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We study electromechanical macroscopic instabilities in dielectric elastomer (DE) composites under-
going finite strains in the presence of an electric field. We identify the unstable domains for DE com-
posites with periodically distributed circular and elliptical inclusions embedded in a soft matrix. We
analyze the influence of the applied electric field and finite strains, as well as the microstructure
geometrical parameters and material properties, on the stability of the DE composites. We find that the
unstable domains can be significantly tuned by an electric field, depending on the electric field direction
relative to pre-stretch and microstructure. More specifically, the electric field aligned with the stretch
direction, promotes instabilities in the composites, and the electric field applied perpendicularly to the
stretch direction, stabilizes the composites. Critical stretch decreases with an increase in the volume
fraction of circular inclusions. An increase in the contrast between the dielectric properties of the con-
stituents, magnifies the role of the electric field, while an increase in the shear modulus contrast results
in a less stable DE composite. For periodic DE composites with elliptical inclusions, we find that the
critical stretch depends on the inclination angle of the inclusion, and that the critical stretch reaches a
unique maximum at an angle defined by the inclusion ellipticity aspect ratio. In the aligned case — when
the longest side of the inclusion is aligned with the stretch direction — an increase in the ellipticity ratio

results in an increase in critical stretch.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Dielectric elastomers (DEs) can achieve large deformations
when excited by an electric field (Pelrine et al., 1998, 2000b, 2000a).
This ability, together with their lightweight, fast response time and
flexibility, make DEs attractive for a wide and diverse variety of
applications, such as artificial muscles (Bar-Cohen, 2001), energy-
harvesting and noise canceling devices, soft robotics (Kornbluh
et al.,, 2012; McKay et al., 2010; Carpi et al., 2011; Bortot et al.,
2016), and tunable waveguides (Gei et al., 2011; Galich and
Rudykh, 2016). However, the wide spread usage of DEs has been
limited due to the extremely high electric fields required to achieve
large strains. Thus, DEs need to operate at the risky edge of elec-
tromechanical instabilities (Plante and Dubowsky, 2006; Rudykh
et al., 2012; Keplinger et al., 2012; Li et al., 2013). A promising
approach for reducing the required electric field is to design and
fabricate composite materials with an enhanced electromechanical
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coupling. Experimental studies show significant enhancements in
the electromechanical coupling in DE composites (Stoyanov et al.,
2011; Huang and Zhang, 2004). Moreover, theoretical estimates
and numerical simulations (Tian et al., 2012; Rudykh et al., 2013)
predict even more significant improvements in the performance of
DE composites with periodic microstructures. Thus, improvement
by orders of magnitude in the electromechanical coupling can be
achieved in hierarchically structured composites comprising softer
and stiffer phases (Rudykh et al., 2013). Recent advances in the
microstructured material fabrication and 3D printing, allowing
realization of highly structured materials at different length-scales
(Kolle et al., 2013; Lee and Fang, 2012; Zheng et al., 2014; Slesarenko
and Rudykh, 2016), provide a great perspective for this approach for
enhancing DE performance.

The foundation for the non-linear electroelasticity theory was
laid by the pioneering works by Toupin (1956, 1960) showing
that electromechanical coupling in DEs is characterized by a
quadratic dependence on the applied electric field. Recently, the
electroelasticity theory of finite deformations has been refor-
mulated by Dorfmann and Ogden (2005, 2010), McMeeking and
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Landis (2005), and Suo et al. (2008); Zhao and Suo (2010), and,
more recently, by Liu (2013), and by Li et al. (2016). Itskov and
Khiem (2014) and Ortigosa and Gil (2016) considered the as-
pects of the convexity of the electro-elastic energy functions.
Cohen et al. (2016), Cohen and deBotton (2016) conducted a
statistical-mechanics-based analysis of the response of polymer
chain networks in DEs. In parallel, significant efforts have been
made towards the development and implementation of the non-
linear electroelasticity framework into numerical schemes (Vu
and Steinmann, 2007; Volokh, 2012; Javili et al.,, 2013; Keip
et al, 2014; Galipeau et al., 2014; Jabareen, 2015; Aboudi,
2015). The electromechanical instabilities in finitely deformed
homogenous DEs have been analyzed by Zhao and Suo (2007),
and Dorfmann and Ogden (2010, 2014), in parallel with the
experimental observations of the failure modes such as pull-in
instabilities (Plante and Dubowsky, 2006), creasing and surface
patterning (Wang et al., 2011). Based on an exact analytical so-
lution available for finitely deformed periodic layered DE com-
posites, the studies of the electromechanical instabilities in the
periodic DE laminates have been performed (Bertoldi and Gei,
2011; Rudykh and deBotton, 2011; Rudykh and Bertoldi, 2013;
Rudykh et al.,, 2014). These works show the significant depen-
dence of DE material stability on the applied electric field and
pre-stretch. However, the set of microstructures for which exact
analytical solutions can be derived is limited; as a result, very
little is known about the instabilities in DE composites with
particulate and periodic microstructures, which showed prom-
ising results of significant enhancement in electromechanical
coupling and actuation (Rudykh et al, 2013). Moreover, the
knowledge about the instabilities in these microstructured
electro-active composites may provide the tools for designing
materials with switchable functionalities (Bertoldi et al., 2008;
Bertoldi and Boyce, 2008; Krishnan and Johnson, 2009; Rudykh
and Boyce, 2014; Singamaneni et al., 2008; 2009).

In this study, we perform an analysis of electromechanical
instabilities in finitely deformed DE composites with periodically
arranged active particles embedded in a matrix. In particular, we
focus on the macroscopic stability of periodic two-dimensional
DE composites with circular and elliptical inclusions. We imple-
ment the electromechanical instability analysis into a numerical
finite element based tool, and identify the unstable domains for
finitely deformed DE composites in the presence of an electric
field. We analyze the influence of the electric field, pre-stretch,
microstructure and material parameters on DE composite
stability.

The work is structured as follows: Sec. 2 presents the theoretical
background for the finitely deformed dielectric elastomers and
electromechanical instability analysis previously developed by
Dorfmann and Ogden (2005, 2010) and its specification for a plane
problem reported in Rudykh et al. (2014). The numerical simula-
tions, including the electromechanical periodic boundary condi-
tions, and the procedure for determination of the electroelastic
moduli are described in Sec. 3. In Sec. 4, we apply the stability
analysis to identify the unstable domains for the DE composites
with periodically distributed circular (4.1) and elliptical (4.2) in-
clusions embedded in a matrix. Sec. 5 concludes the paper with a
summary and a discussion.

2. Theoretical background

We denote by % and . the regions occupied by a body in the
reference and current configurations, respectively. The Cartesian
position vector of a material point in the reference configuration of
a body is X and its position vector in the deformed configuration is
x. We introduce a mapping vector function x such that

x = x(X). (1)

The deformation gradient is defined as

x(X)
ox -
The ratio between the volumes in the current and reference
configurations is | = detF > 0.
We consider a quasi-static deformation in the absence of a
magnetic field, electrical charges or electric currents within the
material. Consequently, Maxwell equations take the form

F= (2)

DivD® =0 and CurlE® =0, (3)

where DY is the electric displacement and E? is the electric field in
the reference configuration. Note that Div(-) and Curl(-) are the
differential operators in the reference configuration, while div(-)
and curl(-) denote the corresponding differential operators in the
current configuration. The referential electric field and electric
displacement are related to their counterpart in the deformed
configuration (Dorfmann and Ogden, 2005, 2010) via

EC=F'E and D°=JF'D. (4)

We follow the analysis proposed by Dorfmann and Ogden (2005,
2010) and consider the elastic dielectrics whose constitutive rela-
tion is given in terms of a scalar-valued energy-density function
W(F, E®) such that

_ 9W(F,E?) and DO — oW (F,E°)

P oF o 9E0

(5)

where P is the total nominal stress tensor. The corresponding
equations for an incompressible material are

_ OW(F,E?)
~ OF

oW (F,E°)

P
9E°

—pF T and D°= . (6)

where p is an unknown Lagrange multiplier. For an isotropic elec-
troelastic material, an energy-density function ¥ can be expressed
as a function of the six invariants

IP(F, EO) = U(I;. I, I3, Lap, Ise, Ige). (7)
where

I =TIC, I — % (2 -10€). I =detc, 8)
Ie =E%E%, s, =E°.C'E°, Ig =E°-C2E°, (9)

where C=F'F is the right Cauchy-Green strain tensor. In the
absence of body forces the equilibrium equation takes the form

DivP = 0. (10)

The equilibrium equation in the current configuration is
divT = 0, (11)

where the Cauchy stress tensor is related to the first Piola-Kirchhoff
stress tensor via T = J~1PF'.

Next we analyze small amplitude perturbations superimposed
on the finitely deformation and electric field (Dorfmann and Ogden,
2010). The corresponding incremental equations are
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DivP—0, DivD’ =0 and CurlE’ =0, (12)

S .0 -0 . .
where P, D and E° are incremental changes in P, D° and E°,
respectively. The linearized expressions for the incremental
changes in the nominal stress tensor and electric displacement are

. n - 0 0 -0 0 £ 00
Pj =% Fu+ Z%E, and —D; = Z%Fy+ Z0F;, (13)
where the tensors of the electroelastic moduli are defined as
02w RR 02w
0 _ 0% oo _ OF g0 _ W
ks F,0F g 16 0Fi,0E] nd “ag OEQOE] (14)

In general, the electroelastic moduli are functions of the applied
finite deformation and electric field, namely, . = ./°(F,E°),
2% = 2%F,E°%), and #° = £°(F,E°) , and the specific dependence
is defined by the choice of the energy-density function W(F, E®). For
an incompressible material, equation (13); modifies as

. . 0 0 L 1 .
Pj = /QuFua+ T E — PF; ' + PFy ' FluFy ' (15)

where p is an incremental change in p. The components of the
electroelastic moduli in the current and reference configurations
are related via
it =) FioFig.7") Ci =] VF Fig 2%, and &
Y ijkl jallg-7 jakg: ik jakB 7 iaf i
- <0
=] "FiuFip # 05 (16)

It can be shown that these tensors of electroelastic moduli
possess the symmetries
(,9/,']‘1{1 = <Q/klij7 Z)ijk = Z)jik and gl] = f;{/ﬂ (17)

Let T, D and E denote the ‘push-forward’ counterparts of P, D°
and E, respectively. These incremental changes are given by

=2 .
To= %131 — %2121 11,

In the current configuration the incremental equations (12) take
the form

divTi=0, divD=0 and curlE=0. (20)
By using equations (19), (20); and (20), we obtain

'Q/ijklvk,lj =+ ’gﬁl<EkJ — p,i =0 and ,Z),<ivj7ki + gqul =0. (21)

We seek a solution for equation (21) in the form

v =of(@x), p=af@x), E==ef@x), (22)
where fis a continuous and sufficiently differentiable function, a =
aie; + ae, + aszesz is a unit vector; 7;, é; and ¢ are incremental
macroscopic quantities independent of x.

Next, we restrict our attention to a 2D setting. For this specifi-
cation, we follow the stability analysis presented in Rudykh et al.
(2014). In particular, for the plane problem we assume the
absence of an electric field in the X3 direction, therefore equation
(20)3 reduces to

Ey1 —E15=0. (23)
By using (22); together with (23), we find that
e =£ e, (24)

where £=a,/a;. Next, we recall that the incompressibility
constraint implies that divv = v ; + v, = 0. Then, from (22); we
have

7 = —£y. (25)

Substituting equations (22), (24) and (25) into (21), we obtain
the sextic polynomial equation

D% + D58 + Ty + T38% + T2 + 116+ Tp = 0, (26)

where the coefficients I'; are given by

I =2(—= %2121 12 + (Y1121 — ¥2122) €11 + Z121(Z221 + T122 — Z111)),
[y = =101 @22 + (1121 — ¥2122) 12 — (Y1111 — 2% 1122 — 271221 + V2222) ©11 — 2T 121(F112 + T121 — T222)
+(Z122+ a1 — Z111)%
I3 = =2((1112 = -Y1222) 11 + (S 1111 — 271122 — 251221 + ¥ 2222) €12 + (S 2122 — Y 1121) €22 (27)

+(Z121%122 — (P11 — T122 — T221)(Z112 + 121 — ©222)))
) , , ) , o . o . o N2
Ty = —(S1111 — 251122 — 291201 +-¥2222) €22 — 41112 — -Y1222) €12 — Y1212 €11 + (L1112 + T121 — T222)

+2Z122(%111 — Z122 — Z221),

s =2((71222 — “1112) €22 — Y1212 €12 + T122(Z112 + T121 — 9222)), U6 = Z720 — Y1212 € 22

T—jpF, D—J '’ and E—FTE" (18)
We introduce the notation for the incremental displacement v =
x and recall that F = (grad v)F. By substitution of (15) and (16) into
(18), we obtain
TU = =Wijklyk,l + g)ijkEk — péu -+ pUin and — Di
= gjkivj,k + c:(l]E] (19)

The existence of a non-trivial real solution of the polynomial
equation (26) is associated with the onset of instability along an
electromechanical loading path. In the following, equation (26)
serves as the onset of instability condition for considered DE
composites.

3. Analysis

In this section we present the analysis for determining the onset
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of electromechanical instabilities in periodic composites undergo-
ing finite deformations in the presence of an electric field. We note
that the critical condition (26) can be used to determine the onset
of instabilities in multiphase hyperelastic dielectrics (Rudykh et al.,
2014). The analysis is implemented in the finite element code
COMSOL Multiphysics.

The energy-density function of an n-phase composite is

n
IIJ(F,X7 EO) _ Z (p(r) (x)lp(r) (E E0> o8)
=1
where
P (X) = {1, if Xe 2. .
0, otherwise,

The volume fraction of the r-phase is

N = / oD (X)dV. (30)

Ko

The volume fractions are related via

> =1. (31)

We impose homogeneous boundary conditions x = FgX on the
boundary of the composite 3.2y, where F is a constant tensor with
det Fp >0 (Hill, 1972; Ogden, 1974). It can be shown that the average
deformation gradient

F= % /F(X)dV =F,. (32)
Zo

The average 15! Piola-Kirchhoff stress tensor, electric displace-
ment and electric field are

ﬁ:% / P(X)dV, 50:% / D°(X)dv and E°
9 1)

%o
L
=7 / E0(X)dV, (33)

Bo

respectively. In the 2-D case the integration is performed over the
area of a periodic unit cell, which occupies the domain

0<X;<b and 0<X;<a (34)

in the reference configuration.

In our finite element numerical simulations, the macroscopic
electro-mechanical loading conditions are applied in terms of pe-
riodic boundary conditions of displacement (uq,u;) and electric
potential (U). A representetive 2-D unit cell of a periodic composite
is shown in Fig.1. These periodic boundary conditions are:

The top (X, = a) and bottom (X, = 0) sides are related via

ug = ug + (FZZ - 1)61,
uf =ul +Fipaq, (35)
UB(X;,0) = UT(X;,a) + Eva.

The right (X; = b) and left (X; = 0) sides are related via

(0,a) TOP (a,b)

LEFT
1S
LHOIY

X2

X

0,0) (B,0)

BOTTOM

Fig. 1. Schematic representation of two-dimensional rectangular unit cell.

u% = u’f +£F1] — 1)b
ub = u§ +Fyb, (36)
UL(0,X;) = UR(b,X,) + Eyb.

The application of the periodic boundary conditions allows us to
determine the solution along the electro-mechanical loading path.
For simplicity, here we consider the electromechanical loading
defined as

— — —1 — — —
F=le;®e; +1 e;®e, +e;®e; and E0=E?e1+Ege2.
(37)

We note that the deformation gradient defined in equation (37)
does not include macroscopic shear modes of deformation. For
stability consideration of a more general deformation including
non-zero shear terms, the average deformation gradient with non-
zero shear components needs to be transformed into the corre-
sponding diagonal average deformation gradient defined in equa-
tion (37) by choosing the corresponding principal coordinate
system. Thus, the components of the electromechanical tensors are
to be evaluated in this principal coordinate system; and the
macroscopic stability analysis is performed in terms of the moduli
calculated in the new principal coordinate system. For simplicity, in
this study we restrict our analysis to the case when the average
deformation gradient is prescribed by equation (37).

The average response of the periodic composites is calculated by
integration over the corresponding unit cell as in (33); and (33)s.
The primary solution is valid until a possible instability point along
the electromechanical loading.

To identify the onset of the coupled electromechanical in-
stabilities, we utilize the critical condition (26). The analysis of the
electromechanical stability of DE composites requires determina-
tion of the instantaneous tensors of the electroelastic moduli .7y,
Zijk and ;. To this end we use a numerical perturbation technique
(see for example for the mechanical case (Riks, 1984; Ecer, 1973;
Hangai and Kawamata, 1972)). In particular, we perform a set of
incremental changes in deformation and electric field from a
finitely deformed state in the presence of an electric field. These
incremental changes lead to a macroscopic response of the DE
composite, resulting in variations in the average nominal stress and
electric displacement. We perform the following five small ampli-
tude numerical tests, namely

F —Je, e, + o7e, e, + Tlez ®e, and F~

=Je;®e; +71e2®e2+67e2®e1., (38)
_ - S |
- <A+ 6/1>e1 ®e; + (A+5A) e,®e;, (39)
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Bl = (F? + 6E) e, +Eve, and E°Z —Ele; + (Eg + 6F> e,

(40)

where 07, 0 and ¢E are sufficiently small quantities. By per-
forming these tests and calculating the corresponding changes in
the first Piola-Kirchhoff stress tensor and in the referential electric
displacement, the electroelastic moduli in the reference configu-
ration are determined through the use of relations (13). The cor-
responding equations for the electroelastic moduli are

wo (P(E") e(rE)),

<<Q/gkl = om =m] =
0F} (F—F)y
m £\ _ p(F.E°
_ <P<F E >67 P<F7E >)'j,k¢l,m =1,2; (41)
oo () ),
i 6E2[n] = (EO[n] _ EO)
) ),
_ ’ — in=1,2 (42)
)
/e o (e —EO)J
10 /% g0\ 50(% g0
_ (°(FE >5;D (FE >>i7n:172. (43)

Note that in equation (41) only shear tests FY and F? are
applied, consequently m = 1,2. To determine the components of
electroelastic moduli W/U,d{ (no summation), i+j, we use the sym-
metry »/l]kk = O/kku and apply equation (41) again. However, when
i=j and k =, the components .3, (no summation) cannot be
determined from the tension test (39). This is due to the fact that
the following equation system stemming from equation (13)

—(3,0] =(3]
{513]310] = /9 méF[l] +.9 1226F22], (44)
0P 7110F 1 + 0/222251:22’

does not have a solution for .91, %9, and 9,5 = %%,
Clearly, it is impossible to fully characterize the elastic properties of
a material on the basis of plane tests alone (Ogden, 2008). However,
the corresponding coefficients in the critical condition for the onset
of instabilities (26) can be fully determined through certain com-
binations of the terms /Y, (no summation). These combinations
can be obtained from the information provided by the tension test
(39). The incompressibility constraint implies

OF:F ' =o0. (45)

For the tension test (39), the incompressibility constraint reads

e
BFi 5F[22]
Fp (Fzz)z

3]

OFS = _oFS) (46)

Thus, the combinations (#9,,, — %%;) and (%1, — ¥%11)
can be determined by applying the tension test (39) together with
(16)3, (44) and (46). In particular, we obtain

AY992 — 49911 = FoFoa/9205 — FoF11.7 211
2, _
= Fzz(-Q/zzzz — 2211F11/F22)
= FpoPyy i, (47)

and

0 T T y T T p
— %311 = FuuF11%1111 — Fa2F11%2211

2, -
=F11 (%1111 — Z211F22/F11)

2

:Fl]ép]l /6F1], (48)

0
1111

where 61_’?‘0] = (F(FB],EO) - F(F,EO))ii, no summation.

By utilizing equations (16), (17), (27), (41-43), (47), (48) and
(27), all the components of the electro-elastic tensors required for
calculating of the coefficients I'; can be determined. To perform the
stability analysis, we implement these equations in our MATLAB
code to evaluate the components of electroelastic moduli from the
numerical tests, and, then, to check the condition for the onset of
instability (26) at each point of the electromechanical loading path.
Thus, the critical stretch and electric field are determined. Results of
the stability analysis of specific periodic DE composites are dis-
cussed in the next section.

4. Results

The stability analysis presented in Sec. 3 is rather generic,
however, in this section the examples are presented for DE com-
posites which phases are described by an ideal dielectric elastomer
model. The corresponding energy-density function is

) (n)
) (F, EO) = “7 (TrC — 3) — %EOC—TO —u™ InyJ

(r)
-2 (49)

where p is the shear modulus and A is the Lamé’s first parameter, g
is the permittivity of vacuum, and ¢ is the relative permittivity. In
the numerical simulations, we maintain the nearly incompressible
behavior of the phases by assigning a high ratio between the first
Lamé parameter and shear modulus, in particular, AT /u( = 100.
Note that the macroscopic deformation is enforced to be incom-
pressible, while locally the materials are allowed to develop some
compressible (nearly incompressible) deformations.

To determine the response of periodic DE composites prior to
instability, we utilize (35) and (36) to impose the periodic
boundary conditions on a unit cell. The equilibrium equation and
the Maxwells equations are solved separately in the FE code
COMSOL Multiphysics, and the electromechanical coupling is
established via the dependence of the resulting total stress on
the electric field, while the Maxwells equations are solved in the
current configuration, which is a result of deformations. The
resulting output is calculated in terms of the average nominal
stress tensor (33); and electric displacement (33),. By perform-
ing the small amplitude numerical tests (38—40) and making use
of relations (41-43), (47) and (48), we determine the elec-
troelastic moduli in the reference configuration. Then, the
counterparts of the electroelastic moduli in the current config-
uration are evaluated by using equation (16). To determine the
critical stretch 1., we check the condition for the onset of
macroscopic instability (26) at each point of the electrome-
chanical loading path (37).
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e, | a | e i b

1

Fig. 2. Schematic representation of DE composites with square and rectangular periodic microstructures with circular (a) and elliptical (b) inclusions; the periodic unit cell (c).

4.1. DE composites with periodically distributed circular inclusions

We examine the response of DE composites with periodically
distributed circular particles embedded in a soft matrix. Fig. 2(a)
shows a representative 2-D periodic composite with a square pe-
riodic unit cell of circular inclusions embedded in a matrix. The
contrasts in the shear moduli and relative permittivities of the
phases are k, = u®/u(™ and k. = ¥ /&M, where superscripts (i)
and (m) correspond to the inclusion and matrix, respectively. The

a 1.8 T T T T

20 _
16 —E =05

average dimensionless electric fields are B - EO\/W (where
g = c(m)g(m) + c@D (D) and o= c(m)’u(m> + C(i)'u,(i>) and
- EO\/Eoé‘(m) /u_The volume fraction of the inclusion phase is
defined by ¢ = 7d?/4a?.

We start from considering the macroscopic response of the pe-
riodic DE composites. Fig. 3 shows the dependence of the mean

deviatoric part of the normalized Cauchy stress, @ = deva/u(™ asa
function of the stretch ratio for different values and directions of the

——--F)=0.5[]

Fig. 3. Normalized deviatoric Cauchy stress vs stretch ratio fpr DE composites with the contrasts in the shear moduli and relative permittivities k, = k. = 10 ((a),(b)) and k, =k, =
50 ((c),(d)). The volume fraction of the inclusion phase is c) = 0.283 (corresponds to the diameter d = 0.6).
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A ---c¥=0.126
- e c?=0.196
1.60 F < — —'—"C(i)=0.283 B
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150j_____M_—_““¢_“\““-\\\\\;
1.40 = ----- ¢ _________________ _

130 T S T S MU [ M |
0.0 0.2 0.4 0.6 0.8 1.0 1.2

b 1.85 T T T T T
x.753'"# 7\: - - - ¢9=0.126| 1
c?=0.196
Lesh . --—--c"=0.283] |

145 _iﬂ,w»~"’~
CTTTTTT k =k =10
M €
]‘35 L 1 n L " 1 n I n L
0.0 0.1 02 03 04 05
£0
E,

Fig. 4. Critical stretch ratio vs electric field for DE composites with the contrasts in the shear moduli and relative permittivities k, = k. = 10. (a) - the electric field is aligned with
the stretch direction, (b) - the electric field applied perpendicularly to the stretch direction.

applied electric field. The results are shown for DE composites with
the contrasts in the shear moduli and relative permittivities
k., =k, =10 (Fig. 3(a) and (b)) and k, = k. = 50 (Fig. 3(c) and (d)).
The composite volume fraction is ¢) = 0.283 (corresponds to the
diameter d = 0.6a). The stress-stretch behavior for the purely me-

-0
chanical case (in the absence of an electric field, E = 0) is denoted
by dashed curves. The continuous curve corresponds to the response
of the DE composites subjected to an electric field of magnitude

E? = 0.5; the applied electric field is aligned with the stretch di-
rection (eq). The dash-dotted curve represents the response of the
DE composites in the presence of an electric field applied perpen-

. N ~0 . =0
dicularly to the stretch direction, E = E,e, with E, = 0.5. The values
of the critical stretches corresponding to the onset of instability are
denoted by circles. We observe that &;’(1) is a monotonically

increasing function of 2, while @’ (1) is a decreasing function. Clearly,
the associate electrical stresses in the unit cell depend on the spatial
electric field and the effective permittivity. Meanwhile, e; and e,
components of the average electric field in the current configuration

depend on the stretch as E; = Tlﬁ(]) and E, = ng. The effective
permittivity ;7 is a decreasing function of the stretch ratio, while
&5, is a monotonic increasing function of the stretch ratio.! This,
together, with the fact that E; decreases and E, increases with an

increase in 4, results in the observed behavior of the stress-stretch
curves in Fig. 3. In particular, the corresponding continuous curves

approach the dashed ones with an increase in A, while the dash-
dotted curves shift away from the dashed ones with an increase in
the applied stretch.

Next we examine the stability of the DE periodic composites
along the applied electromechanical loading (39). The dependence
of the critical stretch on the electric field is shown in Fig. 4 for the
composite with the contrasts in the shear moduli and relative
permittivities k, = 10 and k, = 10, respectively. The dash-dotted,
continuous and dashed curves are for the volume fractions
c® =0.283 (corresponds to the diameter d=0.6a), 0.196

! This is based on our numerical observations and analytical predictions for
effective permittivity of the 2D unit cell, where the circular inclusion is assumed to
be significantly stiffer than the matrix phase (for example, k, = 50, 100); thus, one
can obtain an explicit expression for effective permittivity as functions of stretch
based on the results by Sihvola and Lindell, 1992, Karkkainen et al., 2000.

(corresponds to the diameter d = 0.5a) and 0.126 (corresponds to
the diameter d = 0.4a), respectively. The arrows indicate the tran-
sition from the stable to unstable domains. Indeed, in the absence
of an electric field the critical stretches correspond to the case of the
purely mechanical loading. Fig. 4(a) shows the results for the case
when the electric field is aligned with the stretch direction, while
Fig. 4(b) corresponds to the case when the electric field is applied
perpendicularly to the stretch direction. We observe that the crit-
ical stretch is a monotonically decreasing function of an electric
field for the aligned case (Fig. 4(a)). When the electric field is
applied perpendicularly to the stretch direction (Fig. 4(b)), the
critical stretch increases with an increase in the electric field, thus,
manifesting in a stabilizing effect of the electric field in this case. DE
composites become more stable with a decrease in the volume
fraction of the inclusion for both directions of the applied electric
field. The dashed curve, corresponding to the DE with the lowest
considered volume fraction ¢ = 0.196 (corresponds to the diam-
eter d = 0.4a), is above the solid and dash-dotted curves for all
values of the applied electric field (see Fig. 4).

Note that in this work we prescribe the deformation together
with the applied electric field, and identify the stable and unstable
domains in terms of these two electromechanical loading param-
eters. Alternatively, one can specify electric field and applied trac-
tions t = on (where n is the outward normal), and find a loading
path for these conditions in terms of calculated deformations or
actuations. The reported in Fig. 4 curves separate the stable and
unstable domains for a variety of applied combinations of electric
field and tractions. To illustrate this we plot in Fig. 5 the depen-
dence of the stretch on the applied electric field for the DE com-
posites subjected to different constant tractions. The dimensionless
traction is normalized by the shear modulus of the matrix, namely
t = t/u™. The dashed, dotted and dash-dotted curves correspond
to the tractions t, = —3.8, f; = —3.7 and t, = —3.5, respectively.
We observe that stretch increases with an increase in the electric
field. A decrease in the absolute value of traction shifts the curve to
the left side. The continuous curve in Fig. 5 corresponds to the onset
of instability for the composite (which is also shown by the dashed
curve in Fig. 4(b)). The shaded region above the continuous curve
represents the unstable domain. The intersection points of the

. ~0 — .
continuous and dashed (E, =0.15,4c = 1.77), continuous and
dotted (fg:0.25,15:1.78), and continuous and dash-dotted
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Fig. 5. Stretch vs electric field for the DE composite subjected to different constant
tractions. The contrast in the shear moduli and relative permittivities is k, = k. = 10.
The volume fraction of the inclusion is ¢ =0.126 (corresponds to the diameter
d = 0.4a). The continuous curve corresponds separates the stable and unstable (grey
area) domains.

(Eg =0.38,] = 1.81) curves correspond to the onset of the elec-
tromechanical instabilities along the corresponding loading paths
with different tractions. The continuous curve represents the set of
onset of instability points for all possible applied tractions.

Next, we present the dependence of the critical stretch on the
contrast in the shear moduli k,. The contrast in the relative per-
mittivities of the phases is kept fixed at the value k. = 10. The dash-
dotted, continuous and dashed curves correspond to the electric

fields E‘? =1, E‘? —05 and E° = 0'in Fig. 6(a), and E‘g =0.2, E‘g =

0.1 and E° = 0in Fig. 6(b), respectively. We observe that the crit-
ical stretch decreases with an increase in the contrast in the shear
moduli. We find that, for any contrast in the shear moduli, the
electric field aligned with the stretch direction (ej-axis) promotes
instabilities (see Fig. 6(a)), whereas the electric field applied
perpendicularly to the stretch direction stabilizes the DE compos-
ites (see Fig. 6(b)). We also observe a rapid increase in the critical

b |

1.65

1.55

stretch as the contrast in the shear moduli decreases towards the
mechanically homogeneous composites (k, = 1). The correspond-
ing curves flatten with a further increase in the shear moduli
k,>60.

The dependence of the critical stretch on the contrast in both
shear moduli and electric permittivities is shown in Fig. 7. The
dash-dotted, continuous and dashed curves correspond to the

electric fields Ey = 0.4, E} =1 and E° = 0, respectively. The vol-
ume fraction of the inclusion is ¢ = 0.283 (corresponds to the
diameter d = 0.6a). We observe that an increase in the phase
contrast leads to a decrease in the critical stretch. Consistently with
the previous observations, we find that the critical stretch dashed-
dotted curve for the case when the electric field applied perpen-
dicularly to the stretch direction, appears above the dashed curve
corresponding to the purely mechanical loading (E = 0), and also
above the curve corresponding to the case when the electric field is
aligned with the stretch direction in Fig. 7.

Next, we examine the influence of the relative permittivity ratio
k. on the critical stretch for composites with the fixed contrast in
the shear moduli k, = 10. The dependence of the critical stretch on
the contrast in relative permittivities is shown in Fig. 8(a). The
dash-dotted, continuous and dashed curves correspond to the
response of DE composites subjected to the electric fields

E) =04, EY =1 and E° = 0, respectively. The volume fraction of
the inclusion phase is c() = 0.283 (corresponds to the diameter
d = 0.6a). The electric field stabilizes composite when applied
perpendicularly to the stretch direction, and the electric field pro-
motes instabilities when applied in the stretch direction (e;).
However, we observe that the curves Ac(k.) flatten for both di-
rections of the applied electric field with an increase in relative
permittivity ratio. To provide more details on this behavior we plot
the dependence of the average electric field in the matrix and in-
clusion phases on the relative permittivity ratio in Fig. 8(b). The

results are presented for the applied electric field is E'g =0.4 and
stretch 2 =1.1. The dotted horizontal line corresponds to the
average electric field E; = 71:.‘2 = 0.44 in the deformed state. The

dash-dotted and continuous curves correspond to the current
electric fields in the matrix and inclusion phases, respectively. We

observe that for a high relative permittivity ¢, the electric field
almost does not penetrate into the inclusion phase. When &)

b 1.85
175
c
1.65
I.SS 1 1 n 1 n 1 "
1 20 40 k 60 80 100
n

Fig. 6. Critical stretch vs contrast in the shear moduli for composites with the contrast in relative permittivities k. = 10. (a) - the electric field is aligned with the stretch direction,
(b) - the electric field applied perpendicularly to the stretch direction. The volume fraction of the inclusion phase is ¢ = 0.126 (corresponds to the diameter d = 0.4a).
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Fig. 7. Critical stretch vs phase material property contrast. The volume fraction of the
inclusion is ¢ = 0.283 (corresponds to the diameter d = 0.6a).
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approaches infinity, the electric field and the associated electro-
static stresses in the inclusion phase vanish while the corre-
sponding electrostatic part of the total stresses in the matrix phase
reach a saturation value. Consequently, the influence of the contrast
in the phase permittivities on the critical stretch ratio reduces, so
the corresponding curves (see the dash-dotted and continuous
curves in Fig. 8(a)) asymptotically approach a constant value. We
note that for permittivity ratio ¢, /e; = 1 we obtain the same critical
stretch regardless the direction and magnitude of the applied
electric field; in such case, the stability is fully determined by the
mechanical properties of the phases.

To illustrate the influence of phase volume fractions on the
onset of the electromechanical instability, we plot the critical
stretch as a function of inclusion volume fraction in Fig. 9. The dash-
dotted, continuous and dashed curves correspond to the electric
fields E = 0.3, ES = 0.6 and E° = 0, respectively. The contrasts in
the shear moduli and relative permittivities are k, = k. =10 in
Fig. 9(a) and k, = k. = 50 in Fig. 9(b). In a manner similar to the
purely mechanical case, we observe that the critical stretch de-
creases with an increase in the inclusion volume fraction. This
decrease is greater at lower volume fractions ¢ <0.2 than at

b

Fig. 8. (a) - critical stretch vs relative permittivity ratio, (b) - the dependence of the average electric field in the matrix and inclusion phases for DE composites with the contrast in
the shear moduli k, = 10. The volume fraction of the inclusion phase is c() = 0.283 (corresponds to the diameter d = 0.6a).

1.60

bl

1.50

1.40 |

1.30

1.20 - . .
0.10 0.20 0.30 0.40 0.50

c®

bt |

0.10 0.20 0.30 0.40 0.50
@
C

Fig. 9. Critical stretch vs volume fraction of the inclusion phase for DE composites with the contrasts in shear moduli and relative permittivities k, = k. = 10 (a) and

ky = ke = 50 (b).
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moderate ones c() >0.4. Similar to the previous observations, we
find that the electric field stabilizes the composite if applied
perpendicularly to the stretch direction, while the electric field
applied in the stretch direction promotes instabilities.

4.2. DE composites with periodically arranged elliptical inclusions

Next we investigate the behavior of periodic DE composites with
elliptical inclusions embedded in a soft matrix. The schematic
illustration of the periodic composites and corresponding unit cell
are shown in Fig. 2(b) and (c). The ratio between the length of the
sides of the rectangular unit cell is a/b = 1.5. The volume fraction of
the inclusion is defined by c) = nryr,/(ab). In the non-aligned
case, when the inclination angle of the elliptical inclusion in the
undeformed configuration is ¢ =0, 7/2, the particle rotates with the
applied tension. As a result, more complicated distributions of the
stress and electric field components is induced by a macroscopi-
cally applied electromechanical loading, as compared to the aligned
case (« = 0,7/2). An example of the inhomogeneous distributions
of the deviatoric parts of the Cauchy stress components and electric
field are shown in Fig. 10. The DE composite with the volume
fraction of the inclusion ¢ =0.136 is subjected to the stretch

7 =1.55. The aspect ratio and inclusion inclination angle are
w=ry/r; =2 (r; =0.18a) and the inclusion inclination angle is
a=m7/4. The contrast ratios are k, =k, =50

!
0;,Pa

(@)

x106
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(u™ =1 MPa and ™ = 5). The field distributions are presented
for the applied electric fields E? = 1inFig.10(a), (c), (e) and (d), and
for ES = 0.3 in Fig. 10(b), (d), (f) and (h). We note that the applied

electromechanical loading (E? =1, A= 1.55) corresponds to the
onset of the electromechanical instabilities. We observe that the
highest stresses appear in the regions near the inclusion for both
directions of the applied electric field (see Fig. 10(a)-(d)). Note that
relatively high concentrations of the electric fields are found at the
regions near the inclusion. This is despite the fact that the corre-
sponding average values of these fields equal to zero, E; =0 in
Fig. 10(f), and E, = 0 in Fig. 10(g). However, the electric field almost
does not penetrate the inclusion. In Fig. 10(e) and (h) we observe
that the electric field in the inclusion is homogeneous and its ab-
solute magnitude within the inclusion is smaller than the absolute
value of the electric field in the matrix.

Finally, we investigate the stability of the DE composites with
the periodically arranged elliptical inclusions. To illustrate the in-
fluence of the applied electromechanical loading on the stability of
the DE composites, we plot the dependence of the critical stretch
on the electric field for different inclination angles and aspect ratios
of the elliptical inclusion in Fig. 11. The contrasts in shear moduli
and relative permittivities are k, = 50 and k, = 10, respectively.
The volume fraction of the inclusion is kept constant at the value
c® =0.136 (corresponds to ryr, = 0.0648a2). The aspect ratio is

o/,Pa

(b)
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Fig. 10. Distribution of the deviatoric Cauchy stress components (a—d) and electric field (e—h) in the deformed unit cell under electric fields E? =1 ((a)(c)(e)(g)), and Eg =03
((b),(d),(f),(h)). The contrasts in th_e shear moduli and relative permittivities are k, = k. = 50; 1™ =1 MPa and ™ = 5. The volume fraction of inclusion phase and ellipticity
aspect ratio of the particles are ¢ = 0.136 and w = 2 (corresponds to the semi-major axis r; = 0.36a).
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Fig. 11. Critical stretch ratio vs electric field for DE composites with the contrasts in shear moduli and relative permittivities k, = 50 and k. = 10, respectively. (a) and (c) - the
electric field is aligned with the stretch direction, (b) and (d) - the electric field is applied perpendicularly to the stretch direction. The aspect ratio is w = 2 in (a) and (b). The
inclination angle is & = /2 in (c) and (d). The volume fraction of the inclusion is c) = 0.136 (corresponds to ryr, = 0.0648a2).

w = 2 in Fig. 11(a) and (b), and the inclination angle is « = 7/2 in
Fig. 11(c) and (d). Similar to the observed behavior of the DE
composites with circular inclusions (see Sec. 4.1), here we find that
the electric field stabilizes the composite if applied perpendicularly
to the stretch direction, and the electric field aligned with the
stretch direction promotes instabilities. At the beginning, the crit-
ical stretch increases with an increase in the inclination angle. The
dash-dotted curve (corresponding to « = m/3) is above the
continuous (corresponding to « = 7/6) and dashed (corresponding
to « = 0) curves for all values of the applied electric field (see
Fig. 11(a) and (b)). However, a further increase in the inclination
angle leads to a rapid decrease in the critical stretch. We find that
the critical stretches for the DE composite with « = 7/2 (dash-
dotted curves in Fig. 11(c) and (d)) are significantly smaller than for
the DE composites with « = 0 (dashed curves in Fig. 11(a) and (b)).
The critical stretch decreases with an increase in the aspect ratio.
The dash-dotted (w = 2) curve is below the solid (w = 1.5) and
dashed curves (w = 1) for all values of the applied electric field (see
Fig. 11(c) and (d)).

The dependence of the critical stretch on the inclusion inclina-
tion angle is shown in Fig. 12. The results are presented for DE
composites with the volume fraction of inclusion ¢ =0.136
(corresponds to rir, = 0.0648a2), and with the contrasts in the
shear moduli and relative permittivities are k;, = 50 and k. = 10,

respectively. The dash-dotted, continuous and dashed curves

correspond to the electric fields Eg = 0.3, E =1 and E° =0,
respectively. The aspect ratio is w =ry/r, = 1.5 in Fig. 12(a) and
w = 2 in Fig. 12(b). For these non-aligned cases, we also observe
that the electric field stabilizes the composite if applied perpen-
dicularly to the stretch direction, and the electric field aligned with
the stretch direction promotes instabilities. We observe a slight
increase in the critical stretch before a point amqx Where the curve
Ac(a) reaches a maximum. This increase is followed by a relatively
fast decrease in the critical stretch with a further increase in the
inclination angle. The critical stretch reaches a minimum at a = 7/2
corresponding the most unstable configuration. The value of the
inclination angle, associated with the maximum stretch, changes
significantly with the change in the inclusion aspect ratio
(@max=0.197 for w = 1.5 and amax =0.37 for w = 2). However, the
value of the corresponding angle barely changes with a change in
the electric field. An increase in the aspect ratio leads to a more
pronounced dependence of the critical stretch on the inclination
angle. For example, (A)max — (A)min=0.16 for w =15, and
(A)max — (A)min=0.3 forw = 2.

The dependence of the critical stretch on the aspect ratio of the
elliptical particles is shown in Fig. 13. The examples are presented
for DE composites with the contrasts in the shear moduli and
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Fig. 12. Critical stretch vs inclination angle of the elliptical inclusion. The contrasts in the shear moduli and relative permittivities are k, = 50 and k. = 10, respectively. The aspect
ratios are w = 1.5 (a) and w = 2 (b). The volume fraction of the inclusion is c()) = 0.136 (corresponds to r;1, = 0.0648a?).
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Fig. 13. Critical stretch vs aspect ratio of the elliptical inclusion for DE composites with the contrasts in the shear moduli and relative permittivities k, = 50 and k. = 10,
respectively. The inclination angles of the elliptical inclusions are « = 0 (a) and « = m/6 (b). The volume fraction of inclusion phase is c!) = 0.136 (corresponds to ryr, = 0.0648a?).

relative permittivities k, = 50 and k. = 10, respectively. The vol-
ume fraction is kept constant at the value ¢ = 0.136 (corresponds
to ryry = 0.0648a2). The dash-dotted, continuous and dashed

curves are for the electric fields Ey = 0.3,ES =1 and E° = 0. The
inclination angles are « = 0 in Fig. 13(a) and « = 7/6 in Fig. 13(b).
Consistently with the previous observations, we find that the
electric field stabilizes the composite if applied perpendicularly to
the stretch direction, and the electric field aligned with the stretch
direction promotes instabilities. We observe that for the aligned
case the critical stretch monotonically increases with an increase in
aspect ratio w (see Fig. 13(a)). However, the behavior changes
dramatically, when a non-aligned case (a« = 7/6) is examined (see
Fig. 13(b)). The critical stretch decreases fast and reaches a mini-
mum for the aspect ratio wy;; =0.9, and, then, the critical stretch
increases with a further increase in aspect ratio. The electric field
almost does not influence the position of the most unstable
configuration corresponding to Wy,.

5. Conclusions

In this work, we examined the stability of periodic DE

composites subjected to finite strains in the presence of an electric
field. We implemented the stability analysis into a numerical finite
element based tool, and through the numerical evaluation of the
tensors of electroelastic moduli, the unstable domains were iden-
tified for periodic DE composites with circular and with elliptical
inclusions embedded in a matrix. We studied the influence of the
electromechanical loading (large deformations and electric field
externally applied), and the geometrical and material parameters
on the stability of the DE composites with particulate microstruc-
tures. We found that an electric field destabilized the composites
when it was applied parallel to the stretch direction, and an electric
field stabilized the composites when it was applied perpendicularly
to the stretch direction. For periodic DE composites with circular
inclusions, critical stretch was found to decrease with an increase in
the volume fraction of the inclusion phase. An increase in the shear
moduli contrast was found to promote instabilities in the DE
composites. We observed that the role of the electric field became
more significant with an increase in the dielectric constant contrast
of the phases. For the DE composites with elliptical inclusions, we
found that the inclusion inclination angle influenced the stability of
the DE composites. In particular, the critical stretch curve was
found to possess a unique maximum at a certain inclination angle.
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The corresponding inclination angle is defined by the aspect ratio of
the elliptical inclusion. When the elliptical inclusion was aligned
with the stretch direction (the semi-major axis coincided with the
stretch direction), we observed that an increase in the ellipticity
aspect ratio resulted in a more stable behavior of the DE compos-
ites. In addition, we observed some deformation induced tunability
of the components of the effective relative dielectric permittivity
tensor in the periodic DE composites.

The analysis of the electromechanical instabilities takes into
account the microstructure characteristics, which affect the effec-
tive electroelastic moduli, and, hence, the stability of the DE com-
posites. However, microscopic instabilities may develop at the
microstructure length-scales. To analyze the microscopic in-
stabilities, a more involved analysis is required such as Bloch-
Floquet type of analysis including the Bloch-Floquet conditions
imposed on both mechanical and electric field variations; as
opposite to the standard microscopic instability analysis for purely
mechanical problems. The coupled microscopic instability analysis
requires development of a new numerical tool, which can be
developed in the future to predict the onset of instabilities at fine
length scales.

These findings can be useful in further design of DE composites
with enhanced properties and switchable functionalities. In addi-
tion, the presented analysis of the electromechanical instabilities
can be applied to more complicated and richer multiphase periodic
composites.
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