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We investigate the macroscopic magnetomechanical instabilities in magnetorheological elastomer (MRE)
composites undergoing finite strains in the presence of a magnetic field. In particular, we identify the
unstable domains for MRE composites with periodically distributed circular and elliptical inclusions
embedded in a soft matrix. We use the isotropic Langevin model for magnetic behavior, to account for
the initial (linear) susceptibility and saturation magnetization of the magnetoactive inclusions. We

analyze the influence of the applied magnetic field and finite strains, as well as particle shape and
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material properties, on the stability of the MRE composites. We find that the stable and unstable domains
can be significantly tuned by the applied magnetic field, depending on deformation, microstructure and
magnetic properties of the inclusions such as initial susceptibility and saturation magnetization.
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1. Introduction

Magnetorheological elastomers (MREs) are materials that can
change their mechanical behavior in response to application of an
external magnetic field. Recently, these materials have attracted
significant attention due to their relatively simple, remote and
reversible principle of actuation making them suitable for various
applications. Potential applications include remotely controlled
actuators [12,61], variable-stiffness devices, tunable vibration ab-
sorbers and damping components [15,28,33,41], noise barrier sys-
tem [23] and sensors [62] among others.

Typically, MREs are composite materials that consist of
magnetizable particles embedded in a soft matrix material. A
polymeric matrix material (e.g. silicone rubber) in its liquid state
before polymerization, is mixed with magnetizable particles (of
micro or even nano size) such as iron (cobalt, nickel, or Terfenol-D)
magnetizable powder [35]. Curing in the presence of a magnetic
field causes the iron particles to arrange into chain like structures
resulting in an anisotropic behavior. If magnetic field is not applied
during polymerization, the magnetizable particles remain
randomly distributed in the resulting magnetoactive material.

Magnetomechanical properties of parallel chains of magneti-
cally permeable spherical particles have been examined by Jolly
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et al. [35]. The investigation of magnetostriction of composites
made with randomly distributed particles subjected to ultrahigh
magnetic fields was carried out by Bednarek [3]. The magneto-
striction of random and chain structured MREs was determined
experimentally by Ginder and co-workers [27,29]. Lanotte et al. [40]
investigated the effect of particle rotation on the average magne-
tization of the composite. In turn, Diguet et al. [17] have examined
composite shape effect in the magnetostriction and Keip and
Rambausek [37] in the experimental characterization of ferro-
magnetic composites.

The theory of electro- and magneto-elastic macroscopic
behavior of continuum was proposed by Truesdell and Toupin [64].
This theory has been recently reformulated and further developed
by Brigadnov and Dorfmann [8], Dorfmann and Ogden [20,21],
Bustamante et al. [10], Vu and Steinmann [65], Melnikov and Ogden
[43], and Destrade and Ogden [16]. In parallel, significant efforts
have been made towards the development and implementation of
the non-linear magneto- [34,38] and electroelasticity [13] frame-
work (which is described by a similar set of equations) into nu-
merical schemes [30,39,46,58]. An analytical approach for
estimating the response and effective properties of MREs with
random distribution of magnetoactive particles has been developed
by Ponte Castaneda and Galipeau [51]. By comparing the responses
of MREs with random and periodic distributions of magnetoactive
particles, Galipeau et al. [24] showed that MAEs with similar mi-
crostructures may posses very different magnetomechanical


mailto:rudykh@technion.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2017.06.014&domain=pdf
www.sciencedirect.com/science/journal/13598368
www.elsevier.com/locate/compositesb
http://dx.doi.org/10.1016/j.compositesb.2017.06.014
http://dx.doi.org/10.1016/j.compositesb.2017.06.014
http://dx.doi.org/10.1016/j.compositesb.2017.06.014

20 A. Goshkoderia, S. Rudykh / Composites Part B 128 (2017) 19—29

properties. Moreover, the periodic microstructures can be tailored
to produce significant enhancement in the coupled properties (see,
for example, Rudykh et al. [57] for mathematically analogous
dielectric elastomer composites). Bustamante and Merodio [11]
extended the analysis of constitutive restrictions proposed for
isotropic nonlinearly elastic materials to transversely isotropic
elastic solids and isotropic magneto-sensitive elastomers.

However, the heterogeneity of the composite material may give
rise to the instability phenomenon. The phenomenon has been
historically considered as a failure, which should be predicted and
avoided. Thus, the topic of elastic instabilities in composite mate-
rials under purely mechanical loadings has been investigated
thoroughly (see for example, Biot [7], Hill and Hutchinson [32],
Triantafyllidis and Maker [63], Geymonat et al. [26], Michel et al.
[47], Merodio and Ogden [44], and Rudykh and deBotton [56]).
More recently, the phenomenon of elastic instability in nonlinear
materials has developed into new directions, in which the in-
stabilities are used to trigger microstructure transformations Mul-
lin et al. [48], Bertoldi et al. [5], Li et al. [42], Gao and Li [25],
Slesarenko and Rudykh [59,60], Budday et al. [9] and to gain
enriched control over switchable functionalities [2,4,54].

The instability analysis for the “purely” mechanical case, has
been extended to study the onset of coupled magnetomechanical
instabilities in isotropic MREs focusing on surface instabilities of
homogeneous magnetoactive half-space [50] and failure modes of a
rectangular MRE block undergoing plane strain deformation in the
presence of a magnetostatic field [36]. Danas and Triantafyllidis
[14] have examined surface instabilities in film/substrate structur-
es.Rudykh and Bertoldi [52] analyzed the macroscopic instabilities
in anisotropic MREs by employing an exact solution for finitely
deformed MRE laminates. A mathematically analogous problem of
macroscopic and microscopic instabilities in dielectric elastomer
laminates has been examined by Bertoldi and Gei [6], Rudykh and
deBotton [55], Rudykh et al. [53].

In this study, we perform an analysis of macroscopic magneto-
mechanical instabilities in MRE composites with periodically ar-
ranged active particles embedded in a matrix. In particular, we
focus on the stability of MRE periodic composites with circular and
elliptical inclusions. We developed a numerical finite element
based code to analyze the magnetomechanical instabilities of
finitely deformed MREs. By means of the numerical simulations, we
identify the unstable domains for finitely deformed MRE compos-
ites in the presence of a magnetic field. We analyze the influence of
the magnetic field, pre-stretch, microstructure and material pa-
rameters on MRE composite stability.

The work is structured as follows: Sec. 2 presents the theoretical
background for the finitely deformed magnetorheological elasto-
mers and magnetomechanical instability analysis. The numerical
simulations, including the magnetomechanical periodic boundary
conditions, and the procedure for determination of the onset of the
magnetomechanical instability are described in Sec. 3. In Sec. 4, we
apply the stability analysis to identify the unstable domains for the
MRE composites with periodically distributed circular (4.1) and
elliptical (4.2) inclusions embedded in a matrix, and analyze the
influence of various parameters on the stability of MREs. Sec. 5
concludes the paper with a summary and a discussion.

2. Theoretical background
2.1. Magnetorheological elastomers

We consider a magnetoelastic deformable solid that occupies a
region %, (and .#) with a boundary 0. (and 9.%) of outward

normal N° (and N) in the reference (and current) configuration. The

Cartesian position vector of a material point in the reference
configuration of a body is X and its position vector in the deformed
configuration is x. We introduce a mapping vector function x such
that

x = x(X). (1)

The deformation gradient is defined as

x(X)
—oxX (2)

The ratio between the volumes in the current and reference
configurations is J=detF > 0. The magnetoelastic solid satisfies the
conservation of mass pg = pJ, where pg and p are the densities in the
reference and current configurations, respectively.

We consider a quasi-static deformation in the absence of an
electric field, electrical charges or electric currents within the ma-
terial. Consequently, Maxwell equations and boundary conditions
take the form

F—

divB=0 and curlH=0, in .2, (3)
[BJ-N=0 and [H]xN=0, in 8%, (4)

where B is the magnetic induction and H is the magnetic intensity

in the current configuration and N = F-TN°. We distinguish be-
tween the differential operators div(-),curl(-) and grad(-) in the
current configuration and the operators Div(+),Curl(+) and Grad(-)
in the reference configuration. The magnetization is defined via the
standard relation

M:ME—H in % M=0 in #\% (5)
0

where p is the magnetic permeability of vacuum and %3\.% is a
region of surrounding space of non-magnetized material (e.g.
vacuum). For later use, it is convenient to introduce the scalar
magnetic potential Uy, such that

H= —gradU; in %, (6)
[Un]l=0 in 8. (7)

The referential magnetic intensity, magnetic induction and
magnetization are related to their counterpart in the deformed
configuration via

H'=FH, B°=JF'B and M°=F'M. (8)
Equations (5)—(7) can be written in the reference configuration

as

DivB =0 and CurlH®=0, in %, (9)

[B°]-N° =0 and [H°]xN°=0, in 8.%,, (10)

o_ 1B o 0 - 3\
M :]_u__H in %5, M =0 in ®°\%,, (11)
0

where C = F'F is the right Cauchy-Green strain tensor. We follow
the analysis proposed by Dorfmann and Ogden [18,19] and consider
magnetoelastic solids whose constitutive relation is given in terms

of a scalar-valued energy-density function W(F, H®) such that
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oW (F,HO) and Bo_iaIIJ(F,HO)

P= R
oF oHO

(12)

where P is the total first Piola-Kirchhoff stress tensor. The corre-
sponding equations for an incompressible material are

_ 0W(F,H°)
T OF

oW (F,H°)

P
oHO

—pFT and B°= . (13)

where p is an unknown Lagrange multiplier. For an isotropic
magnetoelastic material, an energy-density function ¥ can be
expressed as a function of the six invariants

W(FH) = Wik, b, I, Lam, Ism, Tom), (14)
where

_ _1m 2 _
h=TiC =5 (11 —Tr(c )) I3 = detC, (15)
Iy = HO-H®, I5,, =HO.C'H®, g, = H°.C2H". (16)

In the absence of body forces the equilibrium equation and
boundary condition in the reference configuration take the form
and [P]-N°=0 in 08.%,, (17)

DivP=0 in %y,

or in the deformed configuration

divT=0 in %, and [T]-N=0 in 8%, (18)
where the Cauchy stress tensor is related to the first Piola-Kirchhoff

stress tensor via T = J~1PFT.

2.2. Incremental equations

Following the approach recently developed to investigate in-
stabilities in electroactive composites [22,53,55], we derive the
governing equations for the incremental deformations super-
imposed upon a given state of finite deformation in the presence of
a magnetic field. The incremental equations are

DivP =0, DivB’=0 and CurlH’ =0, (19)

where P, B” and H® are the incremental changes in P, B and H,
respectively. The linearized expressions for the incremental
changes in the first Piola-Kirchhoff stress tensor and magnetic in-
duction are

5. o0 0 0 0 0 F 0170
Pyj = ZiFu +-wpHe and  — By = .uyFy + o5H; (20)

where the tensors of the magnetoelastic moduli are defined as

0w 0w 0w
0 _ /0 _ 0 —
Yiwks =0k 0 = orong M e = Ggang
(21)
For an incompressible material, Eq. (20); modifies as
. . -0 o 1 _
P,'j = ,nglel + '/%l('])'ka — pFl] T + pF)’k]Fle” l, (22)

where p is an incremental change in p. The components of the
magnetoelastic moduli in the current and reference configurations

are related via

i = FiaFig g
=] FioFign%. (23)

-1 0 .
AMijk =] FjaFkﬂffﬂmﬁ and Hij

It can be shown that these moduli posses the symmetries

<~Wijkl = *'O/kliﬁ Mijle = ik and Hij = Hij. (24)

Let T, B and H denote the 'push-forward’ counterparts of P, B’

and HO, respectively. These incremental changes are given by

T—J'PF, B=J'FB’ and H=FTH". (25)
We introduce the notation for the incremental displacement v =

x and recall that F = (grad v)F. By substitution of (22) and (23) into
(25), we obtain

T,’j = =~</ijkl’/k,l +J/Zij]<H]< — péu + Dvji and — Bi
= '/ﬂjkivj,k + Jé’inj. (26)

In the current configuration the incremental equation (19) take
the form

divT=0, divB=0 and curlH=0. (27)
By using eqs. (26),(27)1,(27), we obtain

'Wijklvk‘lj +’/ﬂijl<ij — p,i =0 and '/’ijivj,ki + '%inj,i =0.
(28)

2.3. Macroscopic instabilities

Long-wavelength or macroscopic instabilities are known to be
of particular prominence in nonlinear fiber composites [44,45]. In
the mechanics of non-linear composites it has been shown that
macroscopic instabilities occur when the homogenized properties
lose strong ellipticity [26]. Extending the formulation presented by
Hill and Hutchinson [32] for the purely mechanical case and
following the recent works by Destrade and Ogden [16], Rudykh
and deBotton [55], and Rudykh et al. [53], we seek for solution of
Eq. (28) in the form
H; = hig(n-x), (29)

vi = vif(n-x), p=qg(n-x),

where fis a continuous and sufficiently differentiable function, n =
n1€; + n,€, + n3@€; is a unit vector; #;, h; and § are incremental
macroscopic quantities independent of x.

For a 2-D case, equation (27)3 reduces to

Hy1—Hi2=0. (30)
By using (29), together with (30), we find that

hy =& 'hy, (31)

where £=n,/n;. Next, we recall that the incompressibility
constraint implies that divv = 0, and for the plane-strain condition
11 +v22 = 0. Then, from Eq. (29); we have

b = &0y, (32)

Substituting Egs. (29), (31) and (32) into (28), we obtain the
sextic polynomial equation (for details see Refs. [52,53])
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D% + Ts8 + Tyf + 383 + 1,82 + T6+ Ty =0, (33)

where the coefficients I'; are presented in Appendix A.

The existence of a non-trivial real solution of the polynomial Eq.
(33) is associated with the onset of instability along a magneto-
mechanical loading path. In the following, Eq. (33) serves as the
onset of instability condition for considered MRE composites.

2.4. Soft ferromagnetism

Typical MRE composites consist of magnetically susceptible
particles embedded in a soft elastomeric matrix. The particles are
usually made of magnetic materials such as iron, nickel, cobalt or
Terfenol-D. For simplicity, we assume these ferromagnetic mate-
rials to be soft (in the magnetic sense), so that the hysteresis effects
can be neglected and the particles assumed to be large compared to
the typical magnetic domain size. We note that in our model, we
assume the particles to be isotropic, i.e. we consider them to be
superparamagnetic and, thus, neglecting demagnetization effects
[1]. The possible influence of the effect on the stability of MREs is
not considered here. As a result, the material behavior can be
described by a single-valued constitutive response. Although other
models can be used, in this work we use the isotropic Langevin
model for the magnetic behavior of the particles. The correspond-
ing magnetic energy is

. B B

In (smh {%D —1In (m)], (34)
HoMMs HoMs

where mg is the saturation magnetization, y is the initial suscepti-

bility and |B| is the absolute value of the magnetic induction vector.
The magnetization is defined by the following relation

od ms{ (3X|B|) ,U'Oms}
B) = —p— = — |coth - B. 35
®) =58 = 8 |\ ioms) ~ 3x1B) 53)

Note that equation (35) implies that magnetization and mag-
netic field vectors are collinear. Thus, the interaction of the mag-
netic field and the magnetic moment does not result in appearance
of the magnetic torque under this assumption. The magnetic force
in the particles, which is proportional to the rate of change of the
magnetic field, is nonzero only if the magnetic field is
inhomogeneous.

Alternatively, the magnetic energy function can be expressed in
terms of H, thus the magnetic energy Eq. (34) can be expressed in
the following form

2 /0. —110
p(I) (H()) — _M In( sinh M
3x ms
I <3X\/H°-C1H°)}

ms

m2
pd(B) = KO

(36)

which is a function of the invariant Is;;, defined in Eq. (16);; note
that usually the active particles are significantly stiffer than the
matrix, and deformations that the particles experience are negli-
gible. Typical values of saturation magnetization of some magne-
toactive materials are summarized in Table 1.

The magnetic field - induction dependence H(B) is presented in
Fig. 1(a). The dash-dotted, continuous and dashed curves are for the
saturation magnetization ugms = 10,5 and 2 T, respectively. Note
that the dependence is highly nonlinear for relatively small mag-
netic fields, when the initial susceptibility plays a crucial role.
However, we observe the linear behavior of the H(B) curve for

Table 1
Typical values of uym; for different magnetoactive materials.
Inclusions  Cobalt-iron High purity Steels Cast Nickel
alloy iron iron alloys
uoms(Tesla) 2.35 2.16 2.00 1.7 0.77

—2.15

relatively high magnetic fields, after the saturation magnetization
is achieved. Examples of the dependence of magnetization on
magnetic field are shown in Fig. 1(b). The dash-dotted, continuous
and dashed curves are for the initial susceptibilities
x = 0.999,0.75 and 0.5, respectively. The magnetization increases
fast and then, reaches a saturation value. The saturation magneti-
zation is achieved faster for higher values of initial susceptibility.

3. Analysis

In this section, we describe the numerical analysis for deter-
mining the onset of magnetomechanical instabilities in periodic
two-phase composites undergoing finite deformations in the
presence of a magnetic field. We consider magnetoelastic material
that occupies a domain Qg (in the undeformed configuration),
which is made of two distributed (homogeneous) phases, occu-
pying subdomains Qg> (r=1,2) in Qy. An example of an MRE
composite subjected to a magnetic field is shown in Fig. 2. Note that
the position of the magnet poles does not change with the defor-
mation, thus the applied magnetic field is the same in the deformed
and undeformed state. However, local magnetic field can be
different in the deformed and undeformed state. The analysis is
implemented in the finite element code COMSOL Multiphysics
42a/

The energy-density function of a two-phase composite is

w(FX, ﬁo) = oW (FH) + 0@ (X)W (FH), (37)
where the characteristic function defined in each phase r is
0, otherwise.

The volume fraction of the r-phase is

cn — / o (X) dV. (39)

Bo

The volume fractions are related via

=1, (40)

Thus, we numerically solve the following equations
divT = 0, xe.%; (41)
div(gradUp + M) = 0, X 2.

The magnetomechanical loading is imposed by applying peri-
odic boundary conditions for both the displacement (uq,u,) and
magnetic potential (Up) (see [31] in the mechanical context). The
applied average deformation gradient and magnetic intensity are
defined as

! In our numerical simulation, the problem has been solved on the meshes with
the number of elements N, =7200 (for the lowest volume fraction c() = 0.05 the
number of elements is Ne = 7070 and N, = 7470 for the highest one ¢ = 0.3); the
mesh sensitive analysis has been performed.
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Fig. 1. Dependence of magnetic intensity (a) and magnetization (b) on magnetic field; initial susceptibility is x = 0.999 in (a). The illustration is given for the undeformed case

(F=1).

|H

MRE sample

Fig. 2. Typical experimental setup for study of MREs.

F- V / F(X)dV and H—% / H(x) dV, (42)
Zo K

respectively. The average Cauchy and 1st Piola-Kirchhoff stress
tensor together with magnetic induction are

- /T(x)dv p_l /P X)dvV and B

EZ0)

- /Bx) dv, (43)

respectively.
In the 2-D case the integration is performed over the unit cell,
which occupies the domain

0<X;<a and 0<X;<a, (44)

in the reference configuration. These periodic boundary conditions
are:
The top (X>

= a) and bottom (X, = 0) sides are related via

ud =ul + (Fpp — 1)a,

uf =ul + Fppa, (45)
Up(%1,0) = U (x1,0) + Ha.

The right (X; = a) and left (X; = 0) sides are related via

uj = uf + (Fii - 1)a,
ué = U§ + Fyia, . (46)
UL (0,x;) = UR (a,xy) + Hya.

In the considered plane-strain case, we also assume the absence
of a magnetic field in the X3 direction. Application of the periodic
boundary conditions allows us to determine the solution along a
magneto-mechanical loading path. Here we consider the magne-
tomechanical loading defined as

F¥ —Je,®e; +1 'e;®e, + e3®e; and H'

= ﬁ1e1 +H2€2. (47)

Note that the applied average magnetic field does not change
with the deformation. This corresponds to the relevant MRE
experimental settings (see. Fig. 2). However, the local distributions
of the magnetic field can change with applied deformation. The
average response of the periodic composites is calculated by inte-
gration over the corresponding unit cell according to Eq. (43); and
(43),. The primary solution is valid until a possible instability point
along the magnetomechanical loading.

To identify the onset of coupled magnetomechanical in-
stabilities, we utilize the critical condition (33). The analysis of the
magnetomechanical stability of MRE composites requires deter-
mination of the instantaneous tensors of the magnetoelastic
moduli ./, # and 5. To this end we perform a set of incre-

mental changes in deformation F and magnetic field H from a
finitely deformed state in the presence of a magnetic field (see
Fig. 3). These incremental changes lead to a macroscopic response
of the MRE composite, resulting in variations in the average nom-
inal stress and magnetic induction. The following five small
amplitude tests are performed as follows

U _Je, e, + o7e, ®e, +T1e2 ®e, +e;®e; and F°
:§e1 ®eq +17162®92 + 0ye, ®eq + e3Qes,
(48)
_ S - -1
Bl _ (A+(5A)e1®e1 + (A+6A) e,®e, +e3Qe;s, (49)
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(F H)

Finitely

/\ deformed /\

Stability
analysis

(F.H)

Fig. 3. Small incremental changes in terms of deformation gardient F and magnetic field H are superimposed on a finitely deformed solid in the presence of a magnetic field..

H[” (H] + (3H)e] +H2€2 and H[ | Eel + (Hz + 6ﬁ)ez,
(50)

where 67, 64 and 0H are sufficiently small quantities. By perform-

ing these tests and making use of the relations (20),(26) and (23),

the magnetoelastic moduli are determined. The corresponding
equations for the magnetoelastic moduli are

spimo Fij (F[m] ﬁ[ol) - I_)ij (F[O],ﬁ[o])

Mukl S =
[m] =m]  F[0]
0F) Fiy” = Fy
5 (gm0 5 (=0 20
P'J(F H ) P”(F A )kqtlm:l 2; (51)
67 b b 9 9
i = FP ]FEI] e, (N0 summation), k= ; (52)

6T[(_),n] Tij (F[O],ﬁ[n]) Tl] (F[ | H[O])

Mg =~ =
ij 6H}<"] H[n] H[O]
0] oin] 0] (0]
T,J(F H )_T,-j(l: H )n:] 5 5
6H b b b

Hij =~ = 0]
oA, H" —H,
B (F[Ol H["]) 3 (F[OJvﬁ[OJ)

— _ n=1,2. (54)

consequently m = 1,2. To determine the components of magne-
toelastic moduli Mukk (no summation), i+j, we use the symmetry

Mukk = sa/kky and apply Eq. (51) again. However, when i =j and

k = I, the components <79, (no summation) cannot be determined
from the tension test (49). This is due to the fact that the following
equation system stemming from Eq. (20)

11151:131 +/9 1225F2327 (55)
221151:[11] + #3520F 5,
does not have a solution for /9;,;, /%55, and 791, = %,,;.
Clearly, it is impossible to fully characterize the elastic properties of
a material on the basis of plane tests alone [49]. However, the
corresponding coefficients in the critical condition for the onset of
instabilities (33) can be fully determined through certain combi-
nations of the terms Qsz/?ikk (no summation). The procedure of
determination these terms is presented in Appendix B.

By utilizing Egs. (23),(24),(A.1),(51)—(54),(B.3)-(B.4) and (A.1) all
the components of the magneto-elastic tensors required for
calculating of the coefficients I'; can be determined. In order to
perform the stability analysis, we evaluate the components of
magnetoelastic moduli from the numerical tests, and, then, we
check the condition for the onset of instability (33) at each point of
the magnetomechanical loading path. Thus, the critical magnetic
field and deformation are determined. Results of the stability
analysis of specific periodic MRE composites are discussed in the
next section.

4. Results

In this section, we consider MRE composites with periodically
distributed stiff magnetizable particles embedded in a soft matrix.
Representative 2-D MRE composites with circular and elliptical

Fig. 4. Schematic representation of MRE composites with square periodic microstructures with circular (a) and elliptical (b) inclusions; the periodic unit cell (c).
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inclusions are shown in Fig. 4(a) and (b). The energy densities of the
corresponding phases are

Gm (m> G(m)
W O (1 -3) -Gy + <3 17,

el KO ¢
WO == -3)~GnJ + (———)u 17 (i),

(56)

where K is the bulk modulus, G is the shear modulus, yg is relative
permeability, p is the mass density of the inclusion material and the
function ®(Is,,) is given in Eq. (36). The superscripts (m) and (i)
denote matrix and inclusion phases, respectively. The invariants I
and s, are defined in Eqgs.(15); and(16),. In our numerical
modeling we assign a high ratio of bulk to shear moduli, in
particular K/G = 100, to maintain a nearly incompressible behavior
in each phase. The stiffness of the inclusions is reached by assigning
a high ratio of shear moduli of the phases, namely G /G(™ = 1000.

4.1. MRE composites with periodically distributed circular
inclusions

Here we examine the response of MRE composites with peri-
odically distributed circular particles embedded in a soft matrix. A
representative 2-D periodic composite with a square periodic unit
cell with circular inclusions is shown in Fig. 4(a).

Fig. 5 shows the dependence of the critical stretch ratio A,
corresponding to the onset of macroscopic instability on the
applied magnetic field in terms of the normalized magnetic
intensity

H = Hy1 /1o /G (57)

Here and thereafter the magnetic intensity is applied in the e,
direction. The dash-dotted, continuous and dashed curves are for
the MREs with the particle susceptibilities x = 0.999,0.75 and 0.5,
respectively. The volume fraction of the magnetizable inclusion is
c) = 0.1. The saturation magnetization is uoms = 2.16 T. The ar-
rows indicate transitions form stable to unstable domains. Fig. 5(a)
is presented for the contraction (1< 1), while Fig. 5(b) is presented
for the extension (1>1). For the compression case (A<1), the
critical stretch is found to increase fast and it reaches a maximum,

>l

and then decreases with a further increase in the magnetic in-
tensity. This means that the MRE composite is first destabilized by

the magnetic field up to some critical point e = Aemax (corre-
sponding to the smallest critical strain level ec = |Ac — 1|) and then
the magnetic field starts to stabilize the composite. MRE compos-
ites become more stable with a decrease in the initial susceptibility.
The magnetic field corresponding to this maximum is highest in the

case of the lowest initial susceptibility y = 0.5 (H=3.8). The dash-
dotted curve, corresponding to the MRE with the highest consid-
ered initial susceptibility y = 0.999 is above the continuous and
dashed curves for all values of the applied magnetic intensity.
When subjected to an extension, MREs also exhibit the switch in
the role of the magnetic field on the stability (see Fig. 5(b)). We

observe an increase in the critical stretch before a point H =2 where

the curve Ac(H) reaches a maximum. This increase is followed by a
relatively fast decrease in the critical stretch as the magnetic field is
further increased. An increase in initial susceptibility results in
stabilizing effect in the case of extension. Notice that the value of
the corresponding to the maximum is very close for the different
MRE composites with different susceptibilities. However, in the

case of extension (1> 1), we observe the opposite effect, the mag-
netic field first stabilizes the composite up to some value, but then
the composite is destabilized with a further increase in the mag-
netic field. The switch happens at the level of the magnetic field

H=2.The dash-dotted, continuous and dashed curves become very
close for relatively high values of the applied magnetic field. This
result is consistent with the fact, that for high values of the mag-
netic field, when saturation is achieved, the H(B) curve does not
depend on initial susceptibility. We observe that the distance be-
tween the curves in Fig. 5 increases with an increase in the mag-
netic intensity up to H=3 in the case of contraction, and H=2 in the
case of extension and then, this distance decreases with further
increase in magnetic field. This behavior is very similar to the one
observed in Fig. 1(b).

The dependence of the critical stretch on the magnetic intensity
for MREs with different volume fractions of the inclusions is shown
in Fig. 6. The saturation magnetization and initial susceptibility of
the particles are ugms = 1.70 T and x = 0.999, respectively. The
dash-dotted, continuous and dashed curves are for the volume
fractions ¢ = 0.3,0.2 and 0.1, respectively. Fig. 6(a) shows that the
critical stretch increases and reaches a maximum at the magnetic

intensity H=2.9 and then decreases gradually with a further in-
crease in the magnetic intensity. Consistent with the previous

—- =y =0.999

R R —— =075 ]
X oy =05
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Fig. 5. Critical stretch vs magnetic intensity for MRE composites with the saturation magnetization ugms = 2.16 T for the contraction (a) and extension (b). The volume fraction of

the inclusion is ¢) = 0.1.
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bl

Fig. 6. Critical stretch vs magnetic intensity for MRE composites with the saturation magnetization uyms = 1.70 T for the contraction (a) and extension (b). The initial susceptibility

is x = 0.999.

observations, we find that the magnetic field destabilizes MRE
composite until some maximum value of stretch, and then mag-
netic field starts to stabilize MRE composite. The opposite effect is
shown in Fig. 6(b) when tension (A>1) is applied. The critical
stretch slightly increases up to some maximum, and then starts to
decrease fast. The magnetic field has a significant effect on the
critical stretch for the lowest volume fraction c® =0.1
(2c€[1.69,1.5]), while for higher volume fractions the influence of
the magnetic field decreases. In addition, MRE composites become
more unstable with an increase in the volume fraction of the rigid
inclusion phase. The dash-dotted curve, corresponding to the MRE
with the highest volume fraction ¢ = 0.3 is more close to the

undeformed state (A = 1) than continuous and dashed curves for all
values of the applied magnetic field. We observe that for the lowest
volume fraction ¢ = 0.1, the critical stretch (dashed curve in
Fig. 6(b)) decreases faster than for other volume fractions. This
means that at relative high magnetic fields, the effect of magnetic
field on the stable domains is greater for the lowest volume
fractions.

4.2. MRE composites with periodically distributed elliptical
inclusions

Here we examine the stability of MREs with periodically
distributed elliptical inclusions (see the illustration in Fig. 4(b) and
(c)). The aspect ratio of the elliptical particles is defined as the ratio
between the semi-major and the semi-minor axes w = r; /1. The
inclination angle « is defined as the angle between e; -direction and
semi-major axis of the elliptical inclusions (Fig. 4(b)). Because of the
symmetry of the unit cell, only inclination angles in the range
aes(0,7/2) need to be considered.

Fig. 7 shows the dependence of the critical stretch on the
applied magnetic field (in terms of magnetic intensity H) for MREs
with elliptical inclusions oriented perpendicularly to (« =0 in
Fig. 7(a and b)), and aligned with the applied average magnetic field
(e =7/2 in Fig. 7(c and d)). The dash-dotted, continuous and
dashed curves are for the particle susceptibilities x = 0.999,0.75
and 0.5, respectively. The volume fraction of the magnetizable in-
clusion is ¢ =0.05. The saturation magnetization is
uoms = 2.16 T. We observe that the magnetic field has similar ef-
fects on the critical stretch as in the case of the circular inclusions.
In the case of contraction (Fig. 7(a),(c)), the MRE composite is first
destabilized by a magnetic field up to some point and then,

magnetic field starts to stabilize the MRE composites. In the case of
extension (Fig. 7(b),(d)), we observe the opposite effect. Consistent
with the previous observations, we find that an increase in initial
susceptibility results in stabilizing (Fig. 7(b),(d)) and destabilizing
(Fig. 7(a),(c)) effects. In the case of contraction (1< 1), we observe
that the magnetic field influences the critical stretch more signifi-
cantly if applied perpendicular to the semi-major axis of the
elliptical inclusions. For example, for MREs with initial suscepti-
bility x = 0.999, the difference is Acmax — Ac(H = 10) = 0.02 for the
magnetic field applied along the major axis of the elliptical in-
clusions (Fig. 7(a)), and it is Acmax — Ac(H = 10) = 0.029 for the
magnetic field applied perpendicularly to the major axis of the
elliptical inclusions (Fig. 7(c)). The opposite trend is observed for
the case of extension (A>1); in particular, the difference

Xemax — Ac(H = 10) = 0.333 for the case when magnetic field is
applied along the major axis of the elliptical inclusions (Fig. 7(b)),
and the difference Acmax — Ac(H = 10) = 0.26503 is smaller for case
when the magnetic field is applied perpendicularly to the major
axis of the elliptical inclusions (Fig. 7(d)).

The dependence of the critical stretch on the aspect ratio of the
elliptical particles is shown in Fig. 8. The saturation magnetization
of the particles is pugms=2.35T and initial susceptibility is
x = 0.999. The applied normalized magnetic intensity is H = 3. The
volume fraction is kept constant at the value c() = 0.2. The dash-
dotted, continuous and dashed curves are for the inclination an-
gles of the elliptical inclusion a = 7/6, 7/12 and 0, respectively. All
curves intersect at the point w = 1, corresponding to the MREs with
circular inclusions. We observe that for the aligned case, « =0
(dashed curves in Fig. 8), the critical stretch is an increasing func-
tion of the aspect ratio. This means that an increase in w leads to
destabilization of MREs for compressive loading (Fig. 8(a)), and it
stabilizes the MREs subjected to tension (Fig. 8(b)). The dependence
of the critical stretch on the aspect ratio is almost linear in the case
of contraction (Fig. 8(a)). However, the behavior changes drasti-
cally, when non-aligned cases are examined. For the inclination
angles « = /12, m/6, the dependence of the critical stretch on the
aspect ratio is characterized by a unique maximum for MREs under
contraction (Fig. 8(a)) or minimum for the MREs under tension
(Fig. 8(b)).

5. Conclusions

In this work, we examined the macroscopic stability of periodic
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Fig. 7. Critical stretch vs magnetic intensity for MRE composites with the aspect ratio w = 2 and inclination angles of the elliptical inclusion « = 0 (a,b) and « = 7/2 (c,d). The
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Fig. 8. Critical stretch vs aspect ratio for MREs composites with of elliptical inclusions; saturation magnetization ugms = 2.35 T and initial susceptibility x = 0.999; volume fraction

of inclusions is ¢ = 0.2. The applied dimensionless magnetic intensity is H = 3.

MRE composites subjected to finite strains in the presence of a
magnetic field. Through the numerical evaluation of instantaneous
magnetoelastic moduli, the unstable domains were determined for
periodic MRE composites with circular and with elliptical in-
clusions periodically distributed within a soft matrix. We analyzed
the influence of the magnetomechanical loading, geometrical and
material parameters on the stability of the MRE composites with
the particulate microstructures. We found that an increase in initial

susceptibility of the particles resulted in a more stable behavior of
the MRE composites subjected to magnetic field in the case of
extension, and in a decreased stability in the case of contraction.
Consistent with the isotropic Langevin model, for the MRE com-
posites with circular inclusions, we found that initial susceptibility
of the particles affects stable domains of MRE composites subjected
to relatively low magnetic fields, while this effect significantly
weakens at larger magnetic fields, when the saturation
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magnetization is attained. We found that the effect of the relatively
high magnetic fields on the stable/unstable domains is more sig-
nificant for the MREs with lower volume fractions of magnetizable
particles. The dependence of the critical stretch on the applied
magnetic field is characterized by a unique extreme point, which is
only slightly affected by a magnetic field in the case of extension.
For MRE composites with elliptical inclusions, we found that the
geometrical parameters of the inclusions such as inclination angle
and aspect ratio significantly affect the stable/unstable domains. In
particular, for the non-aligned cases, we found that the dependence
of the critical stretch on the aspect ratio is characterized by a
unique maximum in the case of contraction and minimum in the
case of extension at a certain inclination angle. For the aligned case
(when the semi-major axis coincided with the stretch direction),
we observe that an increase in the aspect ratio leads to an increase
in the critical stretch.
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Appendix A

Lo =331 — Y2111,
Iy =2(— “121#12 + (Y1121 — Y 2122)# 11
+oll121 (M1 + M2y — M111)),
— 022 +AH A 1121 — Y 2122)#12
— (1111 — 291122 — 21221 + S 2222) 11
— 20121 (M112 + Mr21 —M222) + (Mr2p + M1 — Ma11)?,
I3 = -2((«1112 — Y1222)#11 + (Y1111 — 271122 — 2% 1221
+.92222)#12 + (2122 — S 1121)# 22 + (M121-4122
— (111 — M122 — M21)(M112 + M1 — M222))),
Ly = (Y1111 — 291122 — 291221 + -Y2222)# 22
—4(S 1112 — Y 1222)#12 — Y 1212911
+ (112 + o121 — M) + 2M120 (M1 — M1z — M),
['s = 2((1222 — ¥ 1112)#22 — ¥ 121212
22 (M 112 + M1 — M222)), Tg = ) — 12122
(A1)

I

Appendix B

The combinations .#%, (no summation) can be obtained from
the information provided by the tension test (49). The incompres-
sibility constraint implies

SF:F ' —o0. (B.1)

For the tension test (49), the incompressibility constraint reads
=3 =3
sF3 ﬁmﬂ ___0Fy
1 — 22-3] — 3] 2"
F3 (Fzz)

Thus, the combinations (9,5, —#%,1;) and (9117 — %%17)
can be determined by applying the tension test (49) together with

(B.2)

(23)1,(55) and (B.2). In particular, we obtain

=(0]=[0] £(0]5(0]
A9y — %11 = FpaFpp #2292 — FyaF 11 #2911

= (F[;z])z (=9/2222 - &7221117[101] /F[zoz])

= (P oP5” /o3, (B3)
and
Pir — %1 = FUF/ 1111 — FsF i/ a1

= (Fﬂ)z(%nn - sznﬁ[zoz]/ﬁﬂ)

= (R P oy, (B4)
where 61_’1[1-3’01 = I_’ii(F[3],ﬁ[0]) Ei(F[O] H ]), no summation.
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