to study the mechanics of indentation in the composites. Zhu et al. (2012, 2013) focused on puncture
resistance of scaled skin from striped bass (Morone saxatilis).
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2 mm

FiG. 1. Elasmoid fish scale assemblies. (a) Atlantic salmon (Salmo salar) image (Ostman, Elisabeth, Idunskokbok, 1911), (b)
overlapping scales and underlying tissue (Browning et al., 2013), (c) micro-computed tomography («CT by methods reported by
Song et al., 2010; Connors et al., 2012) of structure (false colouring) (Browning et al., 2013). (d) Schematics of scales embedded
in a dermal tissue.

Here we present a rigorous analytical model that accounts for large deformation of these soft layered
composites in compression and bending loading conditions. The analytical model identifies advanta-
geous configurations and can be used for design and further optimization of the materials. In particu-
lar, we approximate composite as a multilayered structure and parametrize the geometry as shown in
Fig. 1(d). The derived analytical solutions reveal the existence of super-flexible configurations of the
composites subjected to finite bending. These configurations are governed by the inclination angle of
the scales, and the response of the materials can be tailored for the required performance. We rigor-
ously analyse the dependence of the material performance on the geometrical parameters. The solution
for the applied compressive loads predicts strong coupling between the compressive load and shear
modes of deformation. This prediction agrees with the numerical and experimental observations of this
mechanism of stress accommodation in the scale-matrix system (Browning et al., 2013). This coupling
mechanism enables protection combined with flexibility. Moreover, the mechanism can find its way to
applications beyond flexible protective systems, to the fields of robotics and actuators.

The paper is structured as follows. In Section 2, we briefly provide the theoretical background
for the non-linear finite elastic deformations. Section 3 is devoted to derivation of an exact analytical
solution for the bio-inspired multilayered structures and analysis of the structure response to the com-
pressive loadings. Section 4 provides an analytical solution for the structure subjected to finite bending.
Some illustrative examples of stress distribution and bending energy as a function of the microstructure
parameters are provided in Section 4. This is followed by concluding remarks.

2. Theoretical background

The Cartesian position vector of a material point in a reference configuration of a body %, is X, and
its position vector in the deformed configuration 4 is x. The deformation of the body is characterized
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F1G. 2. Schematic of the multilayered material.

by the mapping x = x (X) The deformation gradient is F = 9 x (X)/9X. J = det F is the volume ratio. In
the absence of body forces, the equilibrium equation is

DivP =0, 1)

where P is the nominal stress tensor. The corresponding true or Cauchy stress tensor is related to the
nominal stress tensor via the relation o = J='PF . The differential operator Div(e) corresponds to the
divergency operator in the reference configuration.
Consider hyperelastic materials whose behaviours are characterized by a scalar-valued energy-
density function ¥ (F) such that
v (F)

P="—r. )

For an incompressible material, the nominal stress tensor is

R4 —
P_TF pF~, (3)

where p is a pressure-like Lagrange multiplier (Ogden, 1997).

3. Multilayered composites at finite strains

Consider composite materials with multilayered microstructures as seen in Fig. 2.

Assume that the characteristic thickness of the layers in the upper anisotropic layer is significantly
smaller than the characteristic size of the upper and lower layers. Such scale separation allows consid-
eration of the upper layer as an effective anisotropic homogeneous material. While the response of the
isotropic lower layer is known, the behaviour of the anisotropic upper layer needs to be determined.
Under the assumption of scale separation in the layered material, the upper layer is essentially a layered
material itself, consisting of alternating stiff-soft layers with homogeneous fields within each phase.
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F1G. 3. Schematic of compressive loading of the layered material.

Thus, the mean deformation gradient in the anisotropic layer can be defined as
F=c™F™ 4+ cOF®, (4)

The deformation gradient in each phase can be obtained by making use of the displacement continuity
condition across the interface (i.e. F™M = FOM) as (see deBotton, 2005 for details)

F™—F( +cPeM ®N) and FV=F( —c™aM @ N), (5)
where the scalar « is obtained from the traction continuity condition

[ol-n=0, (6)

where n=JF~ TN is normal to the boundary at the current configuration. The notation [el= ()" —
(o)~ denotes the jump between the fields in the material across the interface. Furthermore, the total
energy-density function of the composite can be expressed as the weighted sum of phase energy-density
functions, namely,

FAF) =D cOwOF). ©)

r=m,i

If the behaviour of the phases can be characterized using neo-Hookean models, then the effective
energy-density function of the anisotropic upper layer can be obtained from Equations (7) and (5),
where . o
u®— ™ EN.EM
o = - - —— — A » (8)
C(m),u(') + C(')u(m) EM - EM
Once the homogenized energy-density function for the upper layer is obtained, the boundary value
problem of the macroscopic sandwich problem can be solved by repeating a similar procedure, such
that the total energy-density function of the structure is

g torh By — cAGA FE) 1 gD F), ©)

Note that it is mathematically convenient to assume that both phases can be characterized by a neo-
Hookean model. The presented further results are based on this assumption.

Loading Conditions. Consider the response of the composite subjected to compressive traction load,
as shown in Fig. 3. The macroscopic traction boundary condition at X, =h® and X, =h® + h® is
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such that only o2, = —o has non-zero value. Owing to the anisotropy, the compressive load can result,
in general, in both shear and compressive deformation modes within the anisotropic layer. Therefore,
the corresponding macroscopic deformation gradient is assumed to be

F=rle®et+re0e-—re0e+ae. (10)

The amount of shear y can be obtained together with A from the corresponding boundary conditions. In
particular, the following system of equations:

11
op=fHH,y)=0 )

{011 —op=h@,y)=o0,
can be solved for A and y. Practically, the problem can be more effectively solved by setting the
unknowns to be y and o while assuming A to be an independent variable. Thus, the corresponding
value of the amount of shear y (1) is obtained from solving (11)-2. Next, the specific stress component
o = o (1) is calculated directly from (11)-1, since y (1) is known. Note that in this case we need to con-
sider only the behaviour of the upper anisotropic layer, since the deformation and stresses that develop
in the lower homogeneous layer are simply given by o11 — 025 = 1™ (1% — A2). Obviously, there is
no shear deformation in the lower homogeneous layer. Thus, the total mean compressive stress in the
structure is the weighted sum of the stresses in the upper and lower layers. Consequently, we focus here
on the determination of the stresses and the shear mode of deformation in the upper anisotropic layer.
In this work, we present results for the situation when the soft matrix and the stiff inclusion plates are
characterized by a significant contrast in their shear moduli; in particular, we fix ©® /™ = 1160 (this
ratio can be achieved in modern multimaterial multiphase 3D printing techniques Li et al., 2013). We
also normalize the resulting quantities, such as stress and stored energy, by 1™ where possible.

Figure 4 shows the dependence of the amount of shear strain, y, in the anisotropic layer on the lam-
ination angle for composites subjected to different levels of compression from a compression ratio of
A =0.99 to 0.8. Volume fractions of the stiffer layers are ¢ = 0.05 (a), 0.1 (b), 0.15 (c) and 0.2 (d). The
amount of shear during compression increases rapidly with an increase of the lamination angle from 0
until a prominent peak at ¢ >~ 4°. This is followed by a decrease in the amount of shear. The shear func-
tion decreases monotonically and, at some lamination angle past ¢ = 45°, the amount of shear changes
sign and becomes negative. The magnitude of the negative shear reaches a local maximum at ¢ = 90°.
However, it is important to note that, at this point, the function y (¢) can take one of the three val-
ues +y(90°) or 0. In the last case, however, larger compressive stress is needed. We also note that,
in the vicinity of ¢ =90°, the composites may exhibit buckling upon achieving critical compressive
load. This phenomenon of elastic instabilities in transversely isotropic composites is well known in the
literature (see, for example, Triantafyllidis and Maker, 1985; Merodio and Ogden, 2002; Nestorovic
and Triantafyllidis, 2004; Merodio and Ogden, 2005; Merodio and Neff, 2006; Rudykh and deBotton,
2012; Li et al., 2013; Rudykh and Boyce, 2014b). The bifurcation occurs when a critical compression
level in the direction of the plates is reached; however, the shearing mechanism works to decrease the
compression in the plates and, hence, to avoid buckling. However, in composites with large lamina-
tion angles, the shearing mechanism cannot completely eliminate compression in the plate direction
and buckling may occur upon achieving a critical strain (Rudykh and Boyce, 2014a). The critical strain
in these non-aligned-with-loading layered materials can be estimated by combining the exact analyt-
ical solution for a primary branch of solution with a bifurcation analysis (for example, Rudykh and
Bertoldi, 2013; Rudykh et al., 2014, where the authors provided estimations for onset of bifurcations in

¥T0Z ‘Sz Jequieides uo ABojouyss | Jo aINisu| [Pess|-uoiuyde | e /B10'seulnolpio xo: ewewi//:dny woly papeojumoq


http://imamat.oxfordjournals.org/

MECHANICS OF BIOINSPIRED LAYERED MATERIALS 835

FiG. 4. Dependence of amount of shear on lamination angle. Volume fractions of the stiffer layers are ¢ = 0.05 (a), 0.1 (b), 0.15
(c) and 0.2 (d).

non-aligned loaded laminates for the purely mechanical case and for coupled magnetomechanical and
electromechanical cases, respectively). The biological systems considered are characterized by small
lamination angles, so the protection properties can be maximized. Additionally, the failure mechanism
can be a source of a prominent softening in the composite and, consequently, a reduction in the pro-
tective properties. In this respect, composites with small lamination angles are more advantageous for
protection purposes. For these reasons, we mostly focus on the performance of composites with rela-
tively small lamination angles. The bifurcation phenomenon, indeed, is not observed in the wide range
of lamination angles (¢ < 45°), where a compression would cause tension in stiff plates; in that case,
the shearing mechanism is opposite and works to minimize the tension in the stiff phase. Once again,
for these laminates the bifurcations do not occur. Consequently, the stability analysis is left outside of
the scope of this work.

We note that the pronounced shear deformation is a result of the high contrast is the shear modulus
ratio chosen. As the ratio is increased, the resulting shear deformation increases; a decrease in the ratio
leads to a decrease in the amount of shear and in the case of 1@ /™ =1, the solution reduces to the
homogeneous case producing y =0.

At the small lamination angles, even relatively low compressive loadings would lead to a very high
extension of the layers if the shear mode of deformation were constrained. Consequently, the material
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FiG. 5. FE illustration of the micromechanics of the layered materials subjected to compression. The undeformed composites are
in the left column: (a) ¢ = 10°, (c) 51° and (e) 80°. The composites subjected to compression A = 0.8 are in the right column: (b)
¢ =10°, (d) 51° and (f) 80°. The volume fraction of the stiff plates ¢’ = 0.2.

reacts by rotating the layers back, and a positive amount of shear y is generated. With further increase
of the lamination angle after the maximum peak, the virtual (if the shear mode were constrained and
avoided) tension deformation of the layers decreases gradually with an increase of a lamination angle.
This decrease in the virtual tension leads to the reduction of the actual amount of shear. This continues
until ¢ >~ 45°, where the virtual tension switches to the virtual compression, and at this point no shear
mode deformation is generated. Naturally, in the configuration of these compressive virtual deforma-
tions, the sign of ¢ changes, since now the material reacts to compensate for the virtual compression.

Obviously, the deformation regime can switch from tension to compression and vice versa
as the compressive load is applied. From the geometric consideration, we obtain that the length
of the undeformed plate is Lo =h™® /1 +tan—2 ¢, while the length of the deformed plate is | =
h® /A2 + A=2tan—2 ¢. Clearly, the plate is compressed when | < Lg, and is in tension otherwise. The
switch of the deformation regime occurs at | = Ly. Excluding the trivial solution of A = 1, we obtain the
critical stretch ratio at which the switch occurs

1+ cos2¢\ /?
1 —cos2¢ '

(12)

Illustrative examples obtained from finite element simulations are presented in Fig. 5 for composite
with ¢ = 0.2 and different lamination angles ¢ = 10° in (a) and (b), 51° in (c) and (d), and 80° in (e) and
(F). The left column is for undeformed microstructure, while the right column represents the microstruc-
tures of composites and the shear stress distribution of the composites subjected to compression of
A =0.8. The ratio between the stiff plates’ thickness and specimen height is ~ 0.045. As predicted by
the analytical model, we observe positive shearing y > 0 for small lamination angles (¢ = 10° shown
in (a) and (b)); a transition regime is illustrated by (c) and (d) for an intermediate lamination angle
¢ =51°, where the coupling between compressive and shear modes of deformation is weak; negative
shearing (y < 0) is observed for a large lamination angle, ¢ = 80°.

Next we consider the influence of volume fraction of the constituents. Figure 6 shows the depen-
dence of the amount of shear in the anisotropic layer as a function of volume fraction of the stiffer
phase at different levels of compression. The results are presented for composites with ¢ =5° (a),
¢ =10° (b), » =15° (c) and ¢ = 20° (d). For all these cases the curves are symmetric with respect to
¢ = 0.5. The amount of shear increases rapidly with an initial increase of the volume fraction; then,

¥T0Z ‘Sz Jequieides uo ABojouyss | Jo aINisu| [Pess|-uoiuyde | e /B10'seulnolpio xo: ewewi//:dny woly papeojumoq


http://imamat.oxfordjournals.org/

MECHANICS OF BIOINSPIRED LAYERED MATERIALS 837

© "] $=20°
o6 3
L
—
0.2-
0 . =009
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 038 1.0
c(l) c(l)

F1G. 6. Dependence of the amount of shear on volume fraction. The lamination angles are ¢ =5° (a), ¢ = 10° (b), ¢ = 15° (c)
and ¢ = 20° (d).

however, the slope decreases and the curve flattens until it reaches ¢ = 0.5. The change in the slope
becomes more prominent for lower compressions (larger ). Although this behaviour is generic for the
lamination angles considered, there are some differences. As the lamination angle increases, the shear
deformation decreases. This is in agreement with the previous findings (see Fig. 4). Additionally, we
observe that the initial slope increases with an increase in the lamination angle. Moreover, the change
in the slope becomes more pronounced, and the point at which the curve changes the behaviour shifts
towards ¢ = 0 (or, symmetrically, towards ¢’ = 1). Consequently, for composites with larger lamina-
tion angles of the considered range, a change in volume fraction has little effect on the amount of shear
in a large range of volume fractions except in the vicinity of ¢ =0 and 1.

Consider next the dependence of stresses on the microstructure parameters. Figure 7 shows the
dependence of compressive stress & = o /™ on the lamination angle at different levels of compression
(from 1 =0.99 to 0.8). The results are presented for composites with ¢ =0.05 (a), 0.1 (b), 0.15 (c)
and 0.2 (d). The stress is maximal at ¢ =0; it rapidly decreases with an increase in the lamination
angle. Then, at some angle, the curves flatten [see, for example, the curve for A =0.99 (red curve in the
on-line version) in Fig. 7(a)] and further change in the lamination angles does not influence the stress
significantly. However, when the lamination angle approaches high values (¢ ~ 70° for A =0.99), the
stress increases rapidly until it reaches the local maximum at ¢ = 90°.
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FiG. 7. Dependence of stress on lamination angle. Volume fractions of the stiffer layers are ¢ = 0.05 (a), 0.1 (b), 0.15 (c) and
0.2 (d).

As expected from physical grounds, the stress level increases with an increase in compression.
This is also accompanied by a gradual change in the curve shape such that the transitions between the
decreasing and increasing parts of the curves become smoother, and at high compressive levels (for
example, » = 0.8) we do not observe the plateau at which the stress scarcely changes with a change in
the lamination angle.

We observe a clear similarity between the families of curves for composites with different volume
fractions in the considered range ¢ = 0.05 (a), 0.1 (b), 0.15 (c) and 0.2 (d), although, as we can con-
clude from the picture, the stress level increases as the volume fraction is increased.

We investigate the influence of phase volume fraction in detail in Fig. 8, which shows the depen-
dence of the compressive stress as a function of the volume fraction of the stiffer phase for different
lamination angles, namely, ¢ =5° (a), ¢ = 10° (b), ¢ = 15° (c) and ¢ = 20° (d).

At low compressive loads [for example, the curve corresponding to A =0.99 (red curve in the
on-line version)], we observe the stress-concentration behaviour characterized by initial rapid growth
of the stress level. This is followed by a large range of volume fractions, where the stress grows slowly
with an increase in volume fraction. However, when the volume fraction becomes large enough, the
material locks up and the stress starts to grow rapidly until it reaches the maximum at ¢ = 1. The
behaviour of the stress-concentration curves alters with an increase of compressive load A. The range of
initial growth widens and the slow-growth range of concentrations shortens. Thus, at some compressive
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F1G. 8. Dependence of stress on volume fraction. The lamination angles are ¢ =5° (a), ¢ = 10° (b), ¢ = 15° (c) and ¢ = 20° (d).

loads the transition range of volume fractions almost disappears, and we observe a rather abrupt change
in the curve slopes. In agreement with the previous findings, we observe that the stress level decreases
with an increase in lamination angles, in the range considered in Fig. 8(a—d).

4. Multilayered composites at finite bending

In this section, we consider the multilayered structure subjected to finite bending. First, we revisit the
theory of hyperelastic materials at finite bending provided by Rivlin (1949) and recently considered
by Destrade et al. (2009, 2010), Roccabianca et al. (2010), and further extended to layered materials
by Roccabianca et al. (2011). Then we apply the theory to the more complicated scale-tissue structure,
analysing the influence of geometrical parameters on the composite performance at finite bending.

It is convenient to introduce a cylindrical coordinate system for the deformed configuration of the
multilayered structure. The schematics of the undeformed and deformed states are depicted in Fig. 9.
The length of the specimen in the undeformed state is denoted by lo. The thicknesses of the isotropic
and anisotropic layers are h$" and h{?, respectively; both in the undeformed state. The corresponding
thicknesses in the deformed state are denoted by h®® and h®. The coordinates of each point in the
deformed configuration are defined by functions

r=r(x), 0=0(X) and z=Xxs. (13)
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F1G. 9. Schematics of multilayered material subjected to bending.

Thus the deformation gradient is

F=re Qe +ey@e+e3Qe6;, (14)

where A, = dr/dx; and Ay = df/dx,. Note that due to the plane-strain constraint 4, = 1. The deformation
is prescribed via the parameter 6, which is a half angle segment occupied by the multilayer in the
deformed state (see Fig. 9). It can be shown that the principal stretches are

|0 26_r
AMA=—, r=— and Ai,=1. 15
r 201 6 |O z ( )

Incompressibility implies that, for the anisotropic layer,

o _ o e e
=\ =5+ - (16)
where ri@) = ri(l) + h® js the inner radius of the anisotropic layer. Similarly, for the isotropic layer, we
can write
1
D _ @ - @ (17)
' 26n® 2
Combining (16) and (17), we have
) a @ 2 )
ho -l A% lohp 1 oy (18)
260h@ 2 26h@ 2 0

Clearly, the thickness of the anisotropic layer in the deformed state is a function of ™, which can be
determined from the solution of the boundary value problem.
The equilibrium equations are

30 0O _g® 309
r + r [ —0 and %

—0, 19
ar r 30 (19)
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where s= 1, 2 denote the corresponding layer. The stress components are given by

oW (i)

=M
i

p, (20)

with A Ay =1 (Ogden, 2008). Note that there is no summation on repeated indices in (20). Since the
stretch depends only on r, (19); is satisfied automatically. Moreover, (o4 — oy)/r = d¥ /dr because

dy 0P 9A, 0¥ O oV A 0¥ Ay o0p—oOy

= _ 77 = e A Wi A , 21
dr oA Or + org Or oAy I + olg T r (21)
where (15) was used. Hence, the equilibrium equation (19) can be written as
do® duw®
- (22)
dr dr
which after integration yields
0¥ =T +AY, (23)

where & = ¥ (A1, &, 1) with A = A, and A® is an unknown integration constant. The interface traction
continuity condition reads

o PP +h0) =52 (). (24)
The traction-free condition at the external boundaries reads
o™ =0 and o2r? +h?)=0. (25)
Equation (25) together with (23) yields
AY = gDy and A? =g @Gar? 4 h?y), (26)
Combining (26);, (24) and (23), we obtain
FOGED +hD)) — O ar®)) — P r?)) =A?, 7)
and, together with (26)s,
GO0 +hD) = FDar) =P 0r?) + @ P + 1)) =0. (28)
Thus, the unknown parameter h® can be calculated from (28) in which r2 =r"’ + h®, while r™”
and h® are substituted by the expression given in (17) and (18), respectively.

Once h® is determined, the stress distribution can be evaluated. The radial component of stress is
obtained by substituting (26) in (23), resulting in

O'r(l) _ gf/(l)(k(r)) _ j’(l)()x(l'i(l))) (29)

and
O_r(2) — QIA/(Z)()\(r)) _ 'IA/(Z)()»(ri(z) + h(z)))_ (30)

¥T0Z ‘Sz Jequieides uo ABojouyss | Jo aINisu| [Pess|-uoiuyde | e /B10'seulnolpio xo: ewewi//:dny woly papeojumoq


http://imamat.oxfordjournals.org/

842

S.RUDYKH AND M. C. BOYCE

c/u o /U b cr/p. o /u
(a) 0 T T T f f 80 ( ) 0 T T T u T 80
] Isotropic layer Anisotropic AL 60 ] Isotropic layer Anisotropic Lo
B layer K B layer
2 k40 24 k40
-3 4 F20 -3 F20
e ," F0 B [, F0
54 K F-20 54 / F-20
, )
6 F-40 -6 g F-40
¢ — 50 . ¢ — ]00 /
-7 T T T - T T -60 7 T T T T T -60
0.6 0.8 1.0 1.2 4 1.6 1.8 1.9 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1.9
r/h r/h
cr/ u G /1 cr/u o /1
(©) , , , , , 77 5, (d) o : : , , / Z %
Isotropic layer Anisotropic otropic layer Anisotropic
-1 - 60 -1 F60
layer layer
2 “1La0 2 L40
-3 20 -3 20
A s Lo S Lo
-5 / L-20 -5 F-20
6 L 40 6 F-40
b=15° =20°
-7 T T T T T T -60 -7 T T T T T T -60
0.6 0.8 1.0 1.2 1.4 1.6 1.8 1.9 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1.9
r/h r/h

FiG. 10. Stress distributions in the composites subjected to bending & = 0.57. ¢ = 5° (), 10° (b), 15° (c) and 20° (d).

The lateral component is obtained from (19); by using expression (29) and (30) for isotropic and
anisotropic layers, respectively, yielding

o) =rd @ ) + D) - FP ) (31)
and . . .
og? =rd @ () + ¥ D) — TP AP +h®)), (32)
Finally, the total energy associated with the bending deformation can be calculated as
r® 4ho M +h@
total =/ D Ou(r))dr _|_/ A u(r))dr. (33)
ri(1) I,i(Z)
For the homogeneous lower layer, the integration yields
. 20%r3 |2
DO Or)dr =™ -2 _r). 34
R T (34)

Figure 10 shows the distribution of stresses in the isotropic and anisotropic layers. The results are
presented for composites with ¢ =0.1 and various lamination angles (¢ =5° (a), 10° (b), 15° (c)
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and 20° (d)) The specimens are of length-to-height ratio lo/(h{” + hi”) =5, and with equal heights of
anisotropic and isotropic layers. The composites are subjected to finite bending of 6 = /2.

The radial stress, o;, normalized by the shear modulus of soft matrix is presented by continuous
curves (blue curves in the on-line version), while the normalized azimuthal stress, oy, is denoted by
the dashed curves (red dashed curves in the on-line version). Since these components have different
magnitudes, we use different axes for presenting the distributions of the stresses. In particular, the values
of o, are reported at the left axis, while oy is reported at the right axis. The stresses are plotted as
functions of the radius r normalized by the total height of the specimen in the undeformed configuration,
h= (h{" + h{?’). The boundary of the layers are marked by thin vertical lines.

The radial component of stress tensor, being negative, increases in its absolute value as we advance
from the bottom of the isotropic layer towards the anisotropic layer, according to

S I . 40T 2 w2
Oy = 2 (49_2 <r2 ri(1)2> + lé (r I )) (35)

At the interface between the isotropic and anisotropic layers, an abrupt change in the stress function
occurs. The closed form expression for the stress in the anisotropic upper layer is very long and, there-
fore, is not included here. We observe a rapid increase of the stress component until it reaches the peak
at about r/h=1.6 (depending on the composite), at which point the derivative of the stress function
changes the sign, and the absolute value of radial stress starts decreasing. That continues until the value
of the radial stress becomes zero at the upper boundary of the anisotropic layer.

The azimuthal stress in the isotropic layer is given by

(m) H2 2
_ M 49 2 (1)2 IO 1 1

The stress takes the value
(37)

2 T 0.2
I 402r;

at the lower boundary of the homogeneous layer, r = ri(l). For the considered case this value is negative.
The absolute value of oy decreases until the interface between the layers is reached; at this point, the
absolute value of o4 exhibits discontinuity. That follows by a rapid increase in the stress component in
the anisotropic layer. At some point in the anisotropic layer, the sign of the stress changes and the stress
becomes positive. This radius describes the neutral line, which is found to be in the anisotropic layer.
The a(lzz)imuthal stress component reaches the maximum at the upper boundary of the anisotropic layer,
r=r" +h@,

As the lamination angle increases, we observe similar shapes and behaviour of the stress distribution
functions; although the curves share some similarities, it is obvious that the absolute values of the
stress components decrease with an increase in the lamination angle. We will analyse the role of the
microstructure parameters in more detail next. In particular, we will focus on the elastic energy stored
in the structure subjected to finite bending.

Figure 11 shows the dependence of the normalized energy density & = & /[™ (h® + h®)] on
bending angle & for composites with different lamination angles (¢ = 7 /36 (a), /18 (b), /12 (c) and
/9 (d)). The results are presented for composites with various volume fractions of the stiffer phase
in the anisotropic layer, namely, from ¢ =0 (dotted lower curve) to 1 (dashed upper curve) with a
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F1G. 11. Dependence of the energy density on the bending angle. The lamination angles are ¢ =5° (a), » = 10° (b), ¢ = 15° (c)
and ¢ = 20° (d).

step of 0.1 from curve to curve. The geometrical length-to height ratio is lo/h =5, and the heights of
anisotropic and isotropic layers are equal for all composites in Fig. 11.

Clearly, the stored energy increases as the loading is increased. The purely homogeneous material
(¢ = 0) provides the lower bound for the energy, while the upper bound is provided by the response
of the sandwich structure (soft lower and stiff upper homogeneous layers) that corresponds to ¢ = 1.
As expected, we observe that curves for composites with larger volume fraction of the stiff material
approach the upper limit of c® = 1. At small lamination angle, for example, ¢ = /36, there is a rather
significant jump in the curves when the volume fraction of the stiffer phase is increased from ¢ =0
to ¢ = 0.1; this is opposite to a less pronounced change in the curves from ¢ =1 to ¢ =0.9. The
picture changes with an increase in the lamination angle. In particular, we observe that the energy density
decreases with an increase in the lamination angle. Moreover, the drop at the upper limit (¢ — 1)
becomes more pronounced, while the jump at the lower limit (¢ — 0) decreases.

Next we consider the influence of the lamination angle on the stored energy due to the finite bend-
ing of the structure. Figure 12 shows the dependence of the normalized stored energy on the lamina-
tion angle. The composites are subjected to # = 0.1 (a) and 0.57 (b). The results are presented for
the same geometrical and microstructural parameters of the composites as for Fig. 11. The lower and
upper bounds (¢ = 0 and ¢ = 1, respectively) are denoted by thin dotted and dashed horizontal lines,
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FiG. 12. Dependence of the energy density on the lamination angle. The structures are subjected to bending corresponding to
0 =7/10 (a) and /2 (b).

respectively. When inhomogeneity is present in the upper anisotropic layer, the curves take a non-linear
shape with two local maxima at ¢ =0 and /2, and one local minimum at about ¢ = /4, depend-
ing on the composite parameters and loading. Remarkably, in the vicinity of this local minimum, the
composites are extremely flexible (for example the curve of ¢ = 0.9). As the loading is increased (see
Fig. 12(b) for 6 = 0.57), the local minima shift towards smaller lamination angles. The existence of the
prominent minimum is of great importance and can be used for designing protective flexible materials
with extreme properties.

5. Concluding remarks

We consider the mechanics of composite elasmoid fish scale assemblies and their bio-inspired ana-
logues. We derive closed form analytical solutions for finite compression and bending. The analysis of
these two fundamental modes of finite deformation reveals the role of the microstructure in the per-
formance of the composites. For example, we reveal the existence of the super-flexible configurations
of the composites, which are governed by the lamination angle, while still affording protection. These
super-flexible composites can be manufactured with large volume fraction of the stiff phase, and hence,
great protective properties can be achieved almost without compromising flexibility.

We investigated in detail the remarkable mechanism of coupling of compressive loadings and simple
shear deformation. This mechanism can be utilized, for example, in personal armour to prevent defor-
mation and subsequent damage of tissues and vital organs. As an alternative, this phenomenon can be
used in designing a class of actuators that convert compressive loads to a more complicated motion. In
this case, it is useful to know that, at some particular small lamination angles, giant shear deformations
can be achieved even for relatively small compressive deformations. These remarkable results illustrate
the detailed study of these structures. We hope that the derived solutions will be useful for designing
new materials for various applications.
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