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a b s t r a c t

We study the stability of magnetorheological elastomers (MREs) undergoing finite

deformations in the presence of a magnetic field and derive a general condition for the

onset of macroscopic instabilities. In particular, we focus on anisotropic MREs with

magnetoactive particles that are aligned along a particular direction, forming chain-like

structures. We idealize the microstructure of such anisotropic magnetosensitive elasto-

mers as a multilayered structure and derive an analytical model for the behavior of these

materials. The analytical model, together with the derived condition for the onset of

instabilities, is used to investigate the influence of magnetomechanical finite deforma-

tions on the stability of the anisotropic MREs. While the formulation is developed for

generic hyperelastic magnetosensitive elastomers, the results are presented for a special

class of soft materials incorporating a neo-Hookean hyperelastic response. The influence

of material properties and loading conditions is investigated, providing a detailed picture

of the possible failure modes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetorheological elastomers (MREs) consist of magnetic particles, such as micron-size iron particles, dispersed in an
elastomeric matrix and can undergo large deformations when excited by a magnetic field. It is well known that application
of an external magnetic field to MREs results in significant changes in their macroscopic properties (e.g., Jolly et al., 1996;
Ginder et al., 2000, 2002; Gong et al., 2005; Varga et al., 2006), so that they have been exploited to design tunable vibration
absorbers and damping components (e.g., Ginder et al., 2001; Deng et al., 2006; Lerner and Cunefare, 2008; Hoang et al.,
2011), noise barrier system (Farshad and Le Roux, 2004) and sensors (Tian et al., 2011; Zadov et al., 2012).

Recent experiments (e.g., Farshad and Benine, 2004; Danas et al., 2012) revealed that the microstructure of MREs has a
strong impact on their macroscopic response. The distribution of the magnetic particles in MREs can be either random
(and, consequently, nearly isotropic) or partially aligned by curing in the presence of a magnetic field (see Fig. 1(a) and (b)).
The field-induced stiffening has been observed to be significantly increased in anisotropic MREs where the magnetoactive
rigid particles are aligned and form chain-like structures (see Fig. 1). In particular, Chen et al. (2007) experimentally
observed an increase of the incremental shear modulus for the samples prepared in the presence of higher magnetic fields,
and consequently, with more pronounced chain-like microstructures.
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Theoretical and numerical models have been developed to unravel the mechanics of MREs. Motivated by the
development of applications, the pioneering theory of electro and magneto-elastic macroscopic behavior of continuum
proposed by Truesdell and Toupin (1960), Tiersten (1964, 1965), and Maugin and Eringen (1972) has been recently reviewed
and further developed (Brigadnov and Dorfmann, 2003; Dorfmann and Ogden, 2004, 2005; Bustamante et al., 2006;
Bustamante, 2010; Destrade and Ogden, 2011; Han et al., 2012; Thylander et al., 2012). In addition, a homogenization
approach has been developed to identify the effective properties of MREs with random distribution of magnetoactive particles
(Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda, 2012; Galipeau et al., forthcoming).

Since a limiting factor in the design of structures and composite materials is their failure under the applied loads,
following the pioneering work of Hill (1957), the investigation of the stability of composites and structures subjected to
purely mechanical loadings has attracted considerable attention (Biot, 1965; Hill and Hutchinson, 1975; Triantafyllidis and
Maker, 1985; Fleck, 1997; Michel et al., 2007; Bertoldi and Boyce, 2008; Bruno et al., 2010; Rudykh and deBotton, 2012).
Moreover, guided by well-established criteria for the ‘‘pure’’ mechanical case, the onset of instabilities for MRE with
isotropic distributions of magnetic particles has been investigated focusing on surface instabilities of homogeneous
magnetoactive half-space (Otténio et al., 2008) and failure modes of a rectangular MRE block undergoing plane–strain
deformation in the presence of a magnetostatic field (Kankanala and Triantafyllidis, 2008).

Here, motivated by recent experiments (e.g., Chen et al., 2007; Guan et al., 2008; Danas et al., 2012), we focus on the
stability of MREs with chain-like distributions of magnetic particles and introduce a micromechanical model to describe
the behavior of the anisotropic media. To this end, we idealize the material as a multilayered structure (see Fig. 1(c)) and
derive an analytical solution for the phase fields. Thus, the dependence of the overall behavior of the material on the
volume fractions and material properties of the phases as well as the anisotropy direction is investigated. Next, we derive a
general criterion for the onset of the coupled magnetoelastic macroscopic instabilities and further specialize it for the
2D case. By making use of this criterion, the macroscopic stability of multilayered hyperelastic MREs deforming at large
strains is systematically investigated and closed form expressions for the identification of unstable domains along
different loading paths are determined. We analyze the behavior of the anisotropic MREs in the presence of a magnetic
field for three modes of finite deformations: (i) simple shear in 2D, (ii) pure shear in 2D and (iii) axisymmetric shear in 3D.
Although the approach is not restricted to a specific choice of constitutive laws of the phases, here we present results for
materials with neo-Hookean magnetoactive behavior of the constituents.

2. Theoretical background on magnetorheological elastomers

Let us consider a heterogeneous body and identify with B0 its undeformed configuration. The application of both
mechanical loadings and magnetic fields deforms the body quasistatically from B0 to the current configuration B. Such
deformation is described by the function v that maps a reference point x0 in B0 to its deformed position x¼ vðx0Þ in B . The
associated deformation gradient will be denoted by F¼ @v=@x0, while J identifies its determinant, J¼ det F.

In the absence of mechanical body forces and electric fields, and for deformations applied quasistatically, equilibrium of
MREs is ensured when

div r¼ 0, div B¼ 0 and curl H¼ 0, ð1Þ

where r is the Cauchy total stress tensor, B is the Eulerian magnetic induction and H is the Eulerian magnetic field.
Moreover, divð�Þ and curlð�Þ denote differential operators with respect to x.

Eqs. (1) can be rewritten in terms of the total first Piola–Kirchhoff stress tensor P¼ JrF�T , the Lagrangian magnetic field
H0
¼ FT H and the Lagrangian magnetic induction B0

¼ JF�1B as

Div P¼ 0, Div B0
¼ 0 and Curl H0

¼ 0, ð2Þ

where Divð�Þ and Curlð�Þ are the differential operators with respect to x0.

Fig. 1. (a) SEM image with 200 times magnification of MRE prepared in 800 mT (Chen et al., 2007); (b) SEM image with 1600 times magnification of MRE

prepared in 800 mT (Chen et al., 2007); (c) schematic representation of the idealized layered microstructure considered in this work. (a) MRE (800 mT)

X200. (b) MRE (800 mT) X1600. (c) Idealized MRE.
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Moreover, for a heterogenous infinite body the boundary conditions across interfaces separating different phases are
given by

1rU � N¼ 0, N � 1BU¼ 0 and N� 1HU¼ 0 ð3Þ

or

1PU � N0
¼ 0, N0

� 1B0U¼ 0 and N0
� 1H0U¼ 0, ð4Þ

where N¼ F�T N0 and N0 are the normals to the interface in the current and reference configurations, and the jump
operator 1�U� ð�Þþ�ð�Þ� is defined such that N and N0 are pointing towards phase ð�Þ�.

Finally, note that for a conservative material whose response is described by a free-energy–density function CðF,B0
Þ

P¼
@CðF,B0

Þ

@F
and H0

¼
@CðF,B0

Þ

@B0
: ð5Þ

For an incompressible material (5)1 modifies as

P¼
@CðF,B0

Þ

@F
�pF�T , ð6Þ

where p is a pressure-like Lagrange multiplier.

3. Incremental equations

Following the approach recently developed to investigate instabilities in electroactive composites (Dorfmann and
Ogden, 2010; Bertoldi and Gei, 2011; Rudykh and deBotton, 2011), we derive the governing equations for the incremental
deformations superimposed upon a given state of finite deformation in the presence of a magnetic field. The incremental
problem is defined by

Div _P ¼ 0, Div _B
0
¼ 0 and Curl _H

0
¼ 0, ð7Þ

where _P, _B
0

and _H
0

are infinitesimal changes in the nominal stress, magnetic induction and magnetic field, respectively.
Assuming that all incremental quantities are sufficiently small, the constitutive relations (5) can be linearized as

_Pij ¼A0
ijkl
_F klþM0

ijk
_B

0

k and _H
0

i ¼M0
jki
_F jkþH0

ij
_B

0

j , ð8Þ

where the magnetoelastic moduli tensors are given by

A0
iakb ¼

@2C
@Fia@Fkb

, M0
iab ¼

@2C
@Fia@B0

b

and H0
ab ¼

@2C
@B0

a@B0
b

: ð9Þ

Note that for an incompressible material the linearized constitutive relation for the incremental stress tensor
modifies as

_Pij ¼A0
ijkl
_F klþM0

ijk
_B

0

k� _pF�1
ji þpF�1

jk
_F klF

�1
li , ð10Þ

where _p is the incremental change in p.
For further analysis of instabilities it is convenient to reformulate the incremental boundary value problem in an

updated Lagrangian formulation, where the reference configuration moves and is identified with the current configuration.
The push forward transformations of _P, _H

0
and _B

0
to the current configuration are

T̂ ¼ J�1 _PFT , B̂ ¼ J�1F _B
0
, Ĥ ¼ F�T _H

0
, ð11Þ

with _F ¼ ðgrad vÞF, vi ¼ _xi denoting an incremental displacement.
Substitution of the incremental updated quantities into the governing equations (7) yields

div T̂ ¼ 0, div B̂ ¼ 0 and curl Ĥ ¼ 0: ð12Þ

Moreover, substitution of (11) into (8) yields

T̂ ij ¼Aijklvk,lþMijkB̂k� _pdijþpvj,i, Ĥi ¼Mjkivj,kþHijB̂j, ð13Þ

where

Aijkl ¼ J�1FjaFlbA0
iakb, Mijk ¼ FjaF�1

bkM0
iab, Hij ¼ JF�1

ai F�1
bj H0

ab: ð14Þ

Note that the updated magnetoelastic moduli possess symmetries

Aijkl ¼Aklij, Mijk ¼Mjik, Hij ¼Hji: ð15Þ
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Finally, upon substitution of the linearized relations (13) into (12), the following equations are obtained:

Aijklvk,ljþMijkB̂k,j� _p ,i ¼ 0 and EspiðMjkivj,kpþHijB̂j,pÞ ¼ 0, ð16Þ

where Espi is the Levi–Civita permutation tensor.

4. Onset of macroscopic instabilities

Long-wavelength or macroscopic instabilities are known to be of particular prominence in fiber-reinforced elastomers
(Triantafyllidis and Maker, 1985). In the mechanics of non-linear composites (Geymonat et al.,1993) showed that
macroscopic instabilities occur when the homogenized properties lose strong ellipticity. Extending the formulation
presented by Hill and Hutchinson (1975) for the pure mechanical case and following the recent works by Bertoldi and Gei
(2011), Rudykh and deBotton (2011), and Destrade and Ogden (2011), we seek for a solution of (16) in the form of a
standing plane wave, namely

vi ¼ ~vif ða � xÞ, _p ¼ ~qða � xÞ, B̂i ¼
~bigða � xÞ, ð17Þ

where f and g are sufficiently continuously differentiable functions and a is a unit vector. Substitution of relations (17) into
(16) yields

Qik ~vkf 00 þRik
~bkg0�ai ~q

0
¼ 0 ð18Þ

and

EspiðRji ~vjf
00
þHij

~bjg
0Þap ¼ 0, ð19Þ

where Qik ¼Aijklajal is the acoustic tensor and Rik ¼Mijkaj. It follows from (19) that

s�ðs � aÞa¼ 0, ð20Þ

with s¼ RT ~vf 00 þH ~bg0. By taking the dot product of (20) with ~b and noting that Eq. (12)2 requires

~b � a¼ 0, ð21Þ

we obtain

g0 ¼ �
~b � RT ~v
~b �H ~b

f 00: ð22Þ

Finally, substituting (22) into (18) and taking the dot product with ~v we obtain

ðQ ~vÞ � ~v�
ð ~v � R ~bÞð ~b � RT ~vÞ

~b �H ~b
¼ 0, ð23Þ

since the incompressibility constraint requires

~v � a¼ 0: ð24Þ

Hence, macroscopic instabilities may develop whenever the condition

ðQ ~vÞ � ~v�
ð ~v � R ~bÞð ~b � RT ~vÞ

~b �H ~b
40 ð25Þ

is first violated along any arbitrary loading path, for any ~v, ~b, and a subjected to the conditions (21) and (24). Note that
condition (25) is equivalent to the criterion derived by Destrade and Ogden (2011) for propagation of magneto-elastic
infinitesimal homogeneous plane waves.

Furthermore, for a 2D problem the critical condition (23) can be explicitly written in terms of a sextic polynomial
equation for x� a2=a1, namely

G6x
6
þG5x

5
þG4x

4
þG3x

3
þG2x

2
þG1xþG0 ¼ 0, ð26Þ

where coefficients Gi are given by (A.4) in Appendix A. The details of the derivation of Eq. (26) are provided in Appendix A.
Thus, a macroscopic instability may occur when a real solution x of (26) exists. We note that the general condition (23)

and its specialization to 2D conditions (26) can be used for the analysis of instability in multiphase hyperelastic
magnetosensitive materials employing the pertinent homogenized constitutive moduli obtained either numerically or
via a homogenization procedure.

5. MREs with layered microstructures

Recent experiments (e.g., Farshad and Benine, 2004; Danas et al., 2012) revealed that the microstructure of MREs has a
strong impact on their macroscopic response. In particular, the field-induced stiffening has been observed to be
significantly increased in anisotropic MREs where the magnetoactive rigid particles are aligned and form chain-like
structures (see Fig. 1). In order to account for the anisotropy and to investigate analytically through exact and explicit
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formulae the influence on the overall material response of both spacial and material parameters as well as of coupled
loading conditions, here we focus on MREs with layered microstructures. Note that for this specific case, the boundary
value problems can be solved exactly even in the frame of finite deformations.

Let us consider a heterogeneous composite with layered microstructures (see Fig. 2). The constituents are
incompressible magnetosensitive elastomers with volume fractions cðmÞ and cðiÞ ¼ 1�cðmÞ. Here and thereafter, the fields
and parameters characterizing stiff and soft phases are denoted by superscripts ð�ÞðiÞ and ð�ÞðmÞ, respectively. We denote by
N0 the direction normal to the layers plane (i.e., the laminate direction), while M0 is a unit vector tangent to the interface,
both in the undeformed configuration. The vectors can be expressed in terms of the referential lamination angle Y0 as

N0
¼ sin Y0 e1þ cos Y0 e2 and M0

¼ cos Y0 e1� sin Y0 e2: ð27Þ

5.1. Homogenization of multilayered MREs

Since the onset of macroscopic instabilities is detected by analyzing the homogenized properties of the composite, we
start with homogenizing the multilayered MRE. For a multilayered material where all fields are homogeneous in each
phase, the macroscopic deformation gradient F, the macroscopic Lagrangian magnetic field H

0
and the macroscopic

magnetic induction B
0

are defined as

F ¼ cðmÞFðmÞ þcðiÞFðiÞ, H
0
¼ cðmÞH0ðmÞ

þcðiÞH0ðiÞ and B
0
¼ cðmÞB0ðmÞ

þcðiÞB0ðiÞ: ð28Þ

The deformation gradient in each phase can be obtained by making use of the displacement continuity condition across
the interface (i.e., FðmÞM0

¼ FðiÞM0) as (see deBotton, 2005 for details)

FðmÞ ¼ FðIþcðiÞaM0
�N0

Þ and FðiÞ ¼ FðI�cðmÞaM0
� N0

Þ, ð29Þ

where the scalar a is obtained from the traction continuity condition equations (4)1. Moreover, the continuity condition for
the Lagrangian magnetic induction equations (4)2 can be recast as

B0ðmÞ
�B0ðiÞ

¼ bM0: ð30Þ

Introduction of Eq. (30) into Eq. (28)3 yields

B0ðmÞ
¼ B

0
þcðiÞbM0 and B0ðiÞ

¼ B
0
�cðmÞbM0, ð31Þ

where b is a scalar to be determined from the continuity condition for the Lagrangian magnetic field equation (4)3, namely

ðH0ðmÞ
�H0ðiÞ

Þ �M0
¼ 0: ð32Þ

Eqs. (29), (31) and (32) together with constitutive relations of the phases (see Section 6.1) define a solution of the
boundary value problem.

Furthermore, the total energy–density function of the composite can be expressed as the weighted sum of phase
energy–density functions, namely

CðF,B
0
Þ ¼

X
r ¼ m,i

cðrÞCðrÞðF,B
0
Þ ð33Þ

and the macroscopic nominal stress tensor and Lagrangian magnetic field can be obtained as

P ¼
@C
@F
�pF

�T
and H

0
¼
@C

@B
0
: ð34Þ

Finally, explicit expressions for the macroscopic effective magnetoelastic moduli can be calculated as

A0
¼
@2C
@F@F

, M0
¼

@2C

@F@B
0

and H0
¼

@2C

@B
0
@B

0
: ð35Þ

Fig. 2. Schematic representation of an anisotropic multilayered MRE.
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6. Results for multilayered MREs

Here, we investigate the non-linear response of anisotropic MREs with layered microstructure and identify the onset of
macroscopic instabilities for three relevant loading conditions, namely simple and pure shear in 2D and axisymmetric
shear in 3D in the presence of a magnetic field. Results will be presented for MREs whose response is captured by using an
extended neo-Hookean form for the energy–density function. Although we are interested in the response of elastomers
with magnetic filler particles mainly localized in chain-like structures, Fig. 1 clearly shows that the magnetoactive
particles are also distributed in the soft layers between the chains. Consequently, also the soft phase is assumed to be
magnetoactive (i.e., mðmÞ41, mðiÞ4mðmÞ) and we focus on multilayered materials characterized by a contrast ratio of the
phases material constants GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100.

6.1. Constituent material properties

In the following sections results are presented for incompressible MREs phases whose response is captured using an
extended neo-Hookean energy–density function. Moreover, we assume a linear constitutive relation between magnetic
field and magnetic induction, namely

B¼ mm0H, ð36Þ

where m is a constant1 and m0 is the magnetic permeability of vacuum.2

The response of isotropic magnetoactive materials can be captured by using a decoupled energy–density function
(Ponte Castañeda and Galipeau, 2011), namely

CðF,B0
Þ ¼CmechðFÞþ

1

2m0mJ
ðFB0
Þ � ðFB0

Þ, ð38Þ

where CmechðFÞ represents a purely mechanical contribution. In particular, for the incompressible MREs whose response is
captured by using a neo-Hookean form for the mechanical free-energy–density function, Eq. (38) can be specialized as

CðF,B0
Þ ¼

G

2
ðTr C�3Þþ

1

2m0mJ
ðFB0
Þ � ðFB0

Þ, ð39Þ

where C� FT F is the right Cauchy–Green strain tensor and G is the initial shear modulus. The corresponding total first
Piola–Kirchhoff stress tensor and Lagrangian magnetic field are then obtained from Eqs. (5) as

P¼ GFþ
ðFB0
Þ � B0

m0m
�pF�T

ð40Þ

and

H0
¼

FT
ðFB0
Þ

mm0

, ð41Þ

respectively.
Moreover, for a multilayered structure whose phases are characterized by the energy–density function (39), the

constants a and b entering in the homogenized response (Eqs. (29)–(32)) can be determined explicitly as

a¼ GðiÞ�GðmÞ

cðmÞGðiÞ þcðiÞGðmÞ
FN0
� FM0

FM0
� FM0

ð42Þ

and

b¼
mðmÞGðmÞ�mðiÞGðiÞ

ðcðmÞGðiÞ þcðiÞGðmÞÞm
F B

0
� FM0

FM0
� FM0

þ
GðiÞ�GðmÞ

cðmÞGðiÞ þcðiÞGðmÞ
B

0
�M0, ð43Þ

where m ¼ ðcðmÞmðmÞ þcðiÞmðiÞÞm0.

1 Although, for the sake of simplicity, here we consider m to be constant, the saturation effect occurring at high magnetic fields can be easily included

by having m to be a function of the magnetic field, mðHÞ. Functions to capture the saturation effect can be easily constructed and an example is given by

mðHÞ ¼ mn 1þ@ðHsÞ
Hs

H
�1

� �� �
, ð37Þ

where mn is the magnetic constant in the linear range, @ðxÞ is the Heaviside step function, Hs is the saturation magnetic field.
2 Note that the constitutive equation for B may also be written as H¼ B=m0�m (Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda,

2012), where m is the Eulerian magnetization. This form of the constitutive equation can be easily recovered by choosing m to be defined via m¼ ðm�1ÞH.
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6.2. Loading conditions

The following macroscopic magneto-mechanical loading conditions are considered:

� Simple shear in 2D in the presence of a magnetic field applied in x2 direction. For this loading case the macroscopic
deformation gradient F and the applied magnetic field H

0
are given by

F ¼ e1 � e1þge1 � e2þe2 � e2þe3 � e3 and H
0
¼H2e2: ð44Þ

� Pure shear in 2D in the presence of a magnetic field applied in x2 direction. For this loading case the macroscopic
deformation gradient F and the applied magnetic induction B

0
are given by

F ¼ le1 � e1þ
1

l
e2 � e2þe3 � e3 and B

0
¼ B2e2: ð45Þ

� Axisymmetric shear in 3D in the presence of a magnetic field applied in x2 direction. For this loading case the macroscopic
deformation gradient F and the applied magnetic induction B

0
are given by

F ¼ le1 � e1þl
�2e2 � e2þle3 � e3 and B

0
¼ B2e2: ð46Þ

Although a generic state of deformation described can be reached by following multiple loading histories, here we focus on
the two fundamental non-linear magneto-mechanical paths (see Fig. 3):

� Path A: The macroscopic deformation is first applied and then kept constant while increasing the external
magnetic field.
� Path B: The macroscopic external magnetic field is first applied and then kept constant while increasing the applied

deformation.

6.3. Results for simple shear in 2D in the presence of a magnetic field

Motivated by experimental measurement of tangent effective shear moduli of anisotropic MREs (Chen et al., 2003,
2007; Danas et al., 2012), we study simple shear mode of deformations in the presence of a magnetostatic field as specified
in (44). We first investigate the onset of instabilities in structures with horizontal and vertical layer orientation, and then
we focus on the influence of the lamination angle Y0.

Fig. 3. Schematic representation of the considered loading paths. (For interpretation of the references to color in this figure caption, the reader is referred

to the web version of this article.)
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6.3.1. Horizontal layers ðY0
¼ 0Þ

Macroscopic response: When the magnetic field is normal to the layers (i.e., Y0
¼ 0), the current and Lagrangian

magnetic fields are equal (i.e., H ¼H
0
) and the Lagrangian magnetic induction is given by

B
0
¼ mˇ H2ðge1þe2Þ, ð47Þ

where mˇ ¼ ðcðmÞ=mðmÞ þcðiÞ=mðiÞÞ�1m0. It follows that the macroscopic shear stress component s12 is

s12 ¼ G
ˇ g, ð48Þ

where G
ˇ
¼ ðcðmÞ=GðmÞ þcðiÞ=GðiÞÞ�1. Eq. (48) clearly reveals that the shear stress does not depend on the magnetic field.

Analysis of macroscopic instabilities: Remarkably, for this choice of Y0 and loading conditions the onset of macroscopic
instabilities (26) takes a compact form

g2� 1�
mˇ

m

 !
mˇ

G
ˇ
H2

2þ1¼ 0: ð49Þ

Therefore, for Path A macroscopic instabilities will occur when

g¼ 1�
mˇ

m

 !
mˇ

G
ˇ
H2

2�1

" #1=2

, ð50Þ

whereas for Path B instability is detected when

H2 ¼ ðg2þ1Þ 1�
mˇ

m

 !�1
G
ˇ

mˇ

2
4

3
5

1=2

: ð51Þ

Eq. (50) confirms that in the purely mechanical case (i.e., H2 ¼ 0) macroscopic instabilities do not occur (Triantafyllidis
et al., 2006; Agoras et al., 2009; Rudykh and deBotton, 2011, 2012). Differently, multilayered MREs characterized by Y0

¼ 0
are found to fail under simple shear in the presence of a magnetic field when conditions (50) and (51) are first met along
the loading path.

Fig. 4 shows results for the critical dimensionless magnetic field H¼H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0mðmÞ=GðmÞ

q
at which the macroscopic

instabilities develop as a function of the applied shear deformation g and of the stiff phase volume fraction cðiÞ. It is easy to
see that when the material is deformed according to Path A larger values of g stabilize the system. Similarly, for Path B

larger values of H stabilize the system. Moreover, in both cases larger contrast ratios between the phases result in
significant destabilization of MREs.

6.3.2. Vertical layers ðY0
¼ p=2Þ

Next, we consider the case when magnetic field is parallel to the layers (i.e., Y0
¼ p=2Þ.

Macroscopic response: In this case, the macroscopic shear stress is given by

s12 ¼
g

ð1þg2Þ
2
½Gð2þg2Þg2þG

ˇ
þH2

2ðm�mˇ Þ�, ð52Þ

Fig. 4. Simple shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with horizontal layers ðY0
¼ 0Þ. The magnitude of the

critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio of the phases

material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
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where G ¼ GðmÞcðmÞ þGðiÞcðiÞ. Expression (52) clearly shows the dependence of the shear stress on the magnetic field. Fig. 5
shows the normalized shear stress T12 ¼ s12=G versus g for composites where the stiffer phase has volume fraction
cðiÞ ¼ 0:2. The results corresponding to purely mechanical loading (black dashed curve) are compared to the results of
loading in the presence of dimensionless magnetic fields H¼1.0, 2.0, 4.0 and 5.0. While for low magnetic fields the stress–
strain curves are almost linear, for higher magnetic fields the response is found to be characterized by a prominent local
maximum. Therefore for high magnetic fields snap-through instabilities may occur, since small disturbances will lead to
sudden jump to the following branch of the equilibrium curve resulting in giant deformations (e.g., Rudykh et al., 2012;
Wang et al., 2012; Li et. al., 2013, for snap-through actuation of electroactive media). However, for moderate values of
applied deformations (i.e., 9g9t0:3) the response can be approximated by a linear function even for large values of the
magnetic field. In particular, Taylor series expansion of the shear stress s12 (Eq. (52)) around g¼ 0 yields

s12 ¼ ½G
ˇ
þH2

2ðm�mˇ Þ�gþoðg3Þ, ð53Þ

showing that for moderate g the shear stress slope monotonically increases as a function of H, leading to larger values of
the instantaneous shear modulus. This result nicely agrees with the recent experimental observations, reporting a marked
field-induced stiffening in anisotropic MREs (Guan et al., 2008; Danas et al., 2012).

It is also interesting to observe that the curves asymptotically reduce to the one corresponding to the purely mechanical
case as the amount of applied shear increases, since the mechanical part of the shear stress becomes dominant over the
magnetic stress contribution. Finally, the stress–strain curves clearly show that an increase of the contrast ratios between
the layers leads to an increase of the corresponding stress response.

Analysis of macroscopic instabilities: We start by noting that, similar to the previously considered case of Y0
¼ 0, in the

purely mechanical case macroscopic instabilities do not occur for Y0
¼ p=2. However, when magnetomechanical finite

deformations are applied the onset of macroscopic instability can be calculated from Eq. (26). Differently from the case of
Y0
¼ 0 here (26) has to be solved numerically, since its roots cannot be obtained explicitly.
In contrast with the case of Y0

¼ 0, here the magnetic field is applied parallel to the layers and acts to stabilize the
media. Consequently, in the undeformed configuration ðg¼ 0Þ the composite is stable for any value of H. However, when g
is increased the stability of the system will be determined by the competition between two opposite effects: (i) increasing
values of g will result in a rotation of the layers so that at some critical angle the magnetic field will act to destabilize the
material; (ii) increasing values of g will lead to tension within the layers, and consequently, suppresses instabilities.
As a result all the configurations investigated in Fig. 5a and b are stable in the considered range of g except for the material
characterized by GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and subjected to H¼5. For this case the onset of macroscopic instability is
detected at gC0:939, as marked by a circle in Fig. 5a.

To show a detailed and comprehensive picture illustrating the stability of the considered anisotropic MREs, in Fig. 6 we
present results for the critical magnetic field H at which macroscopic instabilities develop as a function of the applied
shear deformation g and of the stiff phase volume fraction cðiÞ. As expected, differently from the case Y0

¼ 0 the material is
found to be stable at low values of g, because of the initially stabilizing role of the magnetic field for this configuration.
However, above a critical g instabilities are observed to occur, facilitated by the inclination of the layers. Interestingly, for
large enough amount of applied shear the stabilizing effect of the tension built in the layers dominates, leading to higher
values of H. Finally, differently from the case Y0

¼ 0, larger contrast ratios between the phases are observed to stabilize
the MREs.
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Fig. 5. Stress–strain response of anisotropic MREs characterized by Y0
¼p=2 at different levels of the magnetic field H¼0.0, 1.0, 2.0, 4.0 and 5.0 (black,

red, green, purple, blue and magenta, respectively). The volume fraction of the stiff phase is cðiÞ ¼ 0:2. The contrast ratio of the phases material constants is

GðiÞ=GðmÞ ¼mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the reader is referred to

the web version of this article.)
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6.3.3. Influence of the lamination angle Y0

Analysis of macroscopic instabilities: Next we analyze the influence of the layers orientation on the macroscopic stability
of the composites subjected to simple shear deformation at a magnetic field as specified in (45).

It is well known that for the purely mechanical case multilayered structures may become unstable only when the
applied deformation results in compression along the layer direction (e.g.,Triantafyllidis and Maker, 1985; Nestorovic and
Triantafyllidis, 2004; Agoras et al., 2009; Rudykh and deBotton, 2012). More specifically, under simple shear loading
macroscopic instabilities occur when

a4g4þa3g3þa2g2þa1gþa0 ¼ 0, ð54Þ

with

a0 ¼ 8G
ˇ
, a1 ¼ 16G sin 2Y0, a2 ¼ 4ð3GþG

ˇ
�2G cos 2Y0

�ðG�G
ˇ
Þcos 4Y0

Þ,

a3 ¼ 4ð2G sin 2Y0
þðG

ˇ
�GÞsin 4Y0

Þ, a4 ¼ 3GþG
ˇ
�4G cos 2Y0

þðG�G
ˇ
Þcos 4Y0:

It can be shown that condition (54) may be eventually satisfied only when p=2oY0op (i.e., when the applied
deformation results in compression in the layer direction).

The bifurcation diagrams of composites with phase volume fractions cðiÞ ¼ 0:2 are shown in Fig. 7. To highlight the role
played by anisotropy the critical levels of magnetic excitation are presented as functions of the lamination angle Y0 and
the applied amount of shear g.

We start by noting that purely mechanical instabilities give rise to discontinuities in the critical magnetic field surfaces
in the region of p=2oY0op, as clearly marked in the plot by the while dashed lines corresponding to the onset of
macroscopic mechanical instability. We also observe that an increase of contrast ratio in the material properties
destabilizes the system when subjected to purely mechanical loading.

By contrast, if the composites are subjected to a magnetomechanical loading, an increase of contrast ratio in the
material properties is found to stabilize the system. Moreover, we observe that MREs with low initial lamination angles are
less stable systems.

Finally, to highlight the important role played by the magnetic fields for MREs loaded according to Path A, in Fig. 8 we
plot the critical magnetic field H as a function of Y0 at fixed amount of applied shear g¼ 0:5. In the figure the light and
dark shadowed regions correspond to the stable and unstable domains, respectively. We observe that when there is no
magnetic field applied (i.e., H¼0), MREs characterized by GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 are unstable for
0:681oY0o0:897p and 0:591oY0o0:987p, respectively (see Fig. 8a and b). Remarkably, we observe that a relatively
low applied magnetic fields H is capable of significant stabilization. For example at Y0

¼ 0:7p and H¼0 both MREs
investigated in Fig. 8 are unstable, however they become stable when a magnetic field H¼0.4 and 0.9 is applied for
GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100, respectively.

Fig. 6. Simple shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with vertical layers (Y0
¼ p=2). The magnitude of the

critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio of the phases

material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
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6.4. Results for pure shear in 2D in the presence of magnetic field

In this section we investigate pure shear mode of deformations in the presence of a magnetic field. As for the case of
simple shear, we first investigate the onset of instabilities in structures with horizontal and vertical layer orientation, and
then focus on the influence of the lamination angle Y0.

6.4.1. Horizontal layers ðY0
¼ 0Þ

Macroscopic response: For MREs with horizontal layers (i.e., Y0
¼ 0) the only non-zero component of the Lagrangian

magnetic field is

H0
2 ¼

B0
2

mˇ l2
ð55Þ

so that

T ¼
ðs11�s22Þ

G
¼ l2
�

B2
2

mˇ G
þ1

 !
l�2: ð56Þ
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Fig. 8. Simple shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE varying orientation of layers. The magnitude of the

critical magnetic field for the onset of macroscopic instability is shown as a function of Y0 at fixed g¼ 0:5. The contrast ratio of the phases material

constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Fig. 7. Simple shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with varying orientation of layers. The magnitude of

the critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio of the phases

material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. The volume fraction of the stiff phase is cðiÞ ¼ 0:2. The white dashed

curves correspond to the onset of macroscopic instability for the purely mechanical case. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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Fig. 9 shows the evolution of the normalized stress T as the function of the applied stretch l for composites with cðiÞ ¼ 0:2.
The purely mechanical response is compared to that of composites in the presence of increasing levels of dimensionless

magnetic induction B¼ B2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðmÞmðmÞm0

q
¼ 1:0, 2.0, 4.0 and 5.0.

Clearly, under tension (i.e., l41) the magnetic field reduces the stress level in the material, so that the highest curve is
the one corresponding to the purely mechanical case. However, at relatively high values of the applied stretch the
contribution of the magnetostatic stresses decreases and the purely mechanical part of the total stress becomes dominant,
so that the curves of the magnetically excited materials approach the purely mechanical ones. By contrast, in compression
(i.e., lo1) the magnetic field is found to increase the stress level in the material and its contribution becomes more
pronounced for large values of the applied deformation. Finally, we observe that increasing the contrast ratios of the
material properties the mechanical stress contribution becomes dominant, so that all the curves approach that
corresponding to the purely mechanical loading.

Analysis of macroscopic instabilities: Remarkably, for Y0
¼ np and Y0

¼ p=2þnp with n¼ 0,1,2 . . ., the coefficients G1,
G3, G5 in Eq. (26) vanish and the criterion for the onset of instabilities can be written as a bi-cubic polynomial

G6x
6
þG4x

4
þG2x

2
þG0 ¼ 0: ð57Þ

More specifically, when the material is loaded according to Path A the onset of macroscopic instability is detected when

l¼ 1�
G
ˇ

G
þ

B2
2

Gmˇ
1�

mˇ

m

 !2
4

3
5

1=4

, ð58Þ

whereas for Path B instability will occur when

B2 ¼ l4
�1þ

G
ˇ

G

0
@

1
A 1�

mˇ

m

 !�1

mˇ G

2
4

3
5

1=2

: ð59Þ

Therefore for the purely mechanical case (i.e., B2 ¼ 0), as predicted by Triantafyllidis and Maker (1985), an increase of the
contrast ratio of the constituents material reduces the stable domain and for the two limiting cases cðiÞ-0 and cðmÞ-0 the
material is observed to be stable.

Fig. 10 shows the bifurcation diagrams, reporting the dimensionless critical magnetic field B as a function of the applied
stretch l and of the volume fraction of the stiffer magnetoactive phase. The white dashed curves in the plots correspond to
the onset of macroscopic instability for the purely mechanical case.

Differently from the purely mechanical case where the bifurcation diagrams are symmetric with respect to cðiÞ ¼ 0:5, in
the presence of a magnetic field composites with low volume fractions of the stiffer phase (i.e., cðiÞ-0) are less stable than
those with higher concentration of the stiff phase (i.e., cðiÞ-1). Moreover, increasing values of both applied deformation l
and phases material contrasts are found to stabilize the system. Interestingly, for high contrast ratios of the phase material
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Fig. 9. Stress–strain response of anisotropic MREs characterized by Y0
¼ 0 at different levels of the magnetic excitation B¼0.0, 1.0, 2.0, 4.0 and 5.0 (black,

red, green, purple, blue, and magenta curves, respectively). The volume fraction of the stiffer phase is cðiÞ ¼ 0:2. The phase material constant contrast

ratios are GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in pictures (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
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constants the composite becomes extremely unstable when cðiÞ-0, while in the limit of dilute soft magnetoactive phase
the stability of the composites is not significantly influenced by magnetic excitation.

6.4.2. Vertical layers ðY0
¼ p=2Þ

Macroscopic response: When Y0
¼ p=2, the only non-zero component of the Lagrangian magnetic field is

H0
2 ¼

B0
2

ml2
ð60Þ

so that the dimensionless stress T is given by

T ¼ l2
�

B2
2

Gm
þ1

 !
l�2: ð61Þ

Fig. 11 reports the evolution of T as a function of the applied stretch l for composites with cðiÞ ¼ 0:2 and contrast ratios
GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. The black dashed curves correspond to the purely mechanical
loading, while the red, green, purple, blue and magenta curves correspond to the response in the presence of magnetic
fields B¼1.0, 2.0, 4.0 and 5.0, respectively. Although the stress–strain behavior is similar to that obtained for the case
Y0
¼ 0, in this case the purely mechanical stresses become dominant over the magnetostatic ones much quicker for the

increasing values of contrast ratio, as can be easily seen in Fig. 11b where all the curves overlap.
Analysis of macroscopic instabilities: For the case considered here (i.e., Y0

¼ p=2), the bifurcation points for Path A can be
identified by

l¼ 1�
G
ˇ

G

0
@

1
A
�1=4

1þ
B2

2

Gm
1�

mˇ

m

 !" #1=4

, ð62Þ

which stems from (26) and appropriately reduces to the well-known result of Triantafyllidis and Maker (1985) for the
purely mechanical case (B¼0). In Fig. 11 the onsets of bifurcations are denoted by circles and occur in tension, since l41
results in compression in the layer direction.

Moreover, for Path B the critical magnetic excitation can be easily obtained from (62) as

B2 ¼ l4 1�
G
ˇ

G

0
@

1
A�1

2
4

3
5 1�

mˇ

m

 !�1

mG

8<
:

9=
;

1=2

: ð63Þ

Fig. 12 shows the dimensionless critical magnetic excitation B as a function of the stretch measured in the layer direction
l�1 and of the volume fraction of the stiffer magnetoactive phase. First, we observe that for small values of compressive
stretch in the layer direction (i.e., l�1

	 1) the material is stable, as indicated by the white blank region in the figures, and
that the stable domain is separated from the unstable domains by a failure surface corresponding to the purely mechanical
case, namely B¼0.

Fig. 10. Pure shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with horizontal layers ðY0
¼ 0Þ. The magnitude of the

critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio of the phases

material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. The white dashed curves correspond to the onset of macroscopic

instability for the purely mechanical case. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of

this article.)
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It is easy to see that here the magnetic field stabilizes the material, since higher applied magnetic fields result in higher
compressive stretches needed to achieve instabilities. Moreover, we note that the stabilizing effect of the applied magnetic
field is more significant in the range of low volume fractions of the magnetoactive inclusions (i.e., cðiÞo0:5). Finally, larger
contrast ratios between the phases are observed to destabilize the MREs.

6.4.3. Influence of the lamination angle Y0

Analysis of macroscopic instabilities: To highlight the effect of material anisotropy on the material stability we now
investigate the influence of the lamination angle Y0. For the purely mechanical loading it has been shown (Agoras et al.,
2009) that a macroscopic instability occurs when

l8 cos2Y0
½GþG

ˇ
þðG�G

ˇ
Þcos 2Y0

��l4G�G
ˇ

2
ð3þcos 4Y0

Þþ½GþG
ˇ
�ðGþG

ˇ
Þcos 2Y0

�sin2Y0
¼ 0: ð64Þ

It can be shown that Eq. (64) admits a real solution l only when the applied mechanical deformation results in
compression in the layer direction. For the case of pure shear loading considered here this occurs only when Yop=4
(Rudykh and de Botton, 2012), deBotton with Y¼ arctanðl2 tan Y0

Þ denoting the lamination angle in the deformed
configuration.

Fig. 12. Pure shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with vertical layers. The magnitude of the critical

magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio of the phases material

constants is GðiÞ=GðmÞ ¼mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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Fig. 11. The dependance of the stress on the stretch ratio for the anisotropic MRE with Y0
¼ p=2 (the layers are aligned with the magnetic field and normal to the

stretch direction) at different levels of the magnetic field B¼0.0, 1.0, 2.0, 4.0 and 5.0. (black, red, green, purple, blue, and magenta, respectively). The volume

fraction of the stiff phase is cðiÞ ¼ 0:2. The phase material constant contrast ratios are GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in pictures (a) and (b), respectively. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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The bifurcation diagrams for coupled magnetomechanical loadings of composites with phase volume fractions cðiÞ ¼ 0:2
are shown in Fig. 13. To highlight the role of the anisotropy, the critical levels of magnetic excitation B are presented as
functions of the lamination angle Y0 and stretch ratio l.

In both plots we can observe purely mechanical unstable domains, highlighted by the white dashed curves. As
expected, an increase of the contrast ratio leads to the expansions of these domains.

In contrast to the purely mechanical case, under coupled magnetomechanical loadings instabilities may develop in
composites with lamination angles beyond Y¼ p=4. Focusing on the bottom part of the plots which corresponds to
compression (i.e., lo1) we observe that an increase of the lamination angle Y0 results in stabilization of the material and,
consequently, in higher values of the critical level of magnetic excitation. Differently, when a tensile deformation
(i.e., l41) is applied to the MRE an increase of Y0 is found to destabilize the composite, leading to lower values of the
critical magnetic excitation. We also note that the switch in the role of the lamination angle Y0 happens near l
 1, but its
exact location depends on the material properties.

6.5. Results for axisymmetric shear in 3D in the presence of magnetic field

Finally, we investigate a 3D mode of deformations in the presence of a magnetostatic field as specified in (46),
considering multilayers characterized by Y0

¼ 0.
Macroscopic response: For MREs with Y0

¼ 0 the only non-zero component of the magnetic field vector is

H2 ¼
B2

mˇ l4
, ð65Þ

so that

T ¼
ðs11�s22Þ

G
¼ l2
�

B2
2

mˇ G
þ1

 !
l�4, ð66Þ

with s11 ¼ s33 ¼ Gl2
�p.

The evolution of the normalized stress T as a function of the applied stretch l for composites with cðiÞ ¼ 0:2 is reported
in Fig. 14, where the purely mechanical response is compared to that of composites in the presence of increasing levels of

dimensionless magnetic induction B¼ B2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðmÞmðmÞm0

q
¼ 1:0, 2.0, 4.0 and 5.0. As expected, the stress–strain response

shows the same features previously observed for pure shear in 2D with Y0
¼ 0 (see Section 6.4.1).

Analysis of macroscopic instabilities: Making use of Eq. (23), for Path A the onset of macroscopic instability is detected
when

l¼ 1�
G
ˇ

G
þ

B2
2

mˇ G

0
@

1
A

1=6

, ð67Þ

Fig. 13. Pure shear in the presence of a magnetic field: bifurcation diagrams for multilayered MRE with varying orientation of the layers. The magnitude

of the critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The volume fraction of the

stiffer phase is cðiÞ ¼ 0:2. The contrast ratio of the phases material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. The volume

fraction of the stiff phase is cðiÞ ¼ 0:2. The white dashed curves correspond to the onset of macroscopic instability for the purely mechanical case. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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whereas for Path B instability will occur upon

B2 ¼ mˇ G l6
� 1�

G
ˇ

G

0
@

1
A

0
@

1
A

8<
:

9=
;

1=2

: ð68Þ

Thus, instability for this 3D loading condition is encountered earlier along the loading path than for the corresponding
2D case (Eqs. (58) and (59)). For both Paths A and B, bifurcation is found for ~v ¼ ~b ¼ e2, whereas a can be either in-plane or
out-of-plane, namely, a¼ e1 or a¼ e3. Combining (66) with (68), we obtain the critical stress at the onset of instability

Tc ¼�
G
ˇ

G
l�4 for lZ 1�

G
ˇ

G

0
@

1
A1=6

: ð69Þ

We observe that the critical stress remains always negative, as shown in Fig. 14 by the black dotted curve.
Fig. 15a and b shows the critical magnetic field as a function of the applied stretch and volume fraction for composites

with GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100, respectively.

Fig. 15. Axisymmetric shear in 3D in the presence of magnetic fields: bifurcation diagrams for multilayered MRE with horizontal layers ðY0
¼ 0Þ. The

magnitude of the critical magnetic field for the onset of macroscopic instability is shown as a contour map with the adjacent color-bar. The contrast ratio

of the phases material constants is GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in (a) and (b), respectively. The white dashed curves correspond to the onset of

macroscopic instability for the purely mechanical case. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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Fig. 14. Stress–strain response of anisotropic MREs characterized by Y0
¼ 0 at different levels of the magnetic excitation B¼0.0, 1.0, 2.0, 4.0 and 5.0

(black, red, green, purple, blue, and magenta curves, respectively). The volume fraction of the stiffer phase is cðiÞ ¼ 0:2. The phase material constant

contrast ratios are GðiÞ=GðmÞ ¼ mðiÞ=mðmÞ ¼ 10 and 100 in pictures (a) and (b), respectively. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this article.)
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The failure surfaces are symmetric with respect to cðiÞ ¼ 0:5 only for the purely mechanical case, as shown by the white
dashed lines. When a magnetic field is present, MREs with low cðiÞ are less stable, and, similar to pure shear loading case
the previously considered, when cðiÞ-0 they become extremely unstable. This behavior becomes more pronounced when
the phase contrast ratios increases.

7. Concluding remarks

Magnetosensitive elastomers show a great potential in the design of smart devices. Here, we focus on anisotropic MREs
where the magnetic particles are aligned and form chain-like structures, since it has been recently shown that they are
characterized by an increased field-induced stiffening. We idealize the microstructure of anisotropic MREs as periodic
multilayers and obtain explicit expressions for the macroscopic response of composites with neo-Hookean magnetoactive
phases. The model nicely recovers the increase in material stiffness induced by an applied magnetostatic excitation
observed in the experimental tests.

A critical issue related to the development of MREs is the possible development of instabilities. To investigate the
stability of anisotropic MREs a general criterion for the onset of macroscopic instability is derived, extending the well-
known theory of bifurcation and stability of non-linear elastic solids. For the considered class of MREs with layered
microstructures the instability criterion results in explicit expressions for the critical magnetomechanical loading
conditions corresponding to the onset of macroscopic instabilities.

Different loading conditions are investigated: 2D simple and pure shear modes and 3D axisymmetric shear in the
presence of a magnetic field. For simple shear, both a large amount of applied shear and a high magnetostatic field are
required to destabilize the system. For pure shear, the onset of macroscopic instability can be achieved either by
application of purely mechanical or purely magnetostatic loadings or by a combination of them. Remarkably, the results
reveal that

(i) the magnetic field promotes instabilities when applied perpendicular to the layers and
(ii) the magnetic field stabilizes the media when applied parallel to the layers.
We conclude noting that future work should consider the influence of the saturation effect at high magnetic fields. This

can be easily accomplished by having the magnetic constant m depending on the magnetic field, mðHÞ. Note that, even in
this case, the stability of the multilayered structure can be investigated using the explicit expressions (Eqs. (23) and (26))
presented in Section 4 and their specialization to different loadings cases included in Section 6. We expect that the
saturation effect will promote the appearance of absolutely stable domains where the analysis performed in this work
revealed that a high magnetic field is required to achieve instability. On the other hand, for the cases where the magnetic
field is found to stabilize the material, the saturation effect will tend to promote instability.
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Appendix A. Derivation of the instability condition (26) for 2D problems

Here we provide details on the derivation of the macroscopic instability condition (26) for planar problems. First, we
introduce a fixed Cartesian coordinate system with orthonormal basis vectors ei ði¼ 1,2,3Þ, so that a¼ a1e1þa2e2,
~b ¼ ~b1e1þ

~b2e2, and ~v ¼ ~v1e1þ ~v2e2. Making use of Eq. (21) (i.e., b1 ¼�a2b2=a1), Eq. (23) can be written as

~v1ða
2
1ðA1111 ~v1þA1121 ~v2Þþa1a2ð2A1112 ~v1þðA1122þA1221Þ ~v2Þþa2

2ðA1212 ~v1þA1222 ~v2ÞÞ

þ ~v2ða
2
1ðA2111 ~v1þA2121 ~v2Þþa1a2ðA2112 ~v1þA2211 ~v1þ2A2122 ~v2Þþa2

2ðA2212 ~v1þA2222 ~v2ÞÞ

�
ða2

1ðM112 ~v1þM212 ~v2Þ�a2
2ðM121 ~v1þM221 ~v2Þþa1a2ððM122�M111Þ ~v1þðM222�M211Þ ~v2ÞÞ

2

a2
2H11�2a1a2H12þa2

1H22

¼ 0: ðA:1Þ

Next, substitution of the incompressibility constraint (24) (i.e., v1 ¼�a2v2=a1) into Eq. (A.1) yields

a2ða
3
1A1121þa2

1ð�A1111þA1122þA1221Þa2þa1ð�2A1112þA1222Þa
2
2�A1212a3

2Þ

þa1ð�A1222a3
2þa3

1A2121�a2
1a2ðA1121�2A2122Þ�a1a2

2ðA1122þA1221�A2222ÞÞ

�
ða3

2M121þa3
1M122þa1a2

2ðM111�M122�M221Þ�a2
1a2ðM112þM121�M222ÞÞ

2

a2
2H11�2a1a2H12þa2

1H22
¼ 0: ðA:2Þ
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Finally, defining x¼ a2=a1, Eq. (A.2) can be rewritten as

�ðM122�ðM112þM121�M222Þx�ðM122þM221�M111Þx
2
þM121x

3
Þ
2
þðA2121þx½2A2122�2A1121

þxðA1111�2A1122�2A1221þA2222þxð2A1112�2A1222þA1212xÞÞ�ÞðH22þxðH11x�2H12ÞÞ

¼ 0, ðA:3Þ

that can be reorganized in the form of a sextic polynomial as in Eq. (26) with the coefficients Gi is given by

G0 ¼M2
122�A2121H22,

G1 ¼ 2ðA2121H12þðA1121�A2122ÞH22�M122ðM112þM121�M222ÞÞ,

G2 ¼�A2121H11�4ðA1121�A2122ÞH12�ðA1111�2A1122�2A1221þA2222ÞH22

þ2M122ðM111�M122�M221ÞþðM112þM121�M222Þ
2,

G3 ¼ 2ððA1121�A2122ÞH11þðA1111�2A1122�2A1221þA2222ÞH12

þðA1222�A1112ÞH22þðM121M122�ðM111�M122�M221ÞðM112þM121�M222ÞÞÞ,

G4 ¼�ðA1111�2A1122�2A1221þA2222ÞH11þ4ðA1112�A1222ÞH12

�A1212H22þðM122þM221�M111Þ
2
�2M121ðM112þM121�M222Þ,

G5 ¼ 2ððA1222�A1112ÞH11þA1212H12þM121ðM111�M122�M221ÞÞ,

G6 ¼M2
121�A1212H11: ðA:4Þ
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Galipeau, E., Ponte Castañeda, P., 2012. The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites. Int. J.

Solids Struct. 49, 1–17.
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