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a b s t r a c t

We investigate the behavior of magnetoactive elastomers (MAEs) with periodic and random distributions
of circular and elliptical fibers. For the MAEs with periodic microstructures, we develop finite element
models and determine the local fields as well as the effective properties of MAEs with rectangular and
quasi-hexagonal unit cells. For the MAEs with random microstructures, we derive a closed-form expres-
sion for the effective response making use of a recently developed theory (Ponte Castañeda and Galipeau,
2011). In particular, we determine the responses to pure shear loading in the presence of a magnetic field,
both of which are aligned with the geometric axes of the fibers, and examine the roles of the deformation,
concentration, particle shape, and distribution on the magnetostriction, actuation stress, and the magnet-
ically induced stiffness of the composite. We show that the coupling effects are of second order in the
concentration. This is consistent with the fact that these effects are primarily the result of the interaction
between inclusions. We also demonstrate explicitly that the magnetomechanical coupling of these MAEs,
when subjected to aligned loading conditions, depends not only on the magnetic susceptibility, but also,
crucially, on its derivative with respect to the deformation. As a consequence, we find that the magneto-
elastic effects may be quite different, even for composites with similar effective susceptibilities.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoactive elastomers (MAEs) are composite materials
exhibiting coupled magnetic and mechanical behavior. In this work
we examine typical MAEs consisting of magnetically susceptible
particles embedded in a non-magnetic soft elastomer matrix. Fre-
quently used magnetic materials include carbonyl iron and nickel;
examples of more exotic inclusions are Terfenol-D and Ni2MnGa.
MAEs are of interest because magnetic fields are capable of modi-
fying the effective stiffness of the composite and of producing mag-
netostrictive strains. Both effects take place quickly and reversibly,
making MAEs good candidates for tunable vibration dampers and
magnetic actuators.

For MAEs made with inclusion materials such as carbonyl iron,
nickel, or cobalt, which are effectively rigid compared to the elas-
tomer matrix, the principal mechanisms are magnetic torques
and magnetic interactions between particles (Jolly et al., 1996;
Bednarek, 1999; Ginder et al., 2002; Guan et al., 2008). For the par-
ticular case when the magnetic particles are aligned with the
external magnetic field, there are no magnetic torques on the
particles and the magnetoelastic effects are controlled by particle
interactions. Various approaches have been used to directly
account for particle pair forces in MAEs in the context of infinitise-
mal deformations, including the works of Borcea and Bruno (2001),
Yin and Sun (2006), and Yin et al. (2006).

Magnetic interactions in deformable elastic media can also be
accounted for, in the context of a thermodynamically consistent
formulation, by means of a free-energy function, leading to the
notion of magnetic stresses, which exist even in vacuum
(Maxwell, 1873). The pioneering works on electro- and magneto-
elastic behavior of a continuum by Toupin (1956), Truesdell and
Toupin (1960), Tiersten (1964), Brown (1966), and Maugin and
Eringen (1972) have been recently reviewed and further developed
by various authors (Brigadnov and Dorfmann, 2003; Dorfmann and
Ogden, 2004a,b; Kankanala and Triantafyllidis, 2004; Vu and
Steinmann, 2007; Bustamante et al., 2008). Making use of these
constitutive formulations, Ponte Castañeda and Galipeau (2011)
proposed a finite-strain, variational homogenization framework
to determine the total magneto-elastic stress arising in a compos-
ite material as a consequence of combined magnetic and mechan-
ical stimuli. Furthermore, for the special case of MAEs, where the
magnetic particles are rigid compared to the soft elastomer matrix,
Ponte Castañeda and Galipeau (2011) showed that the total stress
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can be expressed as the sum of the purely mechanical stress, which
exists in the composite when no magnetic fields are applied,
together with the Maxwell stress in vacuum and an extra magnetic
stress which is determined by the derivative of the (deformation-
dependent) magnetic susceptibility of the composite with respect
to the stretch. Applications of these results for MAEs with random
microstructures and for magnetic fields that are aligned and una-
ligned with the anisotropic axes have been given by Galipeau
and Ponte Castañeda (2012) and Galipeau and Ponte Castañeda
(2013a), respectively. The mathematically analogous case of
dielectric elastomer composites with periodic and random micro-
structures was considered by Ponte Castañeda and Siboni (2012)
and Siboni and Ponte Castañeda (2013), respectively. In addition,
deBotton et al. (2007) computed directly the macroscopic constitu-
tive relations for electroelastic composites with layered micro-
structures, taking advantage of the fact that the fields are
uniform in the layers. The stability of electroactive laminates was
considered by Rudykh and deBotton (2011). The ability to signifi-
cantly enhance the electromechanical coupling with appropriate
arrangement of the microstructure of the composite was demon-
strated in Tian et al. (2012) and Rudykh et al. (2013). Also,
Galipeau and Ponte Castañeda (2013b) have recently shown that
giant magnetostriction can be achieved in composites with her-
ringbone-type microstructures by combining the action of mag-
netic torques with soft mechanical modes of deformation in the
elastomer phase. Shear localization instabilities in layered and par-
ticulate magneto-elastic composites have been considered recently
by Rudykh and Bertoldi (2013) and Galipeau and Ponte Castañeda
(2013a), respectively. More general instabilities in the context of
layered dielectric elastomers have been considered by Bertoldi
and Gei (2011) and Rudykh et al. (2014).

Unfortunately, the set of microstructures for which exact ana-
lytical solutions can be obtained is essentially limited to materials
with layered microstructures. For magneto-elastic materials with
more general periodic microstructures, which have great potential
for enhancing magneto-elastic performance, the exact behavior
may be obtained by numerical computations. The finite element
(FE) method is usually employed (Rudykh and deBotton, 2012)
for this purpose. In this work, we pursue this approach for the cou-
pled magnetomechanical problem and construct FE models for
solving the magnetomechanical problem under finite deformations
and periodic boundary conditions. Specifically, we examine peri-
odic MAEs with (i) rectangular and (ii) quasi-hexagonal periodicity.
The FE models provide the information about the local fields,
which can be averaged over the unit cell to obtain the effective
properties of the composites. For random microstructures, we esti-
mate the effective behavior of MAEs with the homogenization-
based constitutive model recently developed in Galipeau and
Ponte Castañeda (2013a).

We define key parameters that govern the coupled magnetome-
chanical behavior of MAEs. These parameters are directly related to
the applied traction measured on the surface of the material while
accounting for the magnetic stresses outside the material. The gov-
erning parameters of the magnetomechanical coupling are evalu-
ated for MAEs with random, quasi-hexagonal, and rectangular
periodic microstructures over a wide range of concentrations and
particle aspect ratios. We demonstrate explicitly that the magneto-
mechanical coupling depends not only on the magnetic suscepti-
bility, but, more importantly, also on its derivative with respect
to deformation. Accordingly, it is demonstrated that linearly mag-
netic materials with similar susceptibilities can exhibit rather dif-
ferent magneto-elastic coupling. Moreover, we find that, for some
composites, while the magnetic induced tractions are larger, the
magnetostriction is lower and vice versa. The two competing
mechanisms that are responsible for this complex behavior are
identified and discussed. Finally, in order to shed light on the
complex dependence of the magneto-elastic coupling on the
microstructure of the composite, we provide a qualitative analysis
of this relation in terms of the magnetomechanical interactions
among the inclusions.

In this work scalars will be denoted by italic Roman, a and G, or
Greek letters, a and C; vectors by boldface Roman letters, b; sec-
ond-order tensors by boldface italic Roman letters, P, or bold face
Greek letters, �. When necessary Cartesian components will be
used; for example, Pij are the Cartesian components of P.

2. Magneto-elasticity in the quasistatic regime

Consider the quasistatic deformation of a body. In its reference
configuration, the location of each material point is defined by the
position vector X. Under the combined action of mechanical and
magnetic effects, the body deforms. In the deformed configuration,
the new position of the material points is described by x. The local
deformation is characterized by the deformation gradient
F ¼ Grad x, with Cartesian components Fij ¼ @xi

@Xj
, and is such that

J ¼ det F > 0. Conservation of mass implies that locally q0 ¼ qJ,
where q0 and q are the material densities in the reference and
deformed configurations, respectively. We also recall that the polar
decomposition of the deformation gradient is F ¼ RU, where R is
the rotation and U is the stretch tensor.

We define T and S ¼ JTF�T to be the total Cauchy and (first)
Piola–Kirchhoff stress tensors, respectively, which at static equilib-
rium and in the absence of body forces satisfy the equivalent
mechanical equilibrium conditions

div T ¼ 0 or Div S ¼ 0: ð1Þ

The operators div and Div are the divergence operators with respect
to x and X, respectively. Together with the linear momentum bal-
ance Eq. (1), the stress fields also satisfy the balance of angular
momentum. Accordingly, TT ¼ T , or equivalently, SFT ¼ FST . The
stress may be discontinuous across an interface, but must satisfy
the jump conditions

½½T ��n ¼ 0 or ½½S��N ¼ 0; ð2Þ

where n and N denote the normal to the interface in the deformed
and reference configurations, respectively.

The magnetic field is characterized by two primary magnetic
field vectors: the magnetic induction b and the magnetic intensity
h, both defined in the current configuration. In the absence of sur-
face charge and free currents, and for quasi-static conditions, they
satisfy the field equations

div b ¼ 0 and curl h ¼ 0; ð3Þ

where the curl operator is with respect to x. Alternatively, following
the work of Dorfmann and Ogden (2004a), these equations can be
written in Lagrangian form as

Div B ¼ 0 and Curl H ¼ 0; ð4Þ

where B ¼ JF�1b and H ¼ FT h are the Lagrangian counterparts of
the magnetic fields and the Div and Curl operators are with respect
to X. The corresponding jump conditions at an interface are

½½b�� � n ¼ 0 and ½½h�� � n ¼ 0; ð5Þ

or

½½B�� � N ¼ 0 and ½½H�� � N ¼ 0: ð6Þ

The relation between the magnetic fields is customarily defined
in terms of the magnetization m, such that

h ¼ 1
l0

b�m; ð7Þ
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where l0 is the magnetic permeability of vacuum. In general, the
magnetization depends on the material the body is made of, and
is a function of the magnetic field and the deformation (Kovetz,
2000).

A thermodynamically consistent framework to describe mag-
neto-elastic materials was developed by Brown (1966). More
recently Kovetz (2000) made use of the method of Coleman and
Noll (1963) to arrive at an equivalent formulation. Following these
works we assume the existence of a free-energy function /ðF;bÞ.
Thus, for quasi-static processes, the magnetic constitutive relation
reduces to

m ¼ �q
@/
@b

ð8Þ

and the total Cauchy stress is given by

T ¼ q
@/
@F

FT � 1
2l0
ðb � bÞI þ 1

l0
b� bþ ðm � bÞI �m� b: ð9Þ

In terms of these relations, the energy–density function / fully
characterizes the behavior of the magneto-elastic material. Note
that in the absence of a material, or when the material is non-
magnetic, there still exists a stress tensor which depends on the
magnetic field, also referred to as the Maxwell stress. A Lagrangian
‘‘amended’’ free energy function can be constructed, in terms of /,
as (Dorfmann and Ogden, 2004a)

WðF;BÞ ¼ q0/ F;
1
J

FB
� �

þ FB � FB
2l0J

: ð10Þ

Then, the conjugate Lagrangian variables are given by

H ¼ @W
@B

and S ¼ @W
@F

: ð11Þ

For incompressible materials the deformation is constrained so
that

det F ¼ 1: ð12Þ

The corresponding total stress is

T ¼ @W
@F

FT � pI; ð13Þ

where p is a Lagrange multiplier associated with the incompress-
ibility constraint.

Motivated by experimental studies of MAEs (Jolly et al., 1996;
Bednarek, 1999; Ginder et al., 2002; Guan et al., 2008; Danas
et al., 2012), where the sample is subjected to combined magnetic
field and applied traction, we establish the relation between the
applied traction and the total stress within the material. We recall
that the magnetic fields extend past the body into its surrounding
(vacuum or non-magnetic material), and that these magnetic fields
generate Maxwell stresses outside the body. Based on the jump
conditions (5), the magnetic fields and subsequently the magnetic
stress outside the material can be determined from the magnetic
fields inside the material. Consequently, it can be shown that the
traction on the boundary of the specimen is (Kankanala and
Triantafyllidis, 2004)

t ¼ T þ l0

2
ðh � hÞI � h� b

� �h i
n� l0

2
m � nð Þ2n; ð14Þ

where T; h; b, and m are the fields (in the material) just inside the
boundary and n is the outward normal to the boundary. Although
this formula is written in terms of T ; h; b and m for convenience,
these are not all independent variables. For instance, once b and F
are specified, they determine all other variables via the constitutive
relations of the material. In addition, note that, in the absence of a
magnetic field, the above expression reduces to its usual form in the
purely mechanical case, i.e., t ¼ Tn. When a non-magnetic material
is being tested, the magnetic stresses are self-equilibrated and mag-
netic fields have no effect on the traction.

When two or more magneto-elastic materials are combined
together in such a way that the size of the sample is significantly
larger than the characteristic size of the microstructure, the mate-
rial is said to satisfy the separation of length scale hypothesis and
the material forms a composite. Moreover, if the variation of the
applied boundary condition are larger than the characteristic size
of the heterogeneity, the composite can be treated as a homoge-
nous material with effective constitutive properties. Roughly
speaking, these effective properties characterize the relationship
between the volume averaged field quantities within a representa-
tive volume element of the material (Ponte Castañeda and
Galipeau, 2011).

The representative volume element can be identified with X0

which, due to the magnetomechanical loading, transforms into a
new region X. Volume average field quantities are denoted with
over-bar. Lagrangian fields such as F; S; B, and H are averaged
over the reference region X0. For example,

�F ¼ 1
X0j j

Z
X0

FdV : ð15Þ

Eulerian fields like T ; b; h, and m, are averaged over the deformed
configuration. For example,

�T ¼ 1
Xj j

Z
X

Tdv : ð16Þ

In the above expressions X0j j and Xj j denote the volumes of the
undeformed and the deformed regions, respectively.

Additionally, when the behaviors of the phases are character-
ized by energy–density functions, the overall behavior of the com-
posite can be characterized by a homogenized energy–density
function ~Wð�F; �BÞ or, alternatively, ~/ð�F; �bÞ. The Lagrangian energy
function ~Wð�F; �BÞ is determined by averaging the local energy over
the reference configuration consistent with the homogenization
approach of Ponte Castañeda and Galipeau (2011). This Lagrangian
energy–density is used to define the corresponding Eulerian
energy–density function via Eq. (10).

In this work we consider the effective behavior of MAEs with
random and periodic distributions of magnetoactive particles in a
soft matrix. For composites with random distributions, the homog-
enization is performed by considering the response of a represen-
tative volume element in which the microstructure is not specified
exactly and the effective energy–density function depends on
available two-point statistical information.

For periodic media the microstructure is fully determined once
the unit cell is specified. The effective properties can be found by
evaluating the response of the primitive unit cell under periodic
boundary conditions. Once again, we assume that the material
occupies a sufficiently large domain and the influence of the
boundary effects can be neglected. This applies up to the onset of
instabilities at which the periodicity scale can spontaneously
change and become larger than the single unit cell (Geymonat
et al., 1993). These effects are beyond the scope of this work and
we restrict our study to the ‘‘principal’’ solutions along the pre-
scribed loading paths.
3. Analysis of MAE composites with aligned fibers

We consider orthotropic MAE composites with long cylindrical
rigid fibers aligned along the ê3-axis. The fibers, with elliptic cross-
section, are distributed such that their principal axes are aligned
with the ê1 and ê2 axes. We assume that the composites are incom-
pressible, and determine their response to a 2-D magnetomechan-
ical loading consistent with the pure shear deformation
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�F ¼ �k ê1 � ê1 þ �k�1ê2 � ê2 ð17Þ

and the mean magnetic field

�b ¼ �b ê1: ð18Þ

The loading plane, which is transverse to the long axis of the fibers,
is schematically shown in Fig. 1. Under these loading conditions, the
stress tensor �T has components along both axes. However, by elim-
inating the Lagrange multiplier associated with the incompressibil-
ity constraint, we can define the deviatoric stress component

�T ¼ �T11 � �T22: ð19Þ

This implies that only one mechanical traction component, say �t
along ê1, is needed to attain the specified deformation. Alterna-
tively, �t may represent the difference between the normal tractions
on the surfaces perpendicular to the axes. Note that these loading
conditions will result in a uniaxial motion of the specimen as in a
‘‘linear actuator.’’

In connection with Fig. 1, it is important to emphasize that the
diagram is not meant to suggest that the response of any given
specimen is independent of its overall shape. Indeed, in general,
it is not possible to generate uniform fields inside a specimen of
an arbitrary shape when it is subjected to a uniform, remotely
applied, magnetic field. This is due to the so-called demagnetizing
fields. Typically, it is necessary to either use very long, or very short
cylindrical specimens, with the fields applied along the axis of the
cylinder. In such cases, the magnetic fields generated in homoge-
neous specimens are nearly uniform, except at the corners and
the edges of the specimen where fringe fields are generated. In this
work, we are interested in describing the macroscopic (material)
response of the MAEs and for this reason we will not worry about
how such uniform fields may be generated, and assume simply
that this can be done, at least approximately. In addition, by using
the fields inside the specimen to describe the response, we also
avoid the difficulties associated with relating the remotely applied
fields to the actual fields generated inside the specimen. Clearly,
this more difficult problem can also be handled using the homog-
enized properties of the MAE in the context of a suitably defined
boundary value problem to be solved numerically, but, again, this
is beyond the scope of this work.

In view of the alignment of the loading with the orthotropic
axes of the MAE (as determined by the aligned fibers), it can be
assumed that the fibers do not rotate with respect to the magnetic
field, and the material symmetry remains unchanged under all
magneto-elastic loading conditions. This condition holds true for
periodic composites up to the onset of bifurcations, and should
remain a good assumption for MAEs with random microstructures.
These conditions imply that the composite will exhibit a linear
relationship between �b; �h and �m, since the matrix and the particle
have linear magnetization relations. Consequently, the macro-
scopic magnetic relations for the composite can be written as
Fig. 1. A sketch of the MAE sample and the magnetomechanical boundary
conditions.
�m ¼ ~vð�kÞ
�b
l0

or �h ¼ 1� ~vð�kÞ
� � �b

l0
; ð20Þ

where �m is the magnetization and ~vð�kÞ is the effective magnetic
susceptibility of the composite which is a function of the macro-
scopic stretch.

Using Eq. (8), the effective energy–density for these composites
under these loading conditions may be obtained as

~/ð�k; �bÞ ¼ ~/með�kÞ � ~vð�kÞ
�b2

2�ql0
; ð21Þ

where ~/með�kÞ is a function of the stretch only. Note that if
�b ¼ 0; ~/með�kÞ is essentially the effective mechanical energy–density
function of the composite in the absence of a magnetic field. Note
also that the expression for the aligned loadings (21) is a special
case of a more general result (see Eq. (85) in Ponte Castañeda and
Galipeau (2011)).

From Eq. (21), together with the incompressibility assumption
and Eqs. (13), (17), (18) and (19), the overall stress in the compos-
ite is given by

�T ¼ �Tmeð�kÞ þ
l0

2
�k �m2 @~v�1ð�kÞ

@�k
þ

�b2

l0
� �m�b; ð22Þ

where

�Tmeð�kÞ ¼ �q�k
@~/með�kÞ
@�k

ð23Þ

is the ‘‘mechanical’’ stress. Additionally, accounting for the bound-
ary effects of the magnetic field via Eq. (14), the associated applied
traction is

�t ¼ �Tmeð�kÞ þ l0 �m2 ~!ð�kÞ � �t �k; �b
� 	

; ð24Þ

where the magneto-elastic coupling coefficient is

~!ð�kÞ �
�k
2
@~v�1ð�kÞ
@�k

� 1
2
: ð25Þ

We note that the magneto-elastic coupling in expression (24)
is related to the derivative of the susceptibility ~v and is qua-
dratic in the magnetization (which, by (20)1 also depends on
~v). In particular, the magneto-elastic coupling coefficient can
be directly related to the actuation traction and the magneto-
striction. The actuation traction �ta is defined as the traction
when no macroscopic deformation is applied, that is the traction
developing due to the magnetic field while the material is held
in its referential configuration. Since the mechanical stress van-
ishes when �k ¼ 1, the actuation traction is purely magnetic and
is given by

�ta � �t 1; �b
� 	

¼ 1
l0

~vð1Þ½ �2 ~!ð1Þ�b2; ð26Þ

where use has been made of Eq. (20)1. Analogously, magnetostric-
tion is the stretch that develops in the material when subjected to
vanishing mechanical tractions on the boundary of the specimen.
The magnetostrictive stretch �km is thus determined by solving the
equation

��Tmeð�kmÞ ¼
1
l0

~vð�kmÞ
� �2 ~!ð�kmÞ�b2; ð27Þ

where once again we have made use of Eq. (20)1 for �m. Note that �km

is a function of the applied magnetic induction �b.
Furthermore, the magneto-elastic coupling coefficient deter-

mines how the magnetic field changes the effective stiffness.
Specifically, we define the effective tangent Young’s modulus as
the derivative of the traction with respect to the logarithmic strain
�e ¼ ln �k. That is
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~E � @�t
@�e
: ð28Þ
From Eq. (24), we find that
~E ¼ ~Emeð�kÞ þ l0 �m2�k
@ ~!ð�kÞ
@�k

þ 2l0 �m�k~!ð�kÞ @
�m
@�k

; ð29Þ
where ~Emeð�kÞ � �k @�Tmeð�kÞ
@�k

is the purely mechanical Young’s modulus,
which, as it should, reduces to the linear Young’s modulus of the
composite in the infinitesimal strain limit. We note that ~E depends
on both the mechanical and magnetic loading conditions. Here, for
convenience, we examine its dependence on the deformation when
the magnetization �m is held fixed with respect to the deformation.
(This would be the case, for example, for ferromagnetic particles at
saturation.) In this case the magnetic tangent Young’s modulus is
~Emagð�kÞ � l0 �m2�k
@ ~!ð�kÞ
@�k

¼ l0 �m2
�k
2

�k
@2 ~v�1ð�kÞ
@�k2

þ @
~v�1ð�kÞ
@�k

 !
: ð30Þ
Note that the sign of ~Emag determines whether the magnetic field
stiffens or softens the composite in the loading direction. Clearly,
since �k; �m2, and l0 can take only positive values, the sign of ~Emag

is determined by the sign of @ ~!ð�kÞ
@�k

.
Consistent with the general findings of Ponte Castañeda and

Galipeau (2011), Eqs. (24)–(30) suggest that the magneto-elastic
coupling properties of the composite depend not only on the sus-
ceptibility ~v, but more importantly also on its derivatives with
respect to the deformation. Moreover, MAEs with different
microstructures may be characterized by the same macroscopic
magnetic response, while still having significantly different mag-
netomechanical response (see also Tian et al., 2012, in the
context of dielectric composites). Interestingly, the coupled mag-
netomechanical behavior of MAEs with the same constituents
and similar volume fractions may be significantly different. More-
over, the magnetic field may either stiffen or soften the composites
depending on their microstructure. To highlight these effects, in
the following sections we compare the behaviors of MAE compos-
ites with several different microstructures.

To complete the discussion, we note that there are two compet-
ing mechanisms associated with increases in the concentration of
the stiff, magnetic inclusions in the MAE composites. On the one
hand, when the concentration is increased, the magnetic forces
developed in the composite increase; however, on the other, the
composite’s overall mechanical stiffness also increases. As a result
the magnetostriction and the sensitivity of the composite to the
magnetic field may increase or decrease depending on the relative
contributions of these two effects. The first effect is essentially cap-
tured by the magneto-elastic coupling coefficient ~!. To examine
the second effect, we recall that for composites with rigid inclu-
sions the primary parameters controlling the overall mechanical
stiffness are the elastomer matrix stiffness, which in the limit of
small strains is characterized by the shear modulus Gð1Þ0 , and the
volume fraction of the inclusions c. (Here and henceforth the
superscript ð1Þwill be used to label the matrix phase.) Accordingly,
we define the ‘‘mechanical stress concentration’’ ~N, such that
Fig. 2. A schematic representation of MAE composite with random distribution of
magnetoactive particles in a soft matrix.
�Tme ¼ T ð1Þmeð�kÞ þ ~NGð1Þ0 c lnð�kÞ; ð31Þ

where Tð1Þme ¼
@/ð1Þ

@k is the mechanical stress in the homogenous matrix
material when subjected to the deformation described in Eq. (17).
Note that ~N does not vanish at zero volume fraction, nor at zero
strain.
4. Macroscopic response of MAEs with different
microstructures

Recalling that the typical elastomer matrix phase is non-mag-
netic, we assume that its behavior can be described by a purely
mechanical neo-Hookean model. Accordingly, the matrix energy–
density function is

/ð1ÞðFÞ ¼ Gð1Þ0

2qð1Þ0

trðFTFÞ � 2
h i

: ð32Þ

The total stress tensor in the matrix phase, which is given in expres-
sion (9), includes the magnetic Maxwell stress and, consequently,
depends on the local magnetic field as well.

In accordance with the assumed linear magnetic behavior of the
fibers, their response is characterized by

/ð2ÞðF;bÞ ¼ /ð2ÞmeðFÞ �
v

2qð2Þl0
b � b; ð33Þ

where v is the magnetic susceptibility, and the superscript ð2Þ
denotes the inclusion phase. The rigidity of the particles is enforced
by assuming that /ð2ÞmeðFÞ is equal to zero, if F is a pure rotation, and
infinity otherwise.

As described previously, these two phases can be arranged in
different ways to generate composites with aligned, cylindrical
fibers of elliptical cross section exhibiting different magneto-elas-
tic properties. In this work we examine the responses of MAEs with
three different microstructures: (i) MAEs with random distribu-
tions of the aligned, elliptical, magnetoactive particles (Fig. 2);
(ii) MAEs with periodic rectangular distribution (Fig. 3(a)); (iii)
MAEs with periodic quasi-hexagonal distribution (Fig. 3(b)).

The effective energy–density function of the MAEs with the ran-
dom microstructure is characterized by the concentration c, the
aspect ratio w of the fibers cross-section, and their distribution.
The particles are assumed to be distributed randomly with ‘‘ellip-
tical’’ symmetry characterizing the average distance between the
particles in different directions (Ponte Castañeda and Willis,
1995). In this work we assume an initial elliptical distribution with
an aspect ratio identical to the fiber cross-section.

Specializing the work of Lopez-Pamies and Ponte Castañeda
(2006a) and Lopez-Pamies and Ponte Castañeda (2006b) to uniax-
ial loading along the fiber direction, the homogenized mechanical
energy is

~/ðranÞ
me ð�kÞ¼

G
2�q0
ð1�cÞ

1þ2 c�2ð Þc�k2þ�k4
� 	

wþc 1��k4
� 	

1þw2
� 	

1�cð Þ2�k2w
�2

 !
:

ð34Þ



r2 r1a2a2 r2 r1

a1 a1

Fig. 3. A schematic representation of MAE composites with (a) a rectangular and (b)
an hexagonal periodic distributions of magnetoactive particles in a soft matrix.

E. Galipeau et al. / International Journal of Solids and Structures 51 (2014) 3012–3024 3017
Similarly, specializing Galipeau and Ponte Castañeda (2013a) to
uniaxial loading along the fiber direction, we write the effective
susceptibility ~vð�kÞ for the aligned loading in the form

~vðranÞð�kÞ ¼ c
1
v�

w
wþ 1

þ c
w�k2

w�k2 þ 1


 ��1

: ð35Þ

Note that w�k2 represents the aspect ratio of the distributional ellip-
soid in the deformed configuration.

From expressions (35) and (25), the magneto-elastic coupling
coefficient can then be determined explicitly as

~!ðranÞð�kÞ ¼ w�k2

1þw�k2
� 	2 �

1
2
; ð36Þ

while the effective elastic modulus is obtained from Eq. (30) as

~Emag

l0 �m2 ¼
2w�k2 1�w�k2

� 	
1þw�k2
� 	3 : ð37Þ

To analyze the behaviors of MAEs with periodic microstruc-
tures, we use a finite element (FE) model. We examine periodic
MAEs with two unit cells, rectangular and quasi-hexagonal (see
Fig. 3). The precise details of the cells can be varied by changing
the aspect ratio of the unit cell, the aspect ratio of the inclusion,
and the inclusion concentration.

To prevent the particles from extending past the unit cell and to
maintain geometric similarity with the random microstructures,
the aspect ratio of the unit cells is identified with the aspect ratio
of the particles. Thus, for the rectangular unit cells, the ratio
between the lengths of the vertical and horizontal faces (a1 and
a2, respectively) varies with the inclusion aspect ratio such that

aðrecÞ
1 =aðrecÞ

2 ¼ w; ð38Þ

while for the hexagonal unit cell the ratio between the lengths of
vertical and horizontal sides is given by

aðhexÞ
1 =aðhexÞ

2 ¼
ffiffiffi
3
p

w: ð39Þ

For convenience, we set the origin of the coordinate system at the
center of one of the particles. Accordingly, in the reference configu-
ration X0, the domain of the unit cell is

� a1

2
6 X1 6

a1

2
; � a2

2
6 X2 6

a2

2
: ð40Þ

The radii of the inclusions are defined according to the inclusion
volume fraction and the geometry of the unit cell. Thus, for the
two distributions,

rðrecÞ
2 ¼ c

p

� �1=2
a2 and rðhexÞ

2 ¼
ffiffiffi
3
p

c
2p

 !1=2

a2 ð41Þ

and r1 ¼ wr2.
The magnetomechanical loading is implemented by applying

periodic boundary conditions for both the displacement and the
magnetic field (see Michel et al., 2010, 2012, in the mechanical
context). This is accomplished by specifying the stretch �k and the
magnetostatic potential u on the boundary of the composite.
(Since Curl H ¼ 0, there exists a scalar field, the magnetostatic
potential u, such that H ¼ �Grad u.) At the top X2 ¼ a2

2

� 	
and the

bottom X2 ¼ � a2
2

� 	
faces of the unit cell the deformation and the

magnetostatic potential are

xðTÞ1 ¼ xðBÞ1

xðTÞ2 ¼ xðBÞ2 þ 1
�k

a

uðTÞ ¼ uðBÞ

8><
>: : ð42Þ

At the right X1 ¼ a1
2

� 	
and the left X1 ¼ � a1

2

� 	
faces the deformation

and the magnetostatic potential are

xðLÞ1 ¼ xðRÞ1 þ �kb

xðLÞ2 ¼ xðRÞ2

uðLÞ ¼ uðRÞ þ �Hb

8><
>: : ð43Þ

Note that for the FE solution we use the magnetic intensity H as the
independent variable. The boundary value problems are solved with
the commercial FE code COMSOL Multiphysics. Once the local fields
are determined, the effective response is calculated by suitably
averaging the local fields over the relevant domain.

For the purposes of the FE simulations, the shear modulus of the
matrix is set to Gð1Þ0 ¼ 1 MPa. Since the fibers must be ‘‘deformable’’
for the FE simulations, their mechanical behavior is taken to be
identical to that of the matrix, but with an initial shear modulus
Gð2Þ0 ¼ 1 GPa. This is consistent with the fact that the inclusions
are stiff and the matrix accommodates the deformation. In general,
the FE simulation would need to be performed for each combina-
tion of �k and �H. However, for each value of �k, we can perform the
FE simulations at �H ¼ 0 and a non-zero �H, and extrapolate to
all other values of the magnetic field based on the analysis in
Section 3. Here we take the nonzero value of

�H ¼

ffiffiffiffiffiffiffiffi
Gð1Þ0

l0

s
; ð44Þ

so that the magnitude of the magneto-elastic stresses is comparable
with that of the purely mechanical stresses.

From the data obtained for �B; �H; �F; �T and �Tme as functions of �k,
the corresponding scalars �b; �h; �m; �T; �Tme and the magneto-elastic
coupling coefficient ~! are computed. In this regard, we note that
there are two ways to determine ~! from the quantities extracted
from the FE simulation. The first is from Eq. (22) for the total stress
�T in terms of �b; �h; �m; �k, and �Tme, leading to

~!ðTÞð�kÞ ¼
�T � �Tme þ �b2=l0 � �m�b

� 	
l0 �m2 � 1

2
: ð45Þ

The second is to determine the susceptibility ~v from Eq. (20) in
terms of �b and �m, and to compute incremental changes in this quan-
tity as a function of �k. According to this procedure, we have that

~!ðvÞð�kÞ ¼ 1
l0

@ �b= �m
� 	
@�k

�k
2
� 1

2
: ð46Þ

Assuming that the FE simulations are sufficiently accurate, these
two procedures should lead to identical results (i.e., ~!ðTÞ ¼ ~!ðvÞ).
Indeed, this was the case for the results shown in the next section,
thus providing a valuable internal check on the accuracy of the
numerical simulations, as well as on the validity of formula (25)
for the magneto-elastic coupling coefficient ~!.

5. Results and discussion

To highlight and compare the coupled magneto-elastic behav-
iors of the different microstructures, we systematically analyze
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the variations of the following four parameters as functions of the
deformation:

(a) The effective susceptibility normalized by the fiber concen-
tration ~v=c, a quantity describing the magnetization of the
composite.

(b) The mechanical stress concentration ~N due to the presence
of the fibers. This is a measure of the purely mechanical rein-
forcement of the composite relative to the elastomer matrix.

(c) The magneto-elastic coupling coefficient ~! providing infor-
mation about the magnetic contribution to the stresses in
the composite.

(d) The normalized magnetic tangent Young’s modulus
~Emagð�kÞ=ðl0 �m2Þ. This quantity captures the contribution of
the magnetic field to the overall stiffness of the composite.

For conciseness, in the following we refer to a composite with a
random distribution of the fibers as a ‘‘random composite’’. Simi-
larly, we denote ‘‘hexagonal composite’’ and ‘‘rectangular compos-
ite’’ periodic composites with hexagonal and rectangular
distributions of the fibers, respectively.

We begin by examining the variations of the four, above-
described parameters as functions of the stretch �k. Fig. 4 displays
their variations for composites with aspect ratio w ¼ 1 and volume
fraction c ¼ 0:1, as functions of the logarithmic strain �e ¼ ln �k. As
the composite is compressed (�k < 1; see Fig. 4(a)), the particles
get closer in the direction of the magnetic field and the susceptibil-
ity increases as shown in Fig. 4(a). This is consistent with the antic-
ipated enhancement of the magnetic interactions between the
particles. The mechanical reinforcement in these three composites
is quite similar in the reference configuration but varies rather dif-
ferently at large stretch ratios as shown in Fig. 4(b). The fact that ~N
changes with the deformation demonstrates the nonlinearity of the
mechanical reinforcement as a function of the strain. Obviously,
this nonlinearity must be accounted for when considering large
magnetostriction.

Remarkably, as shown in Fig. 4c, these materials exhibit very
different magneto-elastic coupling. The magneto-elastic coupling
coefficient ~! can be either positive or negative. Accordingly, the
magnetostriction may lead to extension or compression in the
direction of the applied field. For the random composite, this coef-
ficient is fairly independent of the stretch, while for the periodic
microstructures it changes significantly. Moreover, for the hexago-
nal composite ~! may change its sign depending on the stretch.

Fig. 4(d), depicting the variations in the magnetic tangent
Young’s modulus, reinforces these observations. Thus, for random
composites the dependence of ~Emag on the deformation is weak.
For the rectangular composites, this modulus is close to zero in
the undeformed state (�e ¼ 0), but becomes negative or positive
depending on whether the composite is subjected to compression
or tension, respectively. The picture is more complicated with
regard to the hexagonal composite where the magnetic field soft-
ens the composites even at the undeformed configuration. This
effect is preserved under compressive loads. However, when the
material is subjected to tension, there is an increase in ~Emag up to
a certain level of the stretch at which the modulus becomes posi-
tive. This implies that from this point on the magnetic field stiffens
the composite. The variabilities in these effects with respect to the
deformation demonstrate the sensitivity of magneto-elastic cou-
pling to the microstructure. At the end of this section, we qualita-
tively analyze these phenomena and provide further insight into
the mechanisms responsible for these differences.

Fig. 5 shows the variations of the four parameters as functions
of the stretch for composites with particle aspect ratios w ¼ 1=4
and w ¼ 4. Note that some of the curves were terminated when
the FE model failed to converge. The effective susceptibilities of
the composites are strongly dependent on the particle shape. In
particular, as shown in Fig. 5(a), the susceptibility of the compos-
ites with particles elongated in the direction of the magnetic field
(w ¼ 4) is larger than that of the composites with w ¼ 1=4. The dif-
ference is due to the fact that the particles are more strongly mag-
netized when their long axis is aligned with the applied field.
Additionally, the susceptibilities of composites with w ¼ 4 depend
on the deformation more strongly than for composites with
w ¼ 1=4.

The aspect ratio clearly also affects the mechanical response of
the composite as can be deduced from Fig. 5(b). However, this
effect is rather different in MAEs with random and periodic distri-
butions of the particles. Whereas the mechanical reinforcement is
the same for both aspect ratios for random composites, the peri-
odic composites with w ¼ 4 and w ¼ 1=4 exhibit rather different
mechanical responses. These effects are important because while
some microstructures result in stronger magnetic effects, the
mechanical interactions between the inclusions in these materials
may be stronger too, thus leading to a stiffer mechanical response
and diminishing the overall magnetomechanical coupling.

Fig. 5(c) shows the corresponding dependence of the magneto-
elastic coupling coefficient. Once again, for the random composites,
the effect of the deformation is small and almost independent of
the deformation. For the periodic composites, on the other hand,
the change is more pronounced in terms of both the magnitude
and the slope. For w ¼ 4 the positive slopes indicate that the level
of the magnetically induced stresses in the periodic composites
increase with �k, while the negative slopes for w ¼ 1=4 indicate
the opposite trend. These observations are in agreement with the
curves shown in Fig. 5(d). There are negligible variations in the
magnetic part of the stiffness for the random composites, positive
contribution to the stiffness of the periodic composites with w ¼ 4,
and negative for the oblate periodic composites.

Next, we consider the influence of the inclusions volume frac-
tion. Thus, Fig. 6 shows the variations of the four parameters as
functions of c. We note that in the small concentration limit
(c� 1) the mechanical stress concentration and magnetic suscep-
tibility exhibit similar trends for composites with similar aspect
ratios. This observation is consistent with the result of Eshelby
(1957) for composites with dilute inclusion concentration. Indeed,
the results of Ponte Castañeda and Willis (1995) show that in the
dilute limit the macroscopic response of the composite depends
only on the particle shape and not on the distribution shape. How-
ever, the coupled magneto-elastic properties of these composites
behave differently in this limit. To highlight the physics responsi-
ble for this effect, consider the expansion of the susceptibility for
small concentrations

~v ¼ ~v0c þ ~v1c2 þ oðc3Þ: ð47Þ

The dilute result for particulate composites guarantees that ~v0 only
depends on the shape of the particle so that this term is the same
for each microstructure if w is the same; specifically,

~v0 ¼
vðwþ 1Þ

1þwð1� vÞ : ð48Þ

Therefore, for the composites considered in this work, ~v0 is inde-
pendent of deformation because the rigid fibers do not change their
shape, and their volume fractions does not change due to incom-
pressibility. Thus, the magnetomechanical coupling parameter and
magneto-elastic modulus are determined to leading order by ~v1.
This is consistent with the fact that ~v1 depends on the interactions
between the particles and hence on their relative positions, as spec-
ified by the particle distribution, and is therefore different for differ-
ent microstructures.
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To highlight the influence of the particle shape on the magneto-
mechanical coupling, in Fig. 7 we examine the variations of the
four parameters with the particle aspect ratio. Although the results
are presented for composites with volume fraction c ¼ 0:1, we
emphasize that the trends are similar for other volume fractions.
More specifically, we studied the dependence of the parameters
on the aspect ratio in the range 0:01 6 c 	 0:2 and observed only
a small effect of the volume fraction in the curves shown in Fig. 7.

It is worth noting that there are qualitative similarities between
the variations shown in Fig. 7 for the four parameters as functions
of the aspect ratio, and the corresponding variations shown in
Fig. 4 as functions of the stretch. This can be explained by observ-
ing that the relative positions of the particles are similar at differ-
ent combinations of the stretch and aspect ratios. For example, the
case w ¼ 1 at �k ¼ 1:2 and the case w ¼ 1:44 at �k ¼ 1. For random
microstructures, this is explicit since ~! depends only on the quan-
tity w�k2. For the periodic composites, the aspect ratio of the unit
cell in the deformed configuration is w�k2, and we conjecture that
this is the reason for the similarities in the trends of the four
parameters. The fact that this similarity is observed for different
shapes of the cross-sections, reinforce the observation that the
magneto-elastic effects are primarily controlled by the distribution
of the particles and, to a lesser extent, by the precise shape of the
inclusions. This is unlike the mechanical reinforcement, which
strongly depends on the particle shape.

To gain a broader view of the influence of the microstructural
parameters on the macroscopic coupled response, we examine
next the variations of the tractions and the deformations induced
by the magnetic field. In Fig. 8(a) and (b) the variations of the actu-
ation traction, normalized by the shear modulus of the matrix
phase, are shown as functions of the fibers concentration and the
aspect ratio, respectively. The precise numerical values used to
determine these plots are listed in the figures. Not surprisingly,
the magnitudes of the traction in the direction of the applied mag-
netic field increase monotonically with the volume fraction of the
magnetic inclusions. However, the specific trends are dictated by
the microstructure. The random composites develop compressive
forces whereas the rectangular composites develop tensile forces
thanks to the strong interactions between the inclusions. Depend-
ing on their distribution, the hexagonal composites may generate
tensile or compressive tractions with w ¼ 4 or w ¼ 1=4, respec-
tively. Interestingly, for volume fractions smaller than 0.1, the
compressive tractions that develop in the random composites with
w ¼ 4 are larger than those that develop in the hexagonal compos-
ites with similar aspect ratio. However, the effects decay to zero in
the dilute limit, in agreement with earlier comments.

As can be seen in Fig. 8(b), the dependence of the traction on w
is non-monotonic, contrary to the monotonic dependence on the
concentration. Here too, the tractions in the random and the rect-
angular composites are, respectively, compressive and tensile
throughout the entire range of w. For the rectangular composites,
the smallest forces are attained with a circular distribution
(w ¼ 1) and increase as w is varied toward higher or lower values.
The compressive tractions in the random composites monotoni-
cally increase with w. The variations of the magnetically induced
traction in the hexagonal composites are more complicated, from
tensile to compressive as ln w changes from negative to positive
values. Moreover, the compressive tractions attain a maximum at
w 
 2:5 and decrease beyond that point.

Next, Fig. 9 shows plots of the magnetostriction as functions of
the concentration and aspect ratio for the three different distribu-
tions, respectively. In agreement with our expectations, a compar-
ison of Fig. 9(a) with Fig. 8(a) reveals that in those composites with
tensile actuation traction the magnetostriction is compressive and
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vice versa. The magnetostriction is quadratic to leading order with
respect to the concentration; however, as the concentration
becomes large enough it is expected that the composites mechan-
ically stiffen. This effect can be readily observed in connection with
the rectangular composites with w ¼ 4. For these composites, the
maximal strain is attained at c 
 0:12, and beyond this value the
magnetostrictive strains decrease. This is in spite of the fact that
the actuation traction is larger in composites with larger volume
fraction of the fibers. The reason is the competition between the
mechanical stiffness and the magnetic forces. Another aspect
related to this competition between the two mechanisms can be
traced, for example, through a comparison between the curves
for the random and the hexagonal composites with w ¼ 4. The
curves for the actuation tractions in Fig. 8(a) suggest that the inten-
sity of the compressive tractions in these two composites are quite
similar. However, the corresponding curves in Fig. 9(a) reveal that
the magnetostriction in the random composite is almost three
times the one exhibited by the hexagonal composite.

Correspondingly, Fig. 9(b) shows plots of the magnetostrictive
strains as functions of the aspect ratio w for three different volume
fractions of the inclusion c ¼ 0:05;0:10, and 0.15. For all micro-
structures, almost throughout the entire range of w, larger volume
fractions of the fibers lead to larger magnetostriction. Moreover,
within this range of w, the strains of the rectangular and random
composites monotonically increase for w > 1. We expect that
eventually the composites will become mechanically rigid as w
becomes large and the mechanical interactions will limit the mag-
netostrictive deformation. For the rectangular composite with
c ¼ 0:15, already at w ¼ 4 a flattening of the curve can be identi-
fied. The curves for the hexagonal composites are more compli-
cated, where the strains switch sign as the shape and the
distribution of the fibers switches from oblate to prolate. We also
note that, in agreement with the curves depicted in Fig. 8(b), the
strains diminish with a decrease in the axial magnetic tractions.

Finally, to further highlight the role of the microstructure and to
provide additional insights into the above-discussed findings, we
provide a qualitative discussion of the results for the magnetome-
chanical coupling in terms of the interactions and the forces that
develop between the magnetic inclusions. We begin by recalling
that the interactions between pairs of magnetized particles depend
on their orientation relative to the applied magnetic field (Borcea
and Bruno, 2001). For simplicity, let us treat the magnetization of
each particle as a dipole aligned along the ê1 axis due to the
applied magnetic field along this direction. In particular, consider
the mutual forces between pairs of magnetic spheres separated
by a distance, as shown in Fig. 10. These attractive or repulsive
forces among the particle pairs generate stresses in the matrix sur-
rounding the particles that eventually lead to the macroscopic
magneto-elastic effects.

The complicated nature of the inter-particle forces gives rise to
the different types of coupling observed in the rectangular, hexag-
onal and random composites. When the particles interact along the
magnetization direction as shown in Fig. 10 pair ‘‘1’’, they attract
each other along the applied field direction. When the particles
interact transverse to the applied magnetic field as in pair ‘‘5’’, a
repulsive force is generated. At other angles, as illustrated for pairs
‘‘2’’, ‘‘3’’ and ‘‘4’’, the directions of the forces are different and
depend on the angle with the direction of the applied field. In some
configurations the particles may repel each other in the applied
field direction and attract each other in the transverse direction,
thus exhibiting a response opposite to the one exhibited by pairs
‘‘1’’ and ‘‘5’’.
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These interactions can shed light on the coupling observed
for the three types of microstructures considered in this work.
For the rectangular composites, the nearest neighbors, and
therefore the dominant interactions, are of the aligned and
transverse types (pairs ‘‘1’’ and ‘‘5’’). Since the overall composite
is incompressible, both types of interactions cause the compos-
ite to contract in the direction of the magnetic field. This leads
to a positive magneto-elastic coupling coefficient ~! and magne-
tostriction effects that tend to shorten the specimen in the field
direction. The interactions of pairs ‘‘1’’ and ‘‘5’’ are the domi-
nant ones for this microstructure regardless of the initial aspect
ratio and the stretch. This implies that the magnetic field
always contracts these composites, resulting in a compressive
tractions.

For the hexagonal composites, the dominant interactions
depend on the initial aspect ratio and the deformation. At moder-
ate values of w, where interactions of types ‘‘2’’, ‘‘3’’ and ‘‘4’’ dom-
inate, the magnetic forces result in a negative magneto-elastic
coupling coefficient. However, at small and large w interactions
of type ‘‘1’’ and ‘‘5’’ dominate, ~! is positive, and the magnetic field
causes the composite to contract. To complete the picture we recall
that large deformations change the aspect ratio of the unit cell in
the deformed configuration. Therefore, the nearest neighbors and
the dominant inter-particle interactions may change. In turn, this
may alter both the sign and the magnitude of the magneto-elastic
coupling coefficient as the composite deforms. This can be tracked
in Figs. 4(c) and 5(c) that show the variations of ~! for hexagonal
composites with w ¼ 1 and 4. Moreover, while in the case of circu-
lar fibers ~! becomes negative in passing from compressive to ten-
sile deformations, the magneto-elastic coupling coefficient of the
composite with w ¼ 4 exhibits the opposite trend.
In the random composites, the particles interactions are in all
possible directions, and the effective properties are determined
by the average of all these interactions. Owing to this complicated
interaction pattern, the magneto-elastic coupling coefficient is rel-
atively small for this type of composites.
6. Concluding Remarks

In this work we examined the effective behavior of magnetoac-
tive elastomers with random and periodic distributions of mag-
netic particles, subjected to combined magnetic and mechanical
loadings that are aligned with the anisotropy axes of the MAEs
(if anisotropic). To study the behavior of MAEs with periodic
microstructures, we constructed finite element models and deter-
mined the effective properties of the periodic MAEs with rectangu-
lar and quasi-hexagonal microstructures. To characterize the
behavior of MAEs with random microstructures we employed a
recently developed theoretical homogenization framework for
MAEs (Ponte Castañeda and Galipeau, 2011), and specified the
results for the considered magnetomechanical loading. Thus,
closed-form expressions for the MAEs response were obtained. In
both analyses the effects of the magnetic Maxwell stress both
inside and outside the material were accounted for.

Motivated by the potential application of these materials as
‘‘linear actuators,’’ we specifically examined the case of uniaxial
loading in the presence of a magnetic field. We introduce specific
parameters that characterize the magnetomechanical performance
of the MAEs. These parameters, including the magneto-elastic cou-
pling coefficient, are used in the analysis of the magnetoactive
composites. The effective parameters for three representative
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types of composites, one with random microstructure, one with
rectangular and one with quasi-hexagonal, were determined. The
roles of the deformation, the concentration, and the distribution
and the shape of the particles on these parameters were deter-
mined, compared and analyzed.

At the macroscopic level, we distinguish between the total
forces or tractions that the MAE composites generate in response
to an applied magnetic field, and the total deformation or magne-
tostriction they undergo. The latter is essentially the result of two
competing mechanisms. On the one hand, an increase in the vol-
ume fraction of the inclusions leads to an increase in the magnetic
forces between them. On the other hand, an increase in the volume
fraction of the inclusions also contributes to the stiffening of the
composite, and hence to the reduction of the magnetically induced
strains. This microstructure-induced interplay between the two
competing mechanisms was previously noted by Galipeau and
Ponte Castañeda (2012), as well as by Tian et al. (2012) in the con-
text of electromechanical composites. Here, we have shown that, in
some cases, composites with lower magnetically induced stresses
may undergo larger magnetostriction.

We emphasize, however, that the essential variable is the mag-
netically induced stress which is controlled by the magneto-elastic
coupling coefficient. This variable is determined not only by the
magnetic susceptibility, but also, crucially, by its derivative with
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respect to the deformation. By evaluating the magnetostriction and
the magneto-elastic modulus for composites with random, quasi-
hexagonal, and rectangular distributions, we demonstrated that
the magneto-elastic effects are of second order in the concentra-
tion. This is consistent with the fact that the coupled magnetic
stresses are due to the interactions between the inclusions. In turn,
we conclude that the microstructure provides the key for optimiz-
ing the magneto-elastic performance of MAEs.
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