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Shear Wave Propagation
and Band Gaps in Finitely
Deformed Dielectric Elastomer
Laminates: Long Wave
Estimates and Exact Solution
We analyze small amplitude shear waves (SWs) propagating in dielectric elastomer (DE)
laminates subjected to finite deformations and electrostatic excitations. First, we derive
long wave estimates for phase and group velocities of the shear waves propagating in
any direction in DE laminates subjected to any homogenous deformation in the presence
of an electric filed. To this end, we utilize a micromechanics-based energy potential for
layered media with incompressible phases described by neo-Hookean ideal DE model.
The long wave estimates reveal the significant influence of electric field on the shear
wave propagation. However, there exists a configuration, for which electric field does not
influence shear waves directly, and can only alter the shear waves through deformation.
We study this specific configuration in detail, and derive an exact solution for the steady-
state small amplitude waves propagating in the direction perpendicular to the finitely
deformed DE layers subjected to electrostatic excitation. In agreement with the long
wave estimate, the exact dispersion relation and the corresponding shear wave band
gaps (SBGs)—forbidden frequency regions—are not influenced by electric field. How-
ever, SBGs in DE laminates with highly nonlinear electroelastic phases still can be
manipulated by electric field through electrostatically induced deformation. In particular,
SBGs in DE laminates with electroelastic Gent phases widen and shift toward higher fre-
quencies under application of an electric field perpendicular to the layers. However, in
laminates with neo-Hookean ideal DE phases, SBGs are not influenced either by electric
field or by deformation. This is due to the competing mechanisms of two governing
factors: changes in geometry and material properties induced by deformation. In this
particular case, these two competing factors entirely cancel each other.
[DOI: 10.1115/1.4037159]
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1 Introduction

Dielectric elastomers (DEs) can develop large deformations
when excited by an external electric field [1]. Therefore, these
artificial muscles are of great interest for various applications,
such as soft robotics [2], various actuators [3,4], energy generators
[5,6], to name a few. It has been recently shown that large defor-
mations can significantly influence wave propagation even in rela-
tively simple deformable materials without electromechanical
coupling [7–10]. In turn, DEs offer a way to manipulate elastic
waves via application of an external electric field. Thus, for exam-
ple, the effect has been used to control wave propagation in
homogenous DEs [11–13]. Moreover, microstructured DEs hold
even greater potential for active control of elastic waves by an
electric field [14,15]. Hence, investigation of wave propagation in
composite DEs opens new possibilities in improving of small
length-scale devices, for example, micro-electromechanical sys-
tems, where an electric field is the preferred operated variable.

Following the work of Toupin [16], the theory of nonlinear
electroelasticity for homogeneous isotropic hyperelastic media

has been revised recently by Dorfmann and Ogden [17], McMeek-
ing and Landis [18], and Suo et al. [19]. More recently, Cohen
et al. [20] proposed a model based on considerations of polymer
networks under electromechanical loadings. Motivated by poten-
tial enhancement of electromechanical coupling, which is typi-
cally rather weak in DEs, microstructured DEs have been
explored [21–23] showing significant potential of this approach.
We note that microstructured DEs may develop instabilities at
different length scales [24–28].

The analysis of small amplitude wave propagation in finitely
deformed nonlinear electroelastic materials in the presence of an
electric field in the frame of the quasi-electrostatic approximation
was presented by Dorfmann and Ogden [29]. This paper has been
followed by a number of works on elastic wave propagation in
finitely deformed homogenous and composite DEs [11–13,30].
Note that layered DEs are of specific importance since they may
be realized through various layer-by-layer material fabrication
techniques, which already allow manufacturing of deformable lay-
ered materials across length scales [31–33]. However, the existing
literature on elastic wave propagation in finitely deformed DE
laminates in the presence of an electric field reports some contra-
dictory results. In particular, Shmuel and deBotton [30] consid-
ered shear wave band gap (SBGs) structures in DE laminates with
ideal dielectric neo-Hookean incompressible phases, and they
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reported that these SBGs alter under application of an external
electric field. However, our results clearly show that the SBGs in
the neo-Hookean DE laminates are not influenced either by elec-
tric field or by induced deformation. We note that our results
agree with the exact solution for the long waves in DE laminates.
Moreover, the derived dispersion relation reduces to the classical
result for linear elastic layered media [34] in the absence of an
electric field and deformation. We should note that Shmuel and
deBotton [35] have just published the corrigendum reporting that
the SBGs in the neo-Hookean DEs are shifted by electric field
toward higher frequencies. However, these new results by Shmuel
and deBotton [35] do not agree with the exact solution for long
waves and with the exact solution for any wavelengths as detailed
in the Appendix.

To shed light on the influence of electric field on shear waves in
DE laminates, we analyze small amplitude shear wave propagat-
ing in DE layered media comprised of two alternating isotropic
incompressible electroelastic phases. First, we derive the long
wave estimates for phase and group velocities of shear waves
propagating in any direction in DE laminates undergoing any
homogenous deformation in the presence of an electric field. To
this end, we make use of an exact solution for finitely deformed
DE laminates allowing us to express an effective energy potential
in terms of microstructure parameters and physical properties
of the constituents. These estimates reveal the significant
dependence of the shear wave characteristics on electric field
and deformation. However, we found that there is a unique
configuration—when elastic waves propagate perpendicular to the
layers—for which phase and group velocities are independent of
electric field, and these acoustic characteristics can be influenced
only through electrostatically induced deformations. This holds
true for any direction of an applied electric field. Again, for any
other direction of propagation, the phase and group velocities
explicitly depend on electric field. We further analyze this specific
configuration and derive the dispersion relation for the small
amplitude shear waves propagating perpendicular to finitely
deformed layers with electric field applied perpendicular to the
layers. The derived dispersion relation is shown to be of the same
form as the relation for hyperelastic laminates [36] undergoing
finite deformations in the absence of an electric field. Thus, shear
waves propagating perpendicular to the layers in DE laminates are
not affected by electric field directly, and they can be influenced
by electric field only through induced deformations. Note that this
result is in full agreement with the exact solution for long waves.
Finally, we analyze SBGs in DE laminates by making use of the
derived dispersion relation. In particular, we show that SBGs
widen and shift up toward higher frequencies in DE laminates
with ideal dielectric Gent phases subjected to an electric field
through the thickness of the layers. Once again, SBGs in the DE
laminates with neo-Hookean ideal dielectric phases do not depend
on electric field.

2 Theoretical Background

To describe finite deformations of a continuous electroelastic
body occupying X0 and Xt domains in the reference and current
configurations, respectively, we introduce the deformation gradi-
ent FðX; tÞ ¼ @xðX; tÞ=@X, where X and x are position vectors in
the reference and current configurations, respectively. Then, the
Jacobian J � detF > 0 defines the volume change of the body
with respect to the reference state.

2.1 Electrostatics. In this work, we adopt the so-called quasi-
electrostatic approximation assuming the absence of magnetic
fields and neglecting electromagnetic interactions. Thus, in the
absence of free body charges and currents, the equations of elec-
trostatics in the current configuration read as

divD ¼ 0 and curlE ¼ 0 (1)

where D and E denote electric displacement and electric field
applied in the current configuration, respectively. Here and there-
after, the differential operators with the first low-case letter refer
to the current configuration, while the differential operators with
the first upper-case letter refer to the reference configuration.

In the reference configuration, the equations of electrostatics
read as

DivDL ¼ 0 and CurlEL ¼ 0 (2)

where

DL ¼ JF�1 � D and EL ¼ FT � E (3)

are the Lagrangian counterparts of D and E, respectively.

2.2 Mechanical Balance Laws. In the absence of body
forces, the linear and angular momentum balance for an electroe-
lastic material are

divs ¼ qx;tt and s ¼ sT (4)

where s represents the total Cauchy stress tensor and q is the mass
density of the material in the current configuration.

In Lagrangian description, the balance equations (4) read as

DivP ¼ q0x;tt and P � FT ¼ F � PT (5)

where

P ¼ Js � F�T and q0 ¼ Jq (6)

are the first Piola–Kirchhoff total stress tensor and the mass den-
sity of the material in the reference configuration, respectively.

2.3 Constitutive Equations. To model nonlinear behavior of
DEs, we consider an energy potential wðF;DLÞ, as introduced in
Dorfmann and Ogden [17]. The strain energy-density potential is
a function of deformation gradient F and Lagrangian counterpart
of electric displacement DL. Then, for an electroelastic material,
the first Piola–Kirchhoff total stress tensor and Lagrangian
counterpart of electric field are given by

P ¼ @w
@F

and EL ¼
@w
@DL

(7)

For an incompressible material, J¼ 1, and the constitutive equa-
tions (7) modify as

P ¼ @w
@F
� pF�T and EL ¼

@w
@DL

(8)

where p denotes an unknown Lagrange multiplier.

2.4 Incremental Equations. For an electroelastic material,
the incremental constitutive equations for the first Piola–Kirchhoff
stress and Lagrangian electric field read as

_P ¼ C0 : _F þM0 � _DL and _EL ¼ _F :M0 þK0 � _DL (9)

respectively. Here, the superposed dot represent incremental
changes in the corresponding variables; C0;M0, and K0 are the
tensors of electroelastic moduli defined as

C0 ¼
@2w
@F@F

; M0 ¼
@2w
@F@DL

and K0 ¼
@2w

@DL@DL
(10)

For an incompressible material, the incremental equations (9) read
as
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_P ¼ C0 : _F þ pF�T � _F
T � F�T � _pF�T þM0 � _DL and

_EL ¼ _F :M0 þK0 � _DL

(11)

2.5 Incremental Motions Superimposed on Finite
Deformation in the Presence of an Electric Field. In the frame
of the updated Lagrangian formulation, the incremental forms of
the governing Eqs. (2) and (5)1, describing small motions super-
imposed on finite deformation, transform to

div _DL? ¼ 0; curl _EL? ¼ 0; and div _P? ¼ q _x;tt (12)

where

_DL? ¼ J�1F � _DL; _EL? ¼ F�T � _EL; and _P? ¼ J�1 _P � FT (13)

are the so-called push-forward versions of _DL, _EL, and _P, respec-
tively. Identifying the field of incremental displacements as u ¼ _x
and then displacement gradient as H ¼ gradu ¼ _F � F�1, we
obtain the following updated incremental relations (9):

_P? ¼ C : HþM � _DL? and _EL? ¼ H :MþK � _DL? (14)

where

Cirks ¼ J�1C0ijklFrjFsl; Mirk ¼M0ijmFrjF
�1
mk and

K ¼ JF�T �K0 � F�1
(15)

are the updated tensors of electroelastic moduli, possessing the
following symmetries:

Cirks ¼ Cksir; Mirk ¼Mrik; and K ¼ KT (16)

For an incompressible material, the incremental equations (14)
read as

_P? ¼ C : Hþ pHT � _pIþM � _DL? and

_EL? ¼ H :MþK � _DL?

(17)

moreover, the incompressibility assumption implies

trH � div u ¼ 0 (18)

2.6 Plane Waves in Incompressible DEs Subjected to
Electromechanical Loading. We seek for solution of Eq. (12) in
the form of plane waves with constant polarizations [29]

u ¼ gf ðn � x� ctÞ; _DL? ¼ dgðn � x� ctÞ; and

_p ¼ Pðn � x� ctÞ
(19)

where f, g, and P are arbitrary twice continuously differentiable,
continuously differentiable, and continuous functions, respec-
tively; the unit vectors g and d represent polarization vectors of
mechanical and electrical displacements, respectively; the unit
vector n denotes the direction of wave propagation; and c is the
phase velocity of the wave.

Substitution of Eqs. (17) and (19) into Eqs. (12) and (18) yields

Â � g ¼ qc2g and g � n ¼ 0 (20)

where Â is the so-called generalized acoustic tensor defining the
condition of propagation of plane elastic waves in an incompressi-
ble electroelastic solid. The generalized acoustic tensor for an
electroelastic material with an arbitrary energy potential wðF;DLÞ
can be calculated as follows [37]:

Â ¼ Q̂ � 2

trK̂ð Þ2 � trK̂
2

R̂ � trK̂ð ÞÎ � K̂ð Þ � R̂T
(21)

where

Î ¼ I� n� n (22)

is the projection on the plane normal to n; K̂ ¼ Î �K � Î;
Q̂ ¼ Î �Q � Î and R̂ ¼ Î � R � Î, where

Qik ¼ Cijklnjnl and R ¼ n �M (23)

Note that the generalized acoustic tensor Â is symmetric. Recall
that an incompressible electroelastic material is strongly elliptic

(stable), if its generalized acoustic tensor Â is positively defined,

i.e., g � Â � g > 0 for any unit vectors n and g satisfying the
incompressibility constraint (J¼ 1) n � g ¼ 0 along an electrome-
chanical loading path defined through a combination of DL and F.

3 Analysis and Results

Consider periodic laminates made out of two isotropic incom-

pressible alternating ideal DE phases with volume fractions vðaÞ

and vðbÞ ¼ 1� vðaÞ. Here and thereafter, the fields and parameters

of the phases are denoted by superscripts ð•ÞðaÞ and ð•ÞðbÞ, respec-
tively. Geometrically, the layers are characterized by their thick-

nesses HðaÞ ¼ vðaÞH and HðbÞ ¼ vðbÞH, where H is the period of
the undeformed laminate (see Fig. 1(a)). In the deformed lami-
nates (see Fig. 1(b)), the layer thicknesses change as follows:

hðaÞ ¼ kðaÞ2 HðaÞ; hðbÞ ¼ kðbÞ2 HðbÞ; and h ¼ �k2H (24)

where �k2 ¼ vðaÞkðaÞ2 þ vðbÞkðbÞ2 and kða;bÞ2 are the stretch ratios in the
direction e2 for phases a and b, respectively.

Fig. 1 Schematic representation of the undeformed (a) and
subjected to the electromechanical load (b) periodic layered
material with alternating phases a and b. A unit cell (c);
(e1; e2; e3) is the orthonormal basis.
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The macroscopically applied electromechanical loads are

expressed in terms of the average deformation gradient �F and

Lagrangian electric displacement �DL, namely

�F ¼ vðaÞFðaÞ þ vðbÞFðbÞ and �DL ¼ vðaÞD
ðaÞ
L þ vðbÞD

ðbÞ
L (25)

The continuity of the displacements along the interface between
the layers yields condition for the deformation gradients FðaÞ and
FðbÞ

ðFðaÞ � FðbÞÞ � q ¼ 0 (26)

and the continuity of the tractions across the interface between the
layers yields

ðPðaÞ � PðbÞÞ �m ¼ 0 (27)

where unit vector m denotes the initial lamination direction (see
Fig. 1(a)), and q is an arbitrary unit vector perpendicular to m. In
the absence of free charges at the interfaces, the jump conditions
for Lagrangian electric displacement and electric field are

ðDðaÞL � D
ðbÞ
L Þ �m ¼ 0 and ðEðaÞL � E

ðbÞ
L Þ �m ¼ 0 (28)

In the current configuration, the interface jump conditions (27)
and (28) read as

ðsðaÞ � sðbÞÞ �m ¼ 0; ðDðaÞ � DðbÞÞ �m ¼ 0 and

ðEðaÞ � EðbÞÞ �m ¼ 0
(29)

3.1 Long Wave Estimates for DE Laminates Under
Electromechanical Loads. Let us consider DE laminates with
isotropic incompressible dielectric phases described by the neo-
Hookean ideal dielectric model, namely

w nð Þ ¼ l nð Þ

2
F nð Þ : F nð Þ � 3ð Þ þ 1

2e nð Þ D
nð Þ

L � C nð Þ � D nð Þ
L (30)

where lðnÞ and eðnÞ are the shear modulus and the electric permit-

tivity in the undeformed state, respectively; C ¼ FT � F is the right
Cauchy–Green tensor. Under the incompressibility assumption, a
closed-form exact solution for finitely deformed periodic layered
electroactive materials with neo-Hookean ideal dielectric phases
can be derived [21,24–26]. By utilizing the exact analytical solu-
tion, an effective free energy function can be constructed [37]

w �F; �DL

� �
¼ �l

2
�F : �F � 3ð Þ � �l � l^

2
m � �C �m� 1

m � �C
�1 �m

� �

þ 1

2�e
�DL � �C � �DL þ

1

2

1

e
^
� 1

�e

� � �DL �mð Þ2

m � �C
�1 �m

(31)

where �C ¼ �F
T � �F is the average right Cauchy–Green tensor, and

�l ¼ v að Þl að Þ þ v bð Þl bð Þ and l^ ¼ v að Þ

l að Þ þ
v bð Þ

l bð Þ

 !�1

(32)

�e ¼ v að Þe að Þ þ v bð Þe bð Þ and e
^ ¼ v að Þ

e að Þ þ
v bð Þ

e bð Þ

 !�1

(33)

The generalized acoustic tensor (21) corresponding to the free
energy function (31) takes the form

Âðn; �F; �DLÞ ¼ A1 Î þ A2ðÎ � �F�T �mÞ � ðÎ � �F�T �mÞ (34)

where

A1 ¼ �lðn � �B � nÞ þ ðl^ � �lÞðn � �F �mÞ2 (35)

and

A2 ¼
�l � l^

a2

4b2

a
� 1

� �
� 1

e
^
� 1

�e

� �

�
�DL �mð Þ2

a2
� 4

c

�DL �mð Þ2b2

a2
þ 1

4
n � �F � �DLð Þ2

  

�
�DL �mð Þ n � �F � �DLð Þb

a

��
(36)

where �B ¼ �F � �FT
is the average left Cauchy–Green tensor,

a ¼ m � �C
�1 �m, b ¼ n � �F�T �m, and c ¼ a�e=e

^ þ b2ð1� �e=e
^ Þ.

One can show that the generalized acoustic tensor (34) has the fol-
lowing eigenvalues in the two-dimensional space normal to n:

a1 ¼ A1 and a2 ¼ A1 þ A2ða� b2Þ (37)

In general, we have two distinct shear waves propagating in
finitely deformed DE laminates in the presence of an electric field.
The corresponding phase velocities are

�cð1Þsw ¼
ffiffiffiffiffiffiffiffiffiffi
a1=�q

p
and �cð2Þsw ¼

ffiffiffiffiffiffiffiffiffiffi
a2=�q

p
(38)

where �q ¼ vðaÞqðaÞ þ vðbÞqðbÞ is the average density of the lami-

nate. Remarkably, the first shear wave phase velocity �c
ð1Þ
sw is

explicitly independent of the electric field; moreover, it coincides
with the phase velocity of the corresponding shear wave propagat-
ing in finitely deformed laminate in the absence of an electric field

[36]. However, the second shear wave phase velocity �c
ð2Þ
sw depends

explicitly on electric field.
Let us consider some particular cases, where for simplicity, we

set

m ¼ e2 and �F ¼ �k1e1 � e1 þ �k2e2 � e2 þ �k3e3 � e3 (39)

First, we study shear waves propagating perpendicular to layers,
i.e., n ¼ e2. Regardless of the value and the direction of the
applied electric displacement, the phase velocities of both shear
waves are identical and independent of electric quantities, namely

�csw ¼ �cð1Þsw ¼ �cð2Þsw ¼ �k2

ffiffiffiffiffiffiffiffiffiffi
l^ =�q

q
(40)

Thus, the phase velocities (40) depend on electric field only if
�k2 ¼ �k2ð�DLÞ.

Second, we apply an electric field along the layers,

�DL ¼ �DL

ffiffiffiffiffiffiffi
�le
^

q
e1, and study shear waves propagating along the

layers. Thus, for wave propagation in the same direction as the
applied electric field (n ¼ e1), the phase velocities of the shear
waves are distinct, and one of them depends on the electric field,
namely

�cð1Þsw ¼ �k1

ffiffiffiffiffiffiffiffiffi
�l=�q

p
ðgð1Þ ¼ e3Þ (41)

and

�c 2ð Þ
sw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2

2

l^

�l
�1

 !
þ�k

2

1 1þ �D
2
L

e
^

�e
1� e

^

�e

� �� � !
�l
�q

vuut
g 2ð Þ ¼ e2

� �
(42)
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However, for wave propagation perpendicular to the electric field
(n ¼ e3), the phase velocities of the shear waves are distinct and
independent of electric field, namely

�cð1Þsw ¼ �k3

ffiffiffiffiffiffiffiffiffi
�l=�q

p
ðgð1Þ ¼ e1Þ (43)

and

�c 2ð Þ
sw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2

2

l^

�l
� 1

 !
þ �k

2

3

 !
�l
�q

vuut
g 2ð Þ ¼ e2

� �
(44)

Third, we apply an electric field perpendicular to the layers

( �DL ¼ DL

ffiffiffiffiffiffiffi
�le
^

q
e2) and analyze shear wave propagation along the

layers (n ¼ e1;3). In this case, the phase velocities of shear waves
are different, and the phase velocity of the so-called in-plane shear

wave (with polarization gð2Þ ¼ e2) depends explicitly on electric
field, i.e.,

�cð1Þsw ¼ �k1;3

ffiffiffiffiffiffiffiffiffi
�l=�q

p
ðgð1Þ ¼ e3;1Þ (45)

and

�c 2ð Þ
sw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

2

1;3 þ �k
2

2

l^

�l
� 1� D2

L 1� e
^

�e

� � ! !
�l
�q

vuut
g 2ð Þ ¼ e2

� �
(46)

Now, let us consider the example when deformation of DE lam-
inates is induced by an electric field applied perpendicular to the
layers, i.e.,

m ¼ e2; �DL ¼ DL

ffiffiffiffiffiffiffi
�le
^

q
e2; and

�s ¼ vðaÞsðaÞ þ vðbÞsðbÞ ¼ 0

(47)

Then, the symmetry of the problem in the plane he1; e3i, the
incompressibility assumption, and the continuity condition for dis-
placements along interfaces between the layers (26) yield the
average deformation gradient in the form

�F ¼ ke2 � e2 þ k�1=2ðI� e2 � e2Þ (48)

The total Cauchy stress and electric field within each phase are

sðnÞ ¼ lðnÞBðnÞ þ ðeðnÞÞ�1
DðnÞ � DðnÞ � pðnÞI and EðnÞ ¼ DðnÞ=eðnÞ

(49)

where in our case, DðnÞ ¼ D2e2 ¼ kDL

ffiffiffiffiffiffiffi
�le
^

q
e2 and BðnÞ ¼ k2e2

� e2 þ k�1ðI� e2 � e2Þ. Hence

sðnÞ11 ¼ sðnÞ33 ¼ lðnÞk�1 � pðnÞ and

sðnÞ22 ¼ lðnÞk2 þ ðeðnÞÞ�1�le
^

k2D2
L � pðnÞ

(50)

The continuity condition (29)1 and (47)3 yield

sðaÞ22 ¼ sðbÞ22 ¼ 0 and vðaÞsðaÞ11 þ vðbÞsðbÞ11 ¼ 0 (51)

By solving the system of equations (51), we obtain an expression
for the induced stretch

k ¼ ð1þ D2
LÞ
�1=3

(52)

In terms of the Lagrangian electric field

�EL ¼ EL

ffiffiffiffi
�l

e
^

r
e2 (53)

where EL ¼ k2DL. Equation (52) reads as

E2
L ¼ kð1� k3Þ (54)

Equation (54) yields only one physically relevant solution,
namely

k ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12g�3 � 1

p� �
g

2
ffiffiffi
63
p (55)

where

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
33
p

E2
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 27� 256E6

L

� �q
3

r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 27� 256E6

L

� �q� �
3

svuuuut
(56)

Note that Eq. (54) yields expressions for the so-called limiting
electric field and the corresponding stretch induced by this field,
namely

Elim
L ¼

ffiffiffi
3
p

2
ffiffiffi
23
p ’ 0:687; klim ¼ 2�2=3 ’ 0:63; and

Dlim
L ¼

ffiffiffi
3
p
’ 1:732

(57)

Figure 2(a) shows the induced stretch (55) as the function of the
dimensionless Lagrangian electric field. Remarkably, the limiting

Fig. 2 Induced stretch as function of dimensionless Lagrangian (a) and Eulerian (b) electric
fields
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induced stretch klim ¼ 2�2=3 does not depend on composition of
the laminate and coincides with the limiting stretch for homogene-
ous DEs [38]. The induced stretch can be expressed as a function

of the Eulerian electric field, �E ¼ �F
�T � �EL ¼ E

ffiffiffiffiffiffiffiffiffiffi
�l=e

^

q
e2, where

E ¼ k�1EL. Thus, Eq. (54) reads as

E2 ¼ k�1 � k2 (58)

Figure 2(b) shows the induced stretch as the function of the nor-
malized true or Eulerian electric field as described by Eq. (58).
Analogously to the case of homogeneous DEs [38], the limiting
value of electric field may be interpreted as the starting point of
thinning down without limit, after the critical value of electric
field is reached, E � Elim ¼ 2�2=3

ffiffiffi
3
p

. Hence, in the continuation,
we present our examples for electric fields ranging from 0 up to
Elim.

For the considered electrostatically induced deformations (48)
and (52), the expressions for the phase velocities (40), (45), and
(46) read as

(1) n ¼ e2

�csw ¼ �cð1Þsw ¼ �cð2Þsw ¼ ð1þ D2
LÞ
�1=3

ffiffiffiffiffiffiffiffiffiffi
l^ =�q

q
(59)

(2) n ¼ e1;3

�cð1Þsw ¼ ð1þ D2
LÞ

1=6
ffiffiffiffiffiffiffiffiffi
�l=�q

p
ðgð1Þ ¼ e3;1Þ (60)

and

�c 2ð Þ
sw ¼ 1þ D2

L

� ��1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

L

e
^

�e
�l

l^

 !
l^

�q

vuut g 2ð Þ ¼ e2

� �
(61)

Note that if lðaÞ=lðbÞ ¼ eðaÞ=eðbÞ, then e
^
=�e ¼ l^ =�l; hence, for

lðaÞ=lðbÞ ¼ eðaÞ=eðbÞ, Eq. (61) reduces to

�cð2Þsw ¼ ð1þ D2
LÞ

1=6

ffiffiffiffiffiffiffiffiffiffi
l^ =�q

q
ðgð2Þ ¼ e2Þ (62)

Figure 3 shows the normalized phase velocities of the shear waves
(59)–(61) as functions of the dimensionless Lagrangian electric
displacement. We normalize the phase velocities by the corre-
sponding values in the absence of an electric field, i.e.,

�c0 ¼ �cswjDL¼0; therefore, all presented curves are valid for any

density contrasts qðaÞ=qðbÞ between the layers; moreover, thanks
to the normalization the dash-dotted gray curve, corresponding to
the wave propagating perpendicular to the layers, is valid for any
composition of DE laminates. The phase velocities of both shear
waves propagating perpendicular to the layers coincide and
monotonically decrease with an increase in electric displacement;
in particular, the phase velocities decrease by �37 % for D ¼
Dlim (see the dash-dotted gray curve in Fig. 3).

To illustrate the influence of electric field and direction of wave
propagation on the characteristics of elastic waves in the layered
DEs, we consider wave propagation in the plane he1; e2i, i.e.,
n ¼ cos u e1 þ sin u e2. Thus, the expression for the phase veloc-
ities (38) together with Eqs. (48) and (52) reduces to

�c 1ð Þ
sw uð Þ ¼ 1þ D2

L

� ��1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

L

� �
cos2uþ l^

�l
sin2u

 !
�l
�q

vuut
(63)

and

�c 2ð Þ
sw uð Þ ¼ 1þD2

L

� ��1=3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l^

�l
cos22uþ sin22uþD2

L cos2u
�e

e
^

cos2uþ sin2u
� ��1

 !
�l
�q

vuut
(64)

By making use of the explicit relations (63) and (64), we construct
the polar diagrams of slownesses �sswðuÞ ¼ 1=�cswðuÞ. Figure 4
shows an example of the slowness curves for the so-called out-of-
plane (with polarization g ¼ e3) and in-plane (with polarization
lying in the plane he1; e2i) shear waves in the DE laminates sub-
jected to an electric field applied perpendicular to the layers.
Remarkably, the slownesses of the in-plane shear waves increase
for any direction of wave propagation in DE laminates subjected
to an electric field, if contrast in electric permittivities is larger
than the contrast in shear moduli (see Fig. 4(d)).

The dispersion relations for long waves in the incompressible
DE laminates are derived from Eq. (38), and have the following
form:

�xð1Þsw ¼
ffiffiffiffiffiffiffiffiffiffi
b1=�q

p
and �xð2Þsw ¼

ffiffiffiffiffiffiffiffiffiffi
b2=�q

p
(65)

where

b1 ¼ �lðk � �B � kÞ þ ðl^ � �lÞðk � �F �mÞ2 (66)

and

b2 ¼ b1 þ ak2 � b2
k

� � �l � l^

a2

4b2
k

ak2
� 1

� �
� 1

e
^
� 1

�e

� �"

�
�DL �mð Þ2

a2
� 4

ck

�DL �mð Þ2b2
k

a2
þ 1

4
k � �F � �DLð Þ2

  

�
�DL �mð Þ k � �F � �DLð Þbk

a

��	
(67)

where k is the wave vector, k ¼ jkj is the wave number, bk ¼
k � �F�T �m and ck ¼ ak2�e=e

^ þ b2
kð1� �e=e

^ Þ.
Now, group velocity can be calculated as

vg ¼ rk �x (68)

From Eqs. (65) and (68), we obtain the explicit formulae for the
shear wave group velocities in homogenized DE laminates

Fig. 3 The phase velocities of shear waves (59)–(61) as func-
tions of the dimensionless electric displacement for laminates

with v (a) 5 0:2 and l(a)/l(b) 5 5. The phase velocities are nor-
malized by the corresponding values in the absence of electric
field.
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v 1ð Þ
sw ¼

�l �B � nþ l^ � �l
� �

n � �F �mð Þ�F �mffiffiffiffiffiffiffiffi
�qa1

p (69)

and

v 2ð Þ
sw ¼

1ffiffiffiffiffiffiffiffi
�qa2

p �l �B � nþ l^ � �l
� �

n � �F �mð Þ�F �m
�

þ �l � l^

a2
b 5� 8b2
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� �
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�T �mþ 4b4

a
� a

� �
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� �
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� 1
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2b2 bDm
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Dmb
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� �
�F � �DL

þ b Dmb
b2

a
FnD �

2Dmb
a

� �
þ FnD

 !
� a

2
F2

nD

 ! 

þ �eDm

e
^

2Dmb 1� 2b2

a

� �
þ FnD 2b2 � a

� ��

� b4

a
FnD �

2Dmb
a

� ���
�F
�T �m

	��
(70)

where Dm ¼ �DL �m and FnD ¼ n � �F � �DL. We note that, for

m ¼ e2 and �F ¼ �k1e1 � e1 þ �k2e2 � e2 þ �k3e3 � e3, the absolute
values of the group velocities coincide with the phase velocities
for the waves propagating along the principal directions in the DE
laminates subjected to the electric field along or perpendicular to
the layers.

To illustrate the influence of electric field and direction of wave
propagation on the energy propagation in DE laminates, we con-
sider wave propagation in the plane he1; e2i, i.e., n ¼ cos u e1

þsin u e2. Recall that the outer normal to the slowness curve
defines the direction of the energy flow [39]. Thus, by assigning
the absolute value of the group velocity (i.e., jvswj) to the normal
to the slowness curve for all possible propagation directions, we
construct the polar diagrams for the group velocity or the energy
curves [39,40]. In particular, the expression for the group veloc-
ities (69) and (70) together with Eqs. (48) and (52) yields energy
curves shown in Fig. 5. Clearly, the group velocities of shear
waves (SWs) strongly depend on the propagation direction and
applied electric field. Application of electric field perpendicular to
the layers increases the group velocity of the out-of-plane SW
propagating along the layers and decreases it for SW propagating
perpendicular to the layers regardless of laminate composition
(see Figs. 5(a)–5(c)). While the group velocity of the in-plane SW
propagating along the layers can either decrease or increase with
application of electric field depending on the laminate composi-
tion (compare Figs. 5(d)–5(f)). Moreover, the energy curves of the
in-plane SWs have intersections, meaning that the absolute values
and directions of the group velocities coincide for two distinct
wave propagation directions. Remarkably, the position of these

Fig. 4 Slowness curves for the out-of-plane (a)–(c) and in-plane (d)–(f) shear waves propagating in the DE laminates with differ-
ent compositions subjected to electric field perpendicular to the layers. Scale is 0.4 per division, and slowness is normalized byffiffiffi

l
^

q
/�q. Note that the horizontal and vertical axes with the corresponding labels n1/�c and n2/�c serve for showing the principal

directions and physical quantity presented on the polar plot only.
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intersections changes with a change in the magnitude of the
applied electric field. It is worth noting also that the energy curves
of plane waves presented here may serve as a tool to define the
wave fronts of impulsive point source excited waves in homoge-
nized laminates [40,41]. In this case, the intersections of the
energy curves correspond to the regions of null energy [40].

3.2 Band Gap Structure. In this section, we consider lami-
nates with incompressible electroelastic phases describing by the
following energy potential:

w nð Þ F nð Þ;D nð Þ
L

� �
¼ w nð Þ

elas I nð Þ
1

� �
þ 1

2e nð Þ I nð Þ
5 (71)

where I1 ¼ trC ¼ F : F is the first invariant of the right
Cauchy–Green deformation tensor C ¼ FT � F, and I5 ¼ DL � C � DL

is the additional invariant accounting for the electromechanical cou-
pling. The tensors of electroelastic moduli (15) for energy potential
(71) are

C
nð Þ

ijkl ¼ 2 dikB nð Þ
lj w nð Þ

1 þ 2B nð Þ
ij B nð Þ

kl w nð Þ
11

� �
þ 1

e nð Þ dikD nð Þ
l D nð Þ

j ;

M nð Þ
ijk ¼

1

e nð Þ dikD
nð Þ

j þ djkD
nð Þ

i

� �
; K

nð Þ
ij ¼

1

e nð Þ dij

(72)

where wðnÞ1 ¼ @w
ðnÞ=@I

ðnÞ
1 and wðnÞ11 ¼ @w

ðnÞ
1 =@I

ðnÞ
1 .

We consider steady-state transversal small amplitude excita-
tions propagating perpendicular to the interface between the layers

(along the x2 direction, see Fig. 1(c)) in the laminate subjected to
macroscopically applied electromechanical loads

�F ¼ k1e1 � e1 þ k2e2 � e2 þ k3e3 � e3 and �DL ¼ DL

ffiffiffiffiffiffiffi
�le
^

q
e2

(73)

Here, we use the displacement continuity along the interface

between the layers (26) producing kðaÞ1 ¼ kðbÞ1 � k1 and kðaÞ3 ¼ kðbÞ3

� k3, and the incompressibility assumption yielding kðaÞ2 ¼ kðbÞ2

� k2. Following Tiersten [42], we assume that the incremental

fields uðnÞ; _D
ðnÞ
L? , and _pðnÞ depend on the coordinate x2 and time t

only. Under these assumptions, substitution of Eqs. (17), (18), and
(72) into Eq. (12) yields

@2u
nð Þ

1

@t2
¼ c nð Þ

sw

� �2 @2u
nð Þ

1

@x2
2

;
@ _p nð Þ

@x2

¼ 0; and
@2u

nð Þ
3

@t2
¼ c nð Þ

sw

� �2 @2u
nð Þ

3

@x2
2

(74)

where

cðnÞsw ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wðnÞ1

.
qðnÞ

r
(75)

Next, substitution of Eqs. (18), (72), and (73) into Eq. (17)
yields

Fig. 5 Energy curves for the out-of-plane (a)–(c) and in-plane (d)–(f) shear waves propagating in the DE laminates with different
compositions subjected to electric field perpendicular to the layers. Scale is 0.4 per division, where group velocity is normalized

by
ffiffiffi
�q
p

/l
^
. Note that the horizontal and vertical lines with the corresponding labels (n1v) and (n2v) serve for showing the principal

directions and physical quantity presented on the polar plot only.

091002-8 / Vol. 84, SEPTEMBER 2017 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/936374/ on 07/08/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



_P
nð Þ
?12 ¼ 2k2

2w
nð Þ

1

@u
nð Þ

1

@x2

þ D
nð Þ

2

e nð Þ D
nð Þ

2

@u
nð Þ

1

@x2

þ _D
nð Þ

L?1

 !
;

_E
nð Þ

L?1 ¼
1

e nð Þ D
nð Þ

2

@u
nð Þ

1

@x2

þ _D
nð Þ

L?1

 !

_P
nð Þ
?22 ¼

2

e nð Þ D nð Þ
2

_D
nð Þ

L?2 � _p nð Þ

_P
nð Þ
?32 ¼ 2k2

2w
nð Þ

1

@u nð Þ
3

@x2

þ D nð Þ
2

e nð Þ D nð Þ
2

@u nð Þ
3

@x2

þ _D
nð Þ

L?3

 !
;

_E
nð Þ

L?3 ¼
1

e nð Þ D nð Þ
2

@u nð Þ
3

@x2

þ _D
nð Þ

L?3

 !

(76)

where D
ðnÞ
2 ¼ D2 according to Eq. (29)2.

The incremental jump conditions across the interface between
the layers (x2 ¼ 0) are

_P
ðaÞ
?12 ¼ _P

ðbÞ
?12;

_P
ðaÞ
?22 ¼ _P

ðbÞ
?22;

_P
ðaÞ
?32 ¼ _P

ðbÞ
?32;

_E
ðaÞ
L?1 ¼ _E

ðbÞ
L?1;

_E
ðaÞ
L?3 ¼ _E

ðbÞ
L?3;

_D
ðaÞ
L?2 ¼ _D

ðbÞ
L?2

(77)

Hence, substitution of Eq. (76) into Eq. (77) yields

w að Þ
1

@u
að Þ

1

@x2






x2¼0

¼ w bð Þ
1

@u bð Þ
1

@x2






x2¼0

;

w að Þ
1

@u
að Þ

3

@x2






x2¼0

¼ w bð Þ
1

@u bð Þ
3

@x2






x2¼0

;

_p bð Þ � _p að Þ ¼ D2
_DL?2

1

e bð Þ �
1

e að Þ

� �
(78)

We seek solution for Eq. (74)1 in the form

u
ðnÞ
1 ¼ AðnÞeiðkðnÞx2�xtÞ þ BðnÞeið�kðnÞx2�xtÞ (79)

where x represents the angular frequency, and kðnÞ ¼ x=cðnÞ is the
wave number. The perfect bonding between the layers implies

u
ðaÞ
1 jx2¼0 ¼ u

ðbÞ
1 jx2¼0 (80)

Then, the substitution of Eq. (79) into Eq. (80) yields

AðaÞ þ BðaÞ � AðbÞ � BðbÞ ¼ 0 (81)

Next, the substitution of Eq. (79) into Eq. (78)1 yields

w að Þ
1

c að Þ A að Þ � w að Þ
1

c að Þ B að Þ � w bð Þ
1

c bð Þ A bð Þ þ w bð Þ
1

c bð Þ B bð Þ ¼ 0 (82)

Two additional conditions for constants AðaÞ; BðaÞ; AðbÞ, and
BðbÞ are obtained from the periodicity consideration. Hence, we
adjust the form of the solution (79) to be the steady-state wave
expression with the same wave number k for both phases

u
ðnÞ
1 ¼ U

ðnÞ
1 ðx2Þeiðkx2�xtÞ (83)

where

U
ðnÞ
1 ðx2Þ ¼ AðnÞeiKðnÞ� x2 þ BðnÞe�iK

ðnÞ
þ x2 and K

ðnÞ
6 ¼ kðnÞ6k (84)

According to Floquet theorem, functions U
ðnÞ
1 ðx2Þ must be peri-

odic with the period equal to the length of the unit cell (see

Fig. 1(c)), namely h ¼ hðaÞ þ hðbÞ

U
ðaÞ
1 ð�hðaÞÞ ¼ U

ðbÞ
1 ðhðbÞÞ (85)

Thus, substitution of Eq. (84) into Eq. (85) yields

e�iKðaÞ� hðaÞAðaÞ þ eiK
ðaÞ
þ hðaÞBðaÞ � eiKðbÞ� hðbÞAðbÞ � e�iK

ðbÞ
þ hðbÞBðbÞ ¼ 0

(86)

Next, substituting Eq. (83) and _D
ðnÞ
L?1 ¼ d

ðnÞ
1 ðx2Þeiðkx2�xtÞ into

Eq. (76)1, we obtain

_E
nð Þ

L?1 x2; tð Þ ¼ E nð Þ
1 x2ð Þei kx2�xtð Þ;

E nð Þ
1 x2ð Þ ¼

1

e nð Þ D2

ix

c nð Þ A nð ÞeiK nð Þ
� x2 � B nð Þe�iK

nð Þ
þ x2

� �
þ d

nð Þ
1 x2ð Þ

� �
(87)

and

_P
nð Þ
?12 x2; tð Þ ¼ P nð Þ

1 x2ð Þei kx2�xtð Þ;

P nð Þ
1 x2ð Þ ¼ 2k2

2w
nð Þ

1

ix

c nð Þ A nð ÞeiK nð Þ
� x2 � B nð Þe�iK

nð Þ
þ x2

� �
þ D2E nð Þ

1 x2ð Þ
(88)

where according to Floquet theorem

PðaÞ1 ð�hðaÞÞ ¼ PðbÞ1 ðhðbÞÞ; EðaÞ1 ð�hðaÞÞ ¼ EðbÞ1 ðhðbÞÞ;
d
ðaÞ
1 ð�hðaÞÞ ¼ d

ðbÞ
1 ðhðbÞÞ

(89)

Finally, substitution of Eq. (88) into Eq. (89) yields

w að Þ
1

c að Þ e�iK að Þ
� h að Þ

A að Þ � w að Þ
1

c að Þ eiK
að Þ
þ h að Þ

B að Þ � w bð Þ
1

c bð Þ eiK bð Þ
� h bð Þ

A bð Þ

þ w bð Þ
1

c bð Þ e�iK bð Þ
þ h bð Þ

B bð Þ ¼ 0 (90)

System of equations (81), (82), (86), and (90) has a nontrivial
solution if

det

1 1 �1 �1

w að Þ
1

c að Þ �w að Þ
1

c að Þ �w bð Þ
1

c bð Þ
w bð Þ

1

c bð Þ

e�iK að Þ
� h að Þ

eiK
að Þ
þ h að Þ �eiK bð Þ

� h bð Þ �e�iK bð Þ
þ h bð Þ

w að Þ
1

c að Þ e
�iK að Þ

� h að Þ �w að Þ
1

c að Þ e
iK

að Þ
þ h að Þ �w bð Þ

1

c bð Þ e
iK bð Þ
� h bð Þ w bð Þ

1

c bð Þ e
�iK bð Þ

þ h bð Þ

2
66666666664

3
77777777775
¼0

(91)

One can show that Eq. (91) together with Eq. (75) reduces to

cos kh ¼ cos
xh að Þ

c að Þ

� �
cos

xh bð Þ

c bð Þ

 !

� 1

2

q að Þc að Þ

q bð Þc bð Þ þ
q bð Þc bð Þ

q að Þc að Þ

 !
sin

xh að Þ

c að Þ

� �
sin

xh bð Þ

c bð Þ

 !
(92)

describing the dispersion relation x ¼ xðkÞ with cðnÞ and hðnÞ

being functions of deformation, which can be induced by electric
field or otherwise, for example, purely mechanically. The
obtained dispersion relation fully agrees with the exact solution
for long waves (40) propagating perpendicular to the layers in
electroelastic laminates, clearly showing that shear wave propaga-
tion is independent of electric field for this configuration. We note
that the dispersion relation (92) is different from those presented
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by Shmuel and deBotton [30,35] as detailed in the Appendix.
Moreover, the dispersion relation (92) has the same form as the
classical result for purely elastic laminates [34], if no deformation
is applied. Recently, the dispersion relation by Rytov [34] has
been extended to account for finite deformations in purely
mechanical hyperelastic laminates [36]. Remarkably, the disper-
sion relation (92) is identical to the one considered in Galich et al.
[36] for the purely mechanical problem; the only difference,
which, however, does not affect the way how SBGs change, is
that here the deformation is induced by an electric field. Thus, the
analysis and conclusions of Galich et al. [36] can be fully applied
here. In particular, Galich et al. [36] showed that SBGs do not
depend on deformation in laminates with neo-Hookean phases.
This is due to the fact that the two main factors—changes in the
geometry and phase velocity induced by deformation—
completely cancel each other [36]. This is again in contradiction
with the conclusions of Shmuel and deBotton [30,35], and Shmuel
and Band [43]; these works utilized different dispersion relations,
but all arrived at the conclusions that SBGs are tunable by an elec-
tric field [30,35] or by deformation [43] in neo-Hookean ideal
dielectric or purely mechanical neo-Hookean laminates, respec-
tively. Once again, the SBGs do not depend either on deformation
or on electric field in the neo-Hookean ideal dielectric or purely
mechanical neo-Hookean laminates.

To achieve electric field (or deformation)-induced tunability of
the SBGs, one should consider laminates with phases exhibiting
stronger stiffening, for example, Arruda–Boyce [44] or Gent [45]
phases. To illustrate this, we consider laminates with electroelastic
phases describing by the energy potential (71) with Gent elastic
part [45]

w nð Þ
elas F nð Þð Þ ¼ � l nð ÞJ nð Þ

m

2
ln 1� I nð Þ

1 � 3

J
nð Þ

m

 !
(93)

where JðnÞm is the dimensionless parameter defining the lock-up

stretch ratio, such that in the limit ðIðnÞ1 � 3Þ ! JðnÞm , the strain

energy becomes unbounded. Recall that the stiffening effects
describing by the Gent model, which is an approximation of the
Arruda–Boyce model [44], refer to finite extensibility of polymer
chains. For DE laminates with electroelastic Gent phases sub-
jected to the electric field perpendicular to the layers (as defined
in Eq. (47)), the relation between the induced stretch and Lagran-
gian electric displacement is

DL ¼ k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � 1

�l
J

að Þ
m v að Þl að Þ

2� 3þ J
að Þ

m

� �
kþ k3

þ J bð Þ
m v bð Þl bð Þ

2� 3þ J bð Þ
m

� �
kþ k3

 !vuut
(94)

Substitution of Eq. (93) into Eq. (75) yields [8]

c
nð Þ

G ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

nð Þ
m

3þ J
nð Þ

m � k2 � 2k�1

l nð Þ

q nð Þ

s
(95)

Next, by making use of Eqs. (94), (95), (24), and (92), SBG struc-
tures can be constructed for electroelastic laminates subjected to
the electric field perpendicular to the layers. Figures 6(a)–6(c)
show the SBGs as functions of the Lagrangian electric displace-
ment applied perpendicular to the layers for wave propagating
perpendicular to the layers in the DE laminates with the Gent elec-
troelastic phases. Thanks to the specific normalization of the

Lagrangian electric displacement, namely �DL ¼ DL

ffiffiffiffiffiffiffi
�le
^

q
e2, the

presented band gaps correspond to DE laminates with any contrast

in electric permittivities eðaÞ=eðbÞ between the layers. The lock-up
stretch for Jm ¼ 0:5 is klock ’ 0:65. Application of DL ¼ 3:5 leads
the contraction of the considered DE laminates down to k ’ 0:68.
Clearly, the application of the electric field perpendicular to the
layers widens and shifts SBGs up to the higher frequencies. In
particular, the application of the Lagrangian electric displacement

of DL ¼ 3:5 to the laminate with vðaÞ ¼ 0:5 and lðaÞ=lðbÞ ¼ 10
shifts the lower boundary of the first SBG from fn ¼ 0:41 up to

Fig. 6 Shear wave band gaps as functions of dimensionless Lagrangian electric displacement for waves propagating perpen-
dicular to the layers. The band gap structures are true for any contrast in electric permittivities e(a)/e(b) between the layers. The

locking parameters for Gent phases are J
(a)
m 5 J

(b)
m 5 0:5. The densities of the layers are identical, i.e., q(a)/q(b) 5 1. Frequency is

normalized as fn 5 (xH /2p)

ffiffiffiffiffiffiffiffi
�q/l

^

q
.
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fn ¼ 0:95 and widens it from Dfn ¼ 0:26 up to Dfn ¼ 0:62 (see
Fig. 6(b)). Once again, these changes in SBGs occur due to
electrostatically induced deformation. As a comparison, Figs.
6(d)–6(f) show the SBGs as functions of the Lagrangian electric
displacement applied perpendicular to the layers for the waves
propagating perpendicular to the layers in the DE laminates with
the neo-Hookean electroelastic phases. Recall that for the neo-
Hookean dielectric elastomer laminates, the normalized limiting

electric displacement is constant, i.e., Dlim
L ¼

ffiffiffi
3
p

, while for the
Gent dielectric elastomer laminates, the limiting electric field
depends on the on the locking parameter Jm. Note that for the
Gent DE laminates discussed in Fig. 6, the limiting electric fields
are higher than the ones needed to reach the lock-up stretches.
Finally, we note that the influence of stiffening effects on band
gap structures in finitely deformed incompressible and compressi-
ble layered materials was thoroughly analyzed by Galich et al.
[36]. The only difference is that here we induce deformation by
application of an electric field.

4 Conclusion

We considered shear wave propagation in electroelastic layered
media subjected to finite deformations and electric fields. First,
we derived the long wave estimates—the exact solution for the
long waves—for phase and group velocities of shear waves propa-
gating in the laminates with electroelastic neo-Hookean phases.
The derived formulae are expressed in terms of the volume frac-
tions and electroelastic constants of the phases. Moreover, these
long wave estimates are given for any direction of wave propaga-
tion, and for any applied electric field and homogenous finite
deformations. Furthermore, we have found that the shear wave
propagation perpendicular to the layers depends on electric field
only though the induced deformation.

Second, we derived the dispersion relations for the shear waves
propagating perpendicular to the layers in the laminates with
incompressible hyperelastic ideal dielectric phases, described by
the energy potential (71). Consistently with the long wave esti-
mates, the derived dispersion relation is independent of electric
field, and the dispersion relation has the same form as its analog
for the purely elastic laminates. The dispersion relation shows that
SBGs in the electroelastic laminates are tunable by an electric
field only through induced deformation. In particular, the applica-
tion of an electric field to the DE laminates with electroelastic
Gent phases widens and shifts SBGs toward higher frequencies.
However, SBGs do not depend on deformation (induced by an
electric field or mechanically) in DE laminates with electroelastic
neo-Hookean phases. Finally, we emphasize that consideration of
dissipation can potentially improve the accuracy of the predic-
tions, especially for the composites with constituents character-
ized by strong damping effects [46].
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Appendix: Comparison of Dispersion Relation, Exact

Solution for Long Waves, and Results by Shmuel and

deBotton

Figure 7 shows a comparison of the exact solution for long
waves (59), dispersion relation (92), and the results reported by
Shmuel and deBotton [30,35]. For clarity, we normalize the wave

vector and frequency as in Shmuel and deBotton [30]. The DE
laminate is subjected to the electrostatic excitation of DL ¼ 1:27
(corresponding to D̂ ¼ 1:5 in Shmuel and deBotton [30,35]). The
continuous black and dotted blue curves correspond to the exact
solution for long waves (59) and dispersion relation (92), respec-
tively. The dotted and dashed red curves refer to the results
reported by Shmuel and deBotton [30] (see Fig. 8(a) therein) and
the results presented in Shmuel and deBotton [35] (see Fig. 7(b)
therein), respectively. We observe that the curves for dispersion
relation (92) and exact solution for long waves (59) overlap, while
the dispersion curves from Shmuel and deBotton [30,35] signifi-
cantly differ from the exact solution for long waves.

Fig. 7 Comparison of the exact solution for long waves (59),
dispersion relation (92), and results reported by Shmuel and
deBotton [30,35] for the shear waves propagating perpendicular
to the layers in the laminates with incompressible ideal DE
neo-Hookean phases subjected to electric field perpendicular
to layers, namely DL 5 1:27. The laminate is made of VHB-4910
and ELASTOSIL RT-625: v(a) 5 0.5, l(a)/l(b) 5 1.19, e(a)/e(b) 5 1.74,
and q(a)/q(b) 5 0.94, where l(b) 5 342 kPa, e(b) 5 2.7, and
q(b) 5 1020 kg/m3.

Fig. 8 Comparison of the exact solution for long waves (59), dis-
persion relation (92), and dispersion relation by Shmuel and
deBotton [35] for the waves propagating perpendicular to the
layers in the laminates with incompressible neo-Hookean phases
subjected to electric field perpendicular to layers, namely,

DL 5 0:37; v (a) 5 0:8; l(a)/l(b) 5 e(a)/e(b) 5 20, and q(a)/q(b) 5 1
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For completeness, we show a comparison of the exact solution
for long waves (59), dispersion relation (92), and dispersion rela-
tion reported by Shmuel and deBotton [35] for the DE laminates
with a more pronounced dispersion. In particular, the comparison
is shown for the DE laminates with incompressible neo-Hookean

phases with vðaÞ ¼ 0:8, lðaÞ=lðbÞ ¼ eðaÞ=eðbÞ ¼ 20, and qðaÞ=qðbÞ ¼ 1
in Fig. 8. The laminate is subjected to the electric field perpendicular

to the layers, namely, DL ¼ 0:37 (corresponding to D̂ ¼ 3 in the
notation of Shmuel and deBotton [35]). We observe that dispersion
relation (92) and the exact solution for long waves (59) are in excel-
lent agreement for the corresponding wavelengths, whereas the
results reported by Shmuel and deBotton [35] produce significantly
different results from the exact solution for long waves (59) even in
the long wave limit of kh! 0. In particular, for this case, the phase
velocity predicted by the exact solution (59) significantly differs
from the phase velocity calculated from the dispersion relation by

Shmuel and deBotton [35] by a factor of 2, namely, �cðSDÞ ’ 2�csw.
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