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a b s t r a c t

We analyse the propagation of elastic waves in soft materials subjected to finite defor-
mations. We derive explicit phase velocity relations for matter with pronounced stiffen-
ing effect, namely Gent model, and apply these results to study elastic wave propagation
in (a) nearly incompressible materials such as biological tissues and polymers, (b) highly
compressible and (c) negative Poisson’s ratio or auxetic materials. We find, that for nearly
incompressible materials transverse wave velocities exhibit strong dependence on the di-
rection of propagation and initial strain state, whereas the longitudinal wave velocity is
not affected significantly until extreme levels of deformation are attained. For highly com-
pressiblematerials, we show that both longitudinal and transversalwave velocities depend
strongly on deformation and direction of propagation. Moreover, the dependence becomes
stronger when stiffening effects increase. When compression is applied, the longitudinal
wave velocity decreases regardless the direction of wave propagation in highly compress-
ible materials, and increases for most of the directions in materials with negative Poisson’s
ratio behaviour. We demonstrate that finite deformations can influence elastic wave prop-
agation through combinations of induced effective compressibility and stiffness.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of elastic waves has been investigated
intensively [1–16] because the understanding of the phe-
nomenon is vital for a large variety of applications from
non-invasive material testing and medical imaging for
health care to petroleum exploration. Recently, the field
of acoustic or phononic metamaterials has attracted con-
siderable attention. The peculiarity of these metamateri-
als originates in their microstructure [17,18], which can
be tailored to give rise to various effects such as local
resonances [19], band-gaps [12] and cloaking [20]. Fur-
thermore, soft metamaterials, due to their capability to
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sustain large deformations, open promising opportuni-
ties of manipulating acoustic characteristics via deforma-
tion [21–23].

In this work, we derive explicit phase velocity rela-
tions for finitely deformed materials, which stiffen when
stretched/compressed. Our analysis is based on the the-
ory first developed by Hadamard [2], which was recently
revised by Destrade and Ogden [11]. We specify the the-
ory for the class of Gent materials, and obtain compact
explicit expressions of phase velocities for any finite de-
formation and direction of propagation. The availability of
explicit relations for phase velocity is important for design-
ingmechanotunable acoustic metamaterials. Moreover, the
information may benefit non-invasive medical diagnos-
tic techniques by providing important information on the
dependence of elastic wave propagation on pre-stress/
pre-strain conditions, which are common in biological
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tissues. By application of the derived explicit expressions,
we show the role of deformation and significant influence
of stiffening effects on wave propagation in soft media
undergoing finite deformations. Moreover, we extend the
analysis to a class of exotic metamaterials characterized by
negative Poisson’s ratio (NPR) behaviour. Examples of NPR
materials, also known as auxetics, include living bone tis-
sue [24], skin [25], blood vessels [26], certain rocks and
minerals [25], and artificial materials [27]. As we shall
show, elastic wave propagation in these materials is sig-
nificantly affected by deformation. In our analysis, we
treat the materials as continuous media; their overall ho-
mogenized behaviour is characterized by effective elastic
moduli. These material properties may originate in so-
phisticatedly engineered microstructures that give rise to
remarkable overall properties (for example, negative Pois-
son’s ratio or/and bulk modulus). The information on
elastic wave propagation in terms of the effective proper-
ties can guide the design of new tunable metamaterials.
Moreover, this information can shed light on the distinct
roles of geometrical changes and material non-linearities
occurring in tunable metamaterials due to large deforma-
tions [28]. Furthermore, even simple homogeneous mate-
rials can behave like smart metamaterials when finitely
deformed. For example, they can be used to disentangle
shear and pressure waves [23,29].

2. Analysis

To analyse the finitely deformed state, we introduce
the deformation gradient F(X, t) = ∇X ⊗ x(X, t), where
X and x are position vectors in the reference and current
configurations, respectively. To take into account the non-
linear effects of the finite deformation as well as material
non-linearity, we analyse the wave propagation in terms
of infinitesimal plane waves superimposed on a finitely
deformed state [2,4]. To account for the stiffening effects
(due to, for example, finite extensibility of polymer chains,
or due to collective straightening of collagen fibres in
biological tissues) in finitely deformedmedia, wemake use
of the strain–energy density function corresponding to an
approximation of the Arruda–Boyce model [30], namely
the Gent model [31,32] which is given in Eq. (1).

ψ(F) = −
µJm
2

ln

1 −

I1 − 3
Jm


− µ ln J

+


K
2

−
µ

3
−
µ

Jm


(J − 1)2, (1)

where µ is the initial shear modulus, K is the initial bulk
modulus, I1 = tr B is the first invariant of the left Cauchy–
Green tensor B = F · FT , and J = det F. The model neatly
covers the stiffening of the material with the deformation;
as the first strain invariant approaches I1 = 3+ Jm, the en-
ergy function becomes unbounded and a dramatic increase
in stress occurs. Consequently, Jm is a locking parameter.
Clearly, when Jm → ∞, the strain–energy function (1) re-
duces to

ψ(F) =
µ

2
(I1 − 3)− µ ln J + (K/2 − µ/3) (J − 1)2, (2)
Fig. 1. Direction of propagation n relating to principal directions in
general case (a) and when n lies in one of the planes of orthotropy
(b). Here (e1, e2, e3) is orthonormal basis of eigenvectors of left
Cauchy–Green tensor B.

which is a compressible extension of the neo-Hookean
strain–energy function [33].

Recall the definition of an acoustic tensor [2,4] which
defines the condition of propagation of plane waves

Q(n) = A(1324)
: n ⊗ n, (3)

where the unit vector n defines the direction of propa-

gation of the wave; A = J−1

F · A

(2134)
0

(2134)
· FT and

A0 =
∂2ψ
∂F∂F are tensors of elastic moduli in current and ref-

erence configuration respectively; superscripts (1324) and
(2134) denote isomers of the fourth-rank tensors [34,35],
as detailed in Appendix A.

Strong stiffening. Acoustic tensor for finitely deformed
Gent material (1) takes the form
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, (4)

where ξ = 3+Jm−I1, I is the identity tensor, andB⊗B(1324)
is the fourth-rank tensor isomer (see Appendices A and B).

General case. One can conclude from (4) that in general
case (when n does not lie in any plane of orthotropy
(Fig. 1(a)) and deformations are different along each
principal axis, i.e. all eigenvalues of tensor B are different)
the waves are neither purely longitudinal nor purely
transversal (for details see Appendix B).

Case 1. If wave vector n lies in one of the planes of
orthotropy (Fig. 1(b)) then we always have one purely
transversal wave with the velocity

ctr =

µ(n · B · n)Jm/(ρ0ξ), (5)

where ρ0 is the density of the undeformed material.
Any finite deformation F at a homogeneous state can be
represented as

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (6)

where λ1,2,3 are stretch ratios along principal directions.
Thus, expression (5) holds true for any combination of λ1,
λ2 and λ3.

Case 2. When wave vector n lies in one of the planes
of orthotropy (for example in e1 − e2) and stretch ratios
in this plane are equal (λ1 = λ2 = λ̂) then we have
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one longitudinal and two transversal polarizations with
following velocities

cl =


µ


1 + ηJ2 + Jmξ−2


ξ + 2λ̂2


λ̂2


/ρ0 (7)

and

ctr = λ̂

µJm/(ρ0ξ) (8)

respectively, with η = K/µ− 2/3 − 2/Jm.
Case 3. For waves propagating along the principal direc-

tion (n = ei), the velocities of longitudinal and transversal
waves are

cl =
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and

ctr = λi

µJm/(ρ0ξ). (10)

Case 4. When materials undergo so-called uniform
dilatation or compaction (λ1 = λ2 = λ3 or F = qI), then
we have only pure modes with the velocities given by

cl =


µ


1 +


ηq4 + Jmξ−2


ξ + 2q2
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q2


/ρ0 (11)

and

ctr = q

µJm/(ρ0ξ). (12)

Weak stiffening. In case of a weak stiffening effect,
namely, Jm → ∞, the acoustic tensor (4) reduces to the
well-known expression [9]

Q(n) = a1n ⊗ n + a2(I − n ⊗ n), (13)

where n⊗n is the projection on the direction n; (I−n⊗n)
is the projection on the plane normal to n; a1 = (K −

2µ/3)J + µJ−1(1 + n · B · n) and a2 = µJ−1(n · B · n).
Consequently, there always exist one longitudinal and two
transverse waves for any direction of propagation n. Phase
velocities of these waves can be calculated as [13] cl =√
a1J/ρ0 and ctr =

√
a2J/ρ0. In the small deformation

limit these formulae reduce to cl =
√
(K + 4µ/3)/ρ0 and

ctr =
√
µ/ρ0. It is worth mentioning that Boulanger and

Hayes [13,16] presented explicit phase velocity expres-
sions for wide classes of Hadamard and Mooney–Rivlin
materials; however, the Gent material model, considered
here, does not belong to these classes of hyperelastic ma-
terials.

3. Examples

To illustrate the dependence of wave propagation on
the deformation and direction of propagation, we consider
the case of uniaxial tension

F = λe1 ⊗ e1 + λ̃(I − e1 ⊗ e1), (14)

where λ is the applied stretch ratio and λ̃ = λ̃(λ, K/µ) is
defined through λ and the compressibility of the material.
Remind that the compressibility of the material is defined
by the ratio K/µ. In the linear elastic limit the elastic
moduli are related through

K
µ

=
2(1 + ν)

3(1 − 2ν)
, (15)
a b

c d

Fig. 2. Polar diagrams of the phase velocities in nearly incompressible
materials: for the purely transversal (a), quasi-longitudinal (b), quasi-
transversal (d) waves in Gent material with Jm = 3 and K/µ = 300;
and for the purely transversal (c) wave in neo-Hookean material with
K/µ = 300.

where ν is Poisson’s ratio. Thus, −1/3 < K/µ < ∞

with µ > 0. Note that for −1/3 < K/µ < 0 the
material is stable only if constrained [34,36,37]. It follows
from (15) that matter exhibits auxetic behaviour when
−1/3 < K/µ < 2/3.

Nearly incompressible materials. For nearly incom-
pressible materials (K/µ ≫ 1 and λ̃ ≃ λ−1/2) the depen-
dence of the longitudinal wave velocity on the direction
of propagation and initial stress state is relatively weak
unless extreme levels of deformation are attained. Fig. 2
shows the polar diagrams of the phase velocities for the
nearly incompressible Gent and neo-Hookean materials
under extreme levels of deformation. Here and thereafter
the velocities are normalized by their value in the unde-
formed state; c1 and c2 are phase velocities along prin-
cipal directions e1 and e2, correspondingly; more details
on phase velocity or slowness surfaces can be found in
the textbooks of Auld [38] or Nayfeh [39]. At the extreme
levels of deformations, the stiffening effect manifests in a
significant increase of the effective shear modulus, which
becomes comparable with the bulk modulus (see Eq. (9)).
Fig. 2(b) shows that velocity of longitudinal wave increases
in both compressed and stretched materials. Moreover,
stiffening of the material gives rise to the dramatic de-
pendence of transversal wave velocities on the direction
of propagation and deformation as compared to the ma-
terials with weak stiffening effect (compare Fig. 2(a) and
(d) vs (c)). Besides, we observe that the dependence of the
phase velocities on deformation and propagation direction
increases when the locking parameter Jm decreases (which
corresponds to an earlier stiffening of thematerial with de-
formation). Comparing the quasi-transversal wave veloc-
ity profiles with the purely transversal ones on the Fig. 2,
we observe that the velocity of quasi-transversal wave has
maxima for the non-principal directions (Fig. 2(d)). Note



P.I. Galich, S. Rudykh / Extreme Mechanics Letters 4 (2015) 156–161 159
a b

c d

Fig. 3. Polar diagrams of the phase velocities in highly compressible
materials: for the quasi-longitudinal (a) and purely transversal (c) waves
in Gent material with Jm = 3 and K/µ = 1; for the purely longitudinal
(b) and transversal (d) waves in neo-Hookean material with K/µ = 1.

that this phenomenon is not observed in Hadamard mate-
rials [40,41].

Highly compressible materials. In contrast to nearly
incompressible materials, for highly compressible matter,
the velocity of longitudinal wave depends strongly on
the direction of propagation and initial deformation state
even for moderate levels of deformation. More specifically
Fig. 3(a) and (b) show that the velocity of pressure wave
increases when material is stretched and decreases when
it is compressed. Propagation of shear waves in highly
compressible media differs significantly from the one
in nearly incompressible materials. In particular, under
compression the velocities of shear waves decrease in any
direction if K/µ ≤ 1 (Fig. 3(c)), while it can either decrease
or increase depending on the propagation direction in the
nearly incompressible case (Fig. 2(a) and (c)). It should
be noted that the deformation induced stiffening has a
significant influence on both modes (compare Fig. 3(a), (c)
vs (b), (d)), in particular when material is stretched. This is
due to an increase in the effective shearmodulus (the term
µJm/ξ 2 in Eq. (9) andµJm/ξ in Eq. (10)). The polar diagram
of the phase velocity for the quasi-transversalwave inGent
material with Jm = 3 and K/µ = 1 is similar to one plotted
in Fig. 3(c), and it is not presented here.

Auxetic materials. Next, we consider auxetic materials
characterized byNPR behaviour. Yet can suchmaterials ex-
ist? Would they be stable? How can they be constructed?
These questions have recently arisen in many papers
[19,27,36,37,42–45] and still the topic is open for discus-
sion. Wang and Lakes in their article [36] report that bulk
modulus can be varied within the range −

4µ
3 < K < ∞.

Based on this and the previous estimations (Eq. (15)), we
examine the material behaviour when −1/3 < K/µ < 0.
To illustrate the auxetic materials behaviour, we present
the dependence of λ̃ and Poisson’s ratio on the applied
stretch λ for different ratios of K/µ.

Fig. 4 show that NPR behaviour is more pronounced
in materials with negative bulk modulus. Note that the
material becomes locally non-auxetic when certain level
of deformation is reached. Furthermore, this level depends
on stiffening of the material. In particular, materials with
pronounced stiffening effect become locally non-auxetic
faster than materials with weak stiffening effect. For
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Fig. 4. Dependence of λ̃ (a) and Poisson’s ratio ν (b) on applied stretch λ
for Gent and neo-Hookean materials with different ratios K/µ.

example, λcr ≈ 0.66 for neo-Hookean material with
K/µ = −0.3, and λcr ≈ 0.76 for Gent material with
K/µ = −0.3 and Jm = 3.

An example of wave velocities for auxetic materials is
shown in Fig. 5. We observe that the velocity of the lon-
gitudinal wave increases in any direction of propagation
n when the material undergoes compression (Fig. 5(b)).
This is in contrast to the case of highly compressible mat-
ter (see Fig. 3(a) and (b)). Moreover, the velocity of the lon-
gitudinal wave increases and reaches the maximum when
wave vectorn lies in the plane of transverse isotropy. How-
ever, for materials with strong stiffening effect the veloc-
ity of longitudinal wave decreases in some direction of
propagation (see Fig. 5(a)). Fig. 5(c) and (d) show that ve-
locities of transversal waves decrease considerably for all
directions of propagations n in contrast to the effect of de-
formation observed in the nearly incompressible materials
(Fig. 5(a), (c) and (d)). The influence of stiffening on elastic
wave propagation is rather weak in the case of auxetics as
compared to nearly incompressible and highly compress-
ible materials; yet it can be observed. In particular, phase
velocity of transversal wave decreases more under com-
pression when stiffening effect is pronounced (compare
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Fig. 5. Polar diagrams of the phase velocities in auxetics: for the quasi-
longitudinal (a) and purely transversal (c) waves in Gent material with
Jm = 3 and K/µ = −0.3; for the purely longitudinal (b) and transversal
(d) waves in neo-Hookean material with K/µ = −0.3.

Fig. 5(c) vs (d)). The polar diagram of the phase velocity for
the quasi-transversal wave in Gent material with Jm = 3
and K/µ = −0.3 is similar to one plotted in Fig. 5(c), and
is not shown here.

4. Concluding remarks

We derived explicit expressions for phase velocity for
finitely deformedmaterials with pronounced stiffening ef-
fect and demonstrated the significant role of the deforma-
tion on elastic wave propagation on examples for nearly
incompressible, highly compressible and extreme auxetic
materials. Furthermore, we demonstrated how direction
of wave propagation influences on the phase velocities
of elastic waves. These findings may guide further design
of mechanotunable acoustic metamaterials and phononic
crystalswith a large range of constituent properties. The lo-
cal strain field in these engineered materials could be used
to induce regions with extremely varied phononic prop-
erties to give rise to various acoustic effects. This opens a
very rich and broad research avenue for designing tunable
acoustic/phononic metamaterials.

Appendix A. Isomers of a fourth-rank tensor

Herewe follow the notation of isomer firstly introduced
by Ryzhak [34,35]. Let M be a fourth-rank tensor with the
following representation as the sum of a certain number of
tetrads:

M = a1 ⊗ a2 ⊗ a3 ⊗ a4 + b1 ⊗ b2 ⊗ b3 ⊗ b4 + · · · . (A.1)

Let (ijks) be somepermutation of the numbers (1234). Then
the isomer M(ijks) is defined to be the fourth-rank tensor
determined by the relation

M = ai ⊗ aj ⊗ ak ⊗ as + bi ⊗ bj ⊗ bk ⊗ bs + · · · . (A.2)
The fact that the isomer is independent of the choice
of the polyadic representation of the original tensor can
be readily proved by using well-known isomorphism
between tensors and multilinear forms of the same rank.

Appendix B. Proof of absence of pure modes in general
case in deformed Gent material

For clarity sake let us write an expanded form of tensor
n ⊗ n : B ⊗ B(1324) and its scalar product on n. First, let us
write B and B ⊗ B:

B = F · FT = λ21e1 ⊗ e1 + λ22e2 ⊗ e2 + λ23e3 ⊗ e3 (B.1)

B ⊗ B = λ41e1 ⊗ e1 ⊗ e1 ⊗ e1 + λ42e2 ⊗ e2 ⊗ e2 ⊗ e2
+ λ43e3 ⊗ e3 ⊗ e3 ⊗ e3
+ λ21λ

2
2 (e1 ⊗ e1 ⊗ e2 ⊗ e2 + e2 ⊗ e2 ⊗ e1 ⊗ e1)

+ λ21λ
2
3 (e1 ⊗ e1 ⊗ e3 ⊗ e3 + e3 ⊗ e3 ⊗ e1 ⊗ e1)

+ λ22λ
2
3 (e2 ⊗ e2 ⊗ e3 ⊗ e3 + e3 ⊗ e3 ⊗ e2 ⊗ e2) . (B.2)

Now we can write the isomer (1324) of fourth-rank
tensor B ⊗ B as

B ⊗ B(1324) = λ41e1 ⊗ e1 ⊗ e1 ⊗ e1
+ λ42e2 ⊗ e2 ⊗ e2 ⊗ e2 + λ43e3 ⊗ e3 ⊗ e3 ⊗ e3
+ λ21λ

2
2 (e1 ⊗ e2 ⊗ e1 ⊗ e2 + e2 ⊗ e1 ⊗ e2 ⊗ e1)

+ λ21λ
2
3 (e1 ⊗ e3 ⊗ e1 ⊗ e3 + e3 ⊗ e1 ⊗ e3 ⊗ e1)

+ λ22λ
2
3 (e2 ⊗ e3 ⊗ e2 ⊗ e3 + e3 ⊗ e2 ⊗ e3 ⊗ e2) . (B.3)

Resolvingn on the orthonormal basisn = n1e1+n2e2+
n3e3, we obtain

n ⊗ n : B ⊗ B(1324) = λ41n
2
1e1 ⊗ e1 + λ42n

2
2e2 ⊗ e2

+ λ43n
2
3e3 ⊗ e3 + λ21λ

2
2n1n2 (e1 ⊗ e2 + e2 ⊗ e1)

+ λ21λ
2
3n1n3 (e1 ⊗ e3 + e3 ⊗ e1)

+ λ22λ
2
3n2n3 (e2 ⊗ e3 + e3 ⊗ e2) (B.4)

and

n ⊗ n : B ⊗ B(1324) · n =

λ21n

2
1 + λ22n

2
2 + λ23n

2
3


×


λ21n1e1 + λ22n2e2 + λ23n3e3


. (B.5)

Now, let g be a polarization vector, hence if g ∥ n
we have longitudinal polarization and if g ⊥ n we have
transversal polarization. Firstly, assume that g ∥ n then
expression (4) yields

Q(n) · n = (α + βξ(n · B · n))n

+ 2β

n ⊗ n : B ⊗ B(1324)


· n, (B.6)

where for convenience we denoted α =
µ

J


1 +


K
µ

−

2
3 −

2
Jm


J2


and β =

µJm
Jξ2

. Since in general case vector
n ⊗ n : B ⊗ B(1324) · n


is not collinear to n (see Eq. (B.5)),

therefore vector g = n is not an eigenvector of acoustic
tensor, i.e. longitudinal polarization is absent, q.e.d.

Now let us assume that g ⊥ n then (4) yields

Q(n) · g = βξ(n · B · n)g

+ 2β

n ⊗ n : B ⊗ B(1324)


· g, (B.7)
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Suppose that g is an eigenvector of acoustic tensor then

βξ(n · B · n)g + 2β

n ⊗ n : B ⊗ B(1324)


· g = θg. (B.8)

Scalar multiplication of the last equation by n yields

n ·

n ⊗ n : B ⊗ B(1324)


· g = 0

or

λ21n1e1 + λ22n2e2 + λ23n3e3


· g = 0. (B.9)

Yet last expression does not hold true in the general case.
Consequently, g ⊥ n is not an eigenvector of acoustic
tensor, q.e.d.
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